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ABSTRACT

During the violent relaxation of a self-gravitating system, a significant fraction of its mass may be ejected. If the time-varying gravi-
tational field also breaks spherical symmetry, this mass can potentially carry angular momentum. Thus, starting initial configurations
with zero angular momentum can, in principle, lead to a bound virialised system with non-zero angular momentum. Using numerical
simulations we explore here how much angular momentum can be generated in a virialised structure in this way, starting from con-
figurations of cold particles that are very close to spherically symmetric. For the initial configurations in which spherical symmetry is
broken only by the Poissonian fluctuations associated with the finite particle number N, with N in range 10° to 10°, we find that the
relaxed structures have standard “spin” parameters A ~ 1073, and decreasing slowly with N. For slightly ellipsoidal initial conditions,
in which the finite-N fluctuations break the residual reflection symmetries, we observe values 4 ~ 1072, i.e. of the same order of
magnitude as those reported for elliptical galaxies. The net angular momentum vector is typically aligned close to normal to the major
semi-axis of the triaxial relaxed structure and of the ejected mass. This simple mechanism may provide an alternative, or complement,
to the so-called tidal torque theory for understanding the origin of angular momentum in astrophysical structures.
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1. Introduction

For several decades, observations have shown that galaxies of all
types have significant angular momentum whose origin remains
a fascinating open theoretical problem (for a review, see, e.g.
Romanowsky & Fall 2012). Globular clusters have also been ob-
served to have net rotation more recently (Hénault-Brunet et al.
2012; Bellazzini et al. 2012; Kacharov et al. 2014). The most
popular theory to account for angular momentum in virialised
structures is the so-called tidal torque theory, in which the viri-
alised structure gains angular momentum by the action of the
torque that is caused by the tidal fields generated by surround-
ing structures (Peebles 1969). Here, we explore a distinct mech-
anism which, despite its simplicity, appears not to have been
considered in the literature, apart from in one recent study of
cold spherical collapse (Worrakitpoonpon 2015): generation of
angular momentum by ejection of matter in violent relaxation.
Indeed violent relaxation of self-gravitating structures is char-
acterised by very large amplitude variations of the mean field
potential of a structure, which can give enough energy to parti-
cles to escape, even if all the mass is initially bound. The amount
of mass ejected depends strongly on the initial conditions, vary-
ing from zero to as much as 40% for highly uniform and com-
pletely cold initial conditions (Joyce et al. 2009)'. If, in addi-
tion, the mass distribution is not spherically symmetric during

! Mergers of virialized structures can also lead to ejection of a sig-

nificant mass, in particular when the two structures have very different
mass (Carucci et al. 2014).

Article published by EDP Sciences

the violent phase of the relaxation, this ejected mass could be
expected to carry at least some angular momentum — and “gen-
erate” an (equal and opposite) amount of angular momentum in
the remaining bound mass. In other words the two components
of the mass — the part that is ejected and the other part that re-
mains bound — can exert a net torque on one another during the
violent relaxation leading to a net angular momentum for both
of them. Further, given that violent relaxation starting from a
wide range of initially cold conditions is often characterised by
a very strong breaking of spherical symmetry, leading to triax-
ial relaxed structures (e.g. Merritt & Aguilar 1985; Barnes et al.
2009; Benhaiem & Sylos Labini 2015; Sylos Labini et al. 2015)
the effect might be far from negligible.

Using numerical simulations, we explore here how much an-
gular momentum can be generated by this mechanism in a viri-
alised structure. More specifically, we consider an initially iso-
lated cold distribution of matter in open boundary conditions and
without expansion, and a range of initial spatial distributions,
which are very close to spherically symmetric: (i) particles dis-
tributed around a centre following a mean density profile, which
decays as a power law of the radial distance; or (ii) particles dis-
tributed with uniform mean density inside an ellipsoidal region.
These are initial conditions that have been extensively studied
in the literature (see references below) to investigate the pro-
cesses that are involved in the formation of galaxies and other
astrophysical structures. We note that, in a cosmological con-
text, the simulations can be taken to represent the evolution, in
physical coordinates, of a single isolated overdensity with the
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chosen initial profile. On the other hand, the relation of such
simulations to the more general case of the evolution of an over-
density in an expanding universe (which cannot necessarily be
well-approximated as isolated) is a more complex issue and will
be discussed in detail in a forthcoming publication. Indeed, the
collapse in an expanding universe involves several additional pa-
rameters that can play a role in the dynamics (e.g. how precisely
the background density is modelled) and additional numerical
issues (notably concerning the control of numerical accuracy
without energy conservation — see Joyce & Sylos Labini 2012;
Sylos Labini 2013b).

In the present context the fluctuations that break spherical
symmetry in the initial conditions are evidently of central im-
portance for the phenomenon we are studying. For our first class
of initial conditions spherical symmetry is broken only by the
finite particle number fluctuations, while for the second class
these fluctuations break the residual reflection symmetries. We
find that almost all these initial conditions — except where there
is negligible mass ejection — indeed lead to a measurable net
angular momentum in the relaxed virialised structure. The an-
gular momentum is larger by about an order of magnitude in
the second class and in many cases is sufficiently large to sug-
gest that the mechanism could potentially account for angular
momenta observed in astrophysical structures. Indeed, the typi-
cal measured values of the spin parameters of galaxies (see e.g.
Hernandez et al. 2007) are of the same order of magnitude as the
ones that we find in some of our simulations.

The paper is organised as follows. We first present the details
of the numerical simulations and initial conditions in Sect. 2.
The in Sect. 3 we then present our results, first describing the
relevant features of the evolution qualitatively and then giving
the quantitative results. In Sect. 4 we summarize our results and
conclude.

2. Numerical simulations
2.1. Initial conditions

The detail of the initial conditions we study are as follows:

— N particles distributed randomly inside a sphere of radius Ry,
following the radius-dependent density profile p(r) oc ™%,
where r is the radial distance from the centre and « is a
constant. We refer to these as “spherical initial conditions”.
Initially, the particles have vanishing velocities. We report
here the results for the range of @ with 0 < @ < 2. We
restrict ourselves to this range since, in a previous study
(Sylos Labini 2012; Sylos Labini et al. 2015), we observed
that for @ > 2, there is negligible («1%) mass ejection.
As shown in the same study, and except for @ very close
to zero, the evolution leads to virial equilibria that are very
non-spherically symmetric and typically triaxial. We varied
the number of particles N from 103 to 10°.

— N particles are distributed randomly in a prolate ellipsoidal
region. We define a3 to be the largest semi-principal axis and
a; = ap the smaller ones. The three eigenvalues of the inertia
tensor are simply

1
Ai = gM(a§+a§), (1)
where M is the total mass of the system and i # j # k and

i, jok =1, ..., 3: from the definition of the semi-principal axes
we have A; > A, > As. The principal axis corresponding
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to the eigenvalue A is oriented in the direction of the short-
est semi-principal axis a;, while the principal axis associated
with Aj is in the direction of the longest one a3. The particle
number N again spans the range from 10° to 10°.

The shape at any time may then be characterised by the

parameter2
) = A0 1 2)

We refer to these as “ellipsoidal initial conditions”, and re-
port here results for the value of ¢ in the range from ¢(0) =
0.01 to ¢«(0) = 0.25. The mass ejection and amplification
of the spherical symmetry that breaks during the evolution
from these initial conditions has been studied in Benhaiem
& Sylos Labini (2015).

2.2. Numerical simulations

We have used the N-body code Gadget2 (Springel 2005). All
results presented here are for simulations in which energy is
conserved to within one tenth of a percent over the timescale
evolved, with maximal deviations at any time of less than half
a percent (see Benhaiem & Sylos Labini 2015; Sylos Labini
et al. 2015, for more details). This accuracy was attained us-
ing values of the essential numerical parameters in the Gadget2
code [0.025 for the 1 parameter, which controls the time-step,
and a force accuracy of ag = 0.001] in the range of typi-
cally used values for this code. In the specific cases of spheri-
cal initial conditions with @ = 0, which is singular in the limit
N — oo, the treatment is as detailed in Joyce et al. (2009; see
also Worrakitpoonpon 2015). We also performed extensive tests
of the effect of varying the force-smoothing parameter £, and
found that we can obtain very stable results, providing ¢ is sig-
nificantly smaller than the minimal size reached by the whole
structure during collapse®. We discuss the dependence on parti-
cle number N of our results below.

As noted above, our simulations are performed with open
boundary conditions and in a non-expanding background, but
can be taken to represent the evolution of an isolated overden-
sity in an expanding universe, i.e. as overdensity which at the
initial time has a large density constrast and it is at rest, in physi-
cal coordinates. In this respect we could perform the simulations
here using the expanding universe version of the code and peri-
odic boundary conditions. The size of the periodic box relative
to that of the initial sphere would then fix the relative overden-
sity represented by the sphere at the initial time (and thus also
the time scale for virialisation compared to the Hubble time).
Such a simulation gives, as discussed in detail and studied at
length in Joyce & Sylos Labini (2012), Sylos Labini (2013b),
identical results in physical coordinates, modulo finite-size cor-
rections suppressed by the ratio of the size of the structure to
the size of the periodic box, and possible numerical effects (in-
cluding the effect of smoothing). Indeed, as discussed in Joyce
& Sylos Labini (2012), Sylos Labini (2013b), the differences be-
tween such simulations and those in open non-expanding space

2 Note that these parameters are generally defined as a function of the
semi-principal axes a, a,, a3, rather than as a function of the eigenval-
ues (see Eq. (1)). However for small deformations of a perfect sphere,
which is the case we consider here, these definitions are almost equiva-
lent. The advantage of this definition of the parameters using the eigen-
values is that it can be used to characterise any distribution.

3 More specifically we have found very stable results for & in the range
Rg‘i“ /& € [10,200] where Rg‘i“ is the minimal value of the gravitational
radius (defined further below) reached during the collapse.
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provides information about these kind of numerical effects, and
indeed a tool to better control expanding universe simulations.
Our “direct” simulations in physical coordinates are preferable
because they are simpler and, notably, far easier to control for
accuracy (via energy conservation).

Given that we are interested here in the angular momentum,
we also test our simulations for their overall conservation and,
as detailed below, compare the measured angular momentum of
the final bound structure with the numerical error. We will also
check systematically for the accuracy of conservation of the total
linear momentum.

3. Results
3.1. Qualitative description of mechanism

Numerical studies of evolution from some of these initial con-
ditions, or very similar ones with small but non-zero virial ra-
tios, have been reported extensively in the literature (see, e.g.
Henon 1973; van Albada 1982; Aarseth et al. 1988; Theis &
Spurzem 1999; Boily et al. 2002; Joyce et al. 2009; Sylos Labini
2012, 2013a; Benhaiem & Sylos Labini 2015; Sylos Labini et al.
2015), with an emphasis, in particular, on the study of the shape
and profile of the virialised structure. Because the system is ini-
tially cold, in all cases it undergoes a strong collapse in a time of
order 1/4/Gpy, where py is the initial mean density, followed by a
re-expansion, which leads rapidly to virialisation of most of the
mass. The degree of violence of the collapse, which can be char-
acterised approximately by the maximal contraction the system
undergoes, varies with the initial condition. The most extreme
case is the spherical case (@ = 0), whose collapse is singular in
the limit N — oo.

While both early studies, and most studies since, have fo-
cused on the properties of the virialised structure (e.g. its den-
sity profile, shape, and velocity distributions) the phenomenon
of mass (and energy) ejection has only been considered in detail
more recently: for the case of cold uniform spherical conditions
(i.e. the case @ = 0 here) in Joyce et al. (2009); for the case
a = 0 with non-zero initial velocities in Sylos Labini (2012);
and for ellipsoidal initial conditions in Benhaiem & Sylos Labini
(2015)*. Essentially, the amount of mass ejected depends on the
degree of violence of the relaxation, which can be quantified
roughly by the maximal contraction attained by the system dur-
ing the collapse phase. The reason for this correlation between
the ejection of mass and the violence of collapse is easier to
understand when the mechanism for ejection is studied (Joyce
et al. 2009; Carucci et al. 2014; Benhaiem & Sylos Labini 2015;
Sylos Labini et al. 2015): The ejected particles are essentially
those whose fall times to the centre of the structure during col-
lapse are longest. As a consequence, they pass through the centre
of the whole structure when it begins to re-expand, which means
that they travel into a deeper potential than the one they travel
out of. As aresult they pick up an energy “kick”. The magnitude
of this energy gain is related directly to the strength of the poten-
tial at this time, which depends essentially on the extent of the
contraction.

For the generation of angular momentum, the second crucial
ingredient is the breaking of spherical symmetry, in addition to
mass ejection. Indeed mass ejection can occur in a purely radial
gravitational field, but will not then generate angular momen-
tum. That cold initial conditions in the class we are consider-
ing lead to virialised states, which are very far from spherically

4 Mass ejection in mergers of two virialised structures is studied in
detail in Carucci et al. (2014), Samsing (2015).

symmetric, was observed first by Merritt & Aguilar (1985) and
extensively studied in the literature (see, e.g. Aguilar & Merritt
1990; Theis & Spurzem 1999; Boily & Athanassoula 2006;
Barnes et al. 2009). This instability of initially spherical systems
to relaxation to non-spherical viral equilibria is usually referred
to as “radial orbit instability”, because of its apparent link to an
instability of equilibrium systems with purely radial orbits, orig-
inally proved by Antonov (1961), Fridman et al. (1984). In two
recent papers we have studied in detail the development of this
asymmetry during the collapse phase for both the classes of ini-
tial conditions we study in this paper (spherical initial conditions
in Sylos Labini et al. 2015, and ellipsoidal initial conditions in
Benhaiem & Sylos Labini 2015). These studies reveal that the
same process involved in the energy ejection, which leads to
mass ejection, plays a crucial role for many initial conditions in
amplifying the symmetry breaking. Indeed, among the late arriv-
ing particles, there is also a spread in arrival times as a function
of angle, which leads to an energy injection, and thus a spatial
distribution of mass, which is also a function of angle. The ef-
fect is maximal in enhancing the final asymmetry in the range
a € [0.5, 1.5]. It is, on the other hand, relatively suppressed in the
limit @« = 0 because the particles’ fall times, and consequently
their energy changes, are much less strongly correlated with their
initial radial position in this case, leading to a “washing out” of
the effect. The development of the asymmetry in the mass dis-
tribution, and thus in the gravitational potential, is the combined
effect of the growth of the initial finite N fluctuations that break
spherical symmetry through gravitational instability, in this case
known as the Lin-Mestel-Shu instability (Lin et al. 1965), which
is then amplified by the energy ejection to particles, and which
also leads to mass ejection.

A schematic representation of the mechanism is given in
Fig. 1. Any given realisation of our initial conditions has a
longest semi-principal axis, along which particles are, on aver-
age, further from the orthogonal plane. In the case of the spher-
ical initial conditions, the non-zero effective ellipticity is a finite
N effect, while in the ellipsoidal initial conditions, it is dialed
by the parameter ¢(0). In the first phase of collapse, this initial
asymmetry is amplified by the (gravitational) instability of Lin
et al. (1965) with the latest collapse occurring along the longest
axis. Particles arriving from the corresponding directions pass
through the centre as the structure is already re-expanding in the
other directions, leading to a greater energy injection to them. As
the potential they are traveling is not spherically symmetric, the
particles also gain traverse velocities and thus angular momenta
with respect to the centre. As there are also fluctuations breaking
rotational symmetry, which grow in the course of the collapse,
both the radial and transverse velocities will vary as a function of
direction and, for example, those ejected in opposite directions
will have slightly different angular momentum. The ejected out-
going particles can then carry net non-zero angular momentum,
leaving behind the opposite angular momentum in the particles
which virialise in the bound structure.

3.2. Measurement of angular momentum

We now focus on the evolution of the angular momentum during
the relaxation. More specifically we decompose the total angular
momentum Lt at any time into two components

LT = Lb + Lf, (3)

where Ly, (Ly) is the total angular momentum of the “bound”
(“free”) particles, i.e. which have negative (positive) energy
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at the given time. In practice, particles’ energies almost never
change sign more than once, i.e. the asymptotically ejected par-
ticles are those which are tagged as “free” when their energy be-
comes positive. Further we consider the decomposition of Ly, as

Ly= L™ + L, (4)

where LE"“‘ = MyR, XV}, is the angular momentum of the centre
of mass of the bound particles, located at R, and moving with
velocity Vy, and LE is the angular momentum of the bound par-
ticles with respect to their centre of mass. It is the latter which
interests us most but we also monitor L;*" and Ly, measured
with respect to the fixed origin at the centre of mass of the initial
configuration, to assess the accuracy of the simulation for which
the total angular momentum should be conserved (and equal to
Z€ero).
We measure time in units of

/ 3r
= S 5
TC 32 :;—0 ’ ( )

where p, is the total initial mass density, i.e. the total mass di-
vided by the volume of the initial sphere or ellipsoid. This cor-
responds to the time for a particle that is initially at the outer
periphery of a cold sphere with this mass density to fall to its
centre in the continuum approximation (i.e. taking N — oo
and keeping the initial mass density profile fixed) and without
shell-crossing.

We measure angular momentum in the natural units given by

GM"?
VB

where M is the total (initial) mass of the system, and E its total
(initial) energy (equal to its potential energy). Further, we report
results for the angular momentum of the bound mass Lg, given
in terms of the so-called spin parameter A, as defined by Peebles
(1969), Knebe & Power (2008):

(6)

ILY|
=—, (7
b
LD
where L{ is
GA4M2
=—> ®)

VIE]”

where My, is the bound mass and E, (W,) the total (gravita-
tional potential) energy of this mass (with respect to its center
of mass)°.

3.3. Results for a chosen initial condition

First we present results for the case of spherical initial condi-
tions with @ = 1 and N = 10° particles. We consider this case
since its evolution is typical of those we observe for all our dif-
ferent initial conditions. For this case, the panels of Fig. 2 show
as a function of time (i) the fraction f; of the initial mass in free

5> Another commonly used normalization for the spin is that introduced
in Bullock et al. (2001), defined by A" = |L}|/L, with L; = /2M]GR,

. 3GMm2 . . .
with R, = ——b" where W, is the potential energy. For a virialized

5Wy

structure, with E, = W;,/2, 2’ = V5/3A.
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Fig. 1. Schematic representation of the generation of angular momen-
tum in the ejected particles. The upper panel shows schematically sym-
metry breaking in the initial cloud. When particles are ejected, both
their radial and traverse components generally have some dependence
on angle, leading to a net angular momentum being carried away by the
ejected particles.
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Fig.2. Evolution from spherical initial condition with ¢ = 1, and

N = 10°: top left: the fraction of particles with positive energy f, (full
black line) and the gravitational radius R, (dotted red line) in units of
the initial sphere radius Ry; top right: the flatness ratio tg for the 80%
most bounded particles; bottom left: the total angular momentum Ly
(full black line) with respect to the initial centre of mass, the angu-
lar momentum of the centre of mass of the bound particles L;°™ (red
dashed line) and the angular momentum of the bound particles L{ (blue
dashed-dotted line) with respect to their centre of mass (all in units of Ly
defined in Eq. (6)); bottom right: the spin parameter A.

. o . GM?
particles and the gravitational radius defined as Ry(¢) = ‘Wbb(g‘);

(i1) the flattening ratio gy as defined by (2) with the subscript
indicating that the inertia tensor was calculated using the parti-
cles with energy less than 20% of the energy of the most bound
particle; (iii) the magnitude of the angular momenta |Lr|, [L;°"|,
|LE| (on a logarithmic scale); and (iv) the spin parameter A.

As described above, the first plot illustrates clearly that at
7. ~ 1, the system reaches its maximal contraction, and the
strong energy injection, which leads to particle ejection, occurs
in a very short interval around this time, which corresponds ap-
proximately to the dispersion in fall times of the mass. Likewise,
the second panel, that shows the behaviour of tgy, we see that
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the breaking of spherical symmetry grows monotonically from
the beginning and is then strongly amplified around the maximal
collapse (as described in detail in Sylos Labini et al. 2015).

As anticipated, and as can be seen from the lower two plots,
the bound mass indeed moves towards a stationary state with
non-zero angular momentum (relative to its centre of mass). This
final angular momentum of the bound mass, albeit small in the
natural units, is clearly not numerical in origin; it is about three
orders larger than the final total angular momentum, which gives
a measure of the violation of angular momentum conservation
that is due to numerical error. Further we have performed sev-
eral tests, varying the essential numerical parameters, and found
our results to be stable. On the other hand, the total angular mo-
mentum Ly, of the bound mass (with respect to the initial centre
of mass of the whole system) is dominated by its translational
motion: the bound mass “recoils” with a net linear momentum,
compensating for that of the ejected mass along an axis which
is off-set from the initial centre of mass. We give some further
details below on this ejected linear momentum, which is mea-
sured numerically to a precision of order 107° (i.e. the measured
momentum change of these particles is 10° times larger than the
change in the total momentum due to numerical error).

3.4. Generation of angular momentum during collapse

It is interesting to follow the dynamics leading to the genera-
tion of net angular momentum in the collapse phase. During this
phase the mass which is finally ejected has not yet undergone
the energy boost which leads to this ejection, but the gravita-
tional potential has already developed very significant asymme-
try, which leads the particles to have non-radial velocities, and
thus non-zero angular momentum (while the total angular mo-
mentum remains zero).

Figure 3 shows, for the case @« = 1 and N = 10°, the mea-
sured dispersion of the transverse velocities in radial shells, as
a function of radius, and at different times during the evolution.
The velocity is normalised in units of vy = VGM/R,. We ob-
serve that the transverse velocities are already at r = 0.57. com-
parable with, and at t+ = 0.757, even larger than, their magni-
tude in the final virialised structure. We note that these are the
transverse velocities produced by the growth of the initial den-
sity fluctuations that are breaking spherically symmetry through
gravitational instability, well before the energy injection to par-
ticles that fall around ¢ ~ 7. leading to the mass (and angu-
lar momentum) ejection. For longer time scales, i.e. t > 7, the
outer shell, corresponding to very weakly bound particles with
energy very close to zero, is expanding since these particles are
still travelling outwards on their large orbits. On the other hand,
the inner shell has reached a stationary state, as can be seen by
comparing the velocity profiles at r = 2.57. and at t = 57.

Figure 4 shows the distribution P(|¢|) of the absolute values
of the particle angular momentum ¢ with respect to the centre of
mass of bound particles, at the indicated times (before and after
the collapse). In line with the results on the transverse velocities,
we observe that significant angular momentum is already gen-
erated before the completion of the collapse phase. Further, for
t > 7. P(|f)) rapidly approaches the distribution characterising
the final virialised state.

The upper panel of Fig. 5 shows the temporal evolution of the
average value of the modulus of the particle angular momentum
for the bound particles (with respect to their centre of mass, in
units of Ly). In line with what would be expected from the plots
of the transverse velocities, we observe a constant growth during
the collapse phase, followed by a very significant boost around
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Fig. 3. Average in radial shells of the square of the transverse compo-
nent of particle velocities (in units in which vy = VGM/Ry is unity), as
a function of radius, at each of the indicated times, for a simulation with
N = 10° particles of spherical initial conditions with @ = 1. Note that
already well before the system reaches it maximal contraction, at t ~ 1,
the Poissonian fluctuations breaking spherical symmetry have been am-
plified to produce tangential velocities larger than in the final virialized
state.
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Fig. 4. Distribution of the absolute values of the particle angular mo-
mentum ¢ (in units of L) with respect to the centre of mass of bound
particles P(|{]), for « = 1 and N = 10° at different times before and
after the collapse.

the time of maximal contraction, when the energy ejection oc-
curs. Thus we see the angular momentum that is generated by
the collapse receiving a very significant boost in the final phase
of the collapse. This is further quantified by the lower panel of
Fig. 5, which shows the evolution, as a function of time, of

LP
p_ b
hESa ©
i.e. the modulus of the angular momentum of bound particles,
normalised to the sum of the moduli of the angular momenta of
the same particles. The dashed horizontal line corresponds to the
value VN, /N_ ~ f./VN, which is the amplitude of the bound
angular momentum which would be expected if the ejection op-
erated as a simple random removal of particles without any mod-
ification of their angular momentum. We observe that the final
value is, in fact, at least several times larger. Thus, during the
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Fig. 5. For the case @ = 1 and N = 10°, upper panel: evolution of the
average of the modulus of the angular momenta of bound particles (with
respect to their centre of mass) as a function of time. The lower panel:
quantity in Eq. (9) and the dashed line the estimated value expected if
the ejection were a random sampling of the total mass.

final phase of collapse, when the large energy changes that gives
rise to ejection are occurring, the ejected and bound particles ex-
ert a torque on one another that very significantly amplifies their
final (equal and opposite) angular momenta.

3.5. Results for different initial conditions (fixed N)

In the above, for simplicity we have focused on the single case
of spherical initial conditions with @ = 1, and we have shown re-
sults for N = 10°. The qualitative behaviours we have discussed
in this case, for what concerns the generation of angular momen-
tum, are shared by all our other initial conditions. Quantitatively,
there is a variation of the final angular momentum, which de-
pends notably on the details of the mass ejection and on the de-
gree of symmetry breaking during the collapse. The precision of
the simulations also varies from case to case; simulations for the
spherical initial conditions with @ = 0 are particularly delicate
since the collapse is the most extreme in this case, with a singu-
lar behaviour in the limit N — oo. Correspondingly, in this case
the measured angular momentum is only a few times larger that
the numerical error in the conservation of the total angular mo-
mentum, while, as shown above (see Fig. 2), it is almost three
orders of magnitude larger for the case @ = 1.

Figure 6 shows the “final” values of f, (top panel), tgo (third
panel) and A (bottom panel), i.e. at + = 57, for the spherical
initial conditions as a function of «. In addition, in the second
panel, we also show f, the “fraction of ejected energy”, defined
by f& = (Ep — Eo)/Eo = —E,/Ey, where E,, is (by energy con-
servation) the total ejected energy in the frame in which the par-
ticles are initially at rest, i.e. the sum of the kinetic energy of
the centre of mass of the bound mass and the kinetic energy of
the ejected particles. Figure 7 shows the same four quantities
for the ellipsoidal initial conditions as a function of ¢(0).

Comparing these two figures, the most striking result is that
there is an order of magnitude difference in the final angular mo-
mentum (as characterised by the spin parameter 1) for most of
the spherical initial conditions with @ # 0, and the ellipsoidal
initial conditions with ¢«(0) # 0, with a sharp interpolation be-
tween the two classes around the case @ = 0 (which indeed is
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Fig. 6. Final values of f.(f,), f, tso and A for the spherical initial condi-
tions as a function of @, for N = 10*. The points are the average values
for Ny = 20 realisations for each @ # 0 and for 47 realisations in the case
a = 0; the indicated error bar is the corresponding standard deviation
o (for A we show the error on the mean o-/+/N,). The lower panel also
shows (red dashed points) the angular momentum of the bound mass
normalised to Ly. For the smallest values of a, the angular momen-
tum generated actually decreases but, because of the increasing mass
(and energy) ejection, the characteristic angular momentum of the final
bound mass decreases even faster.
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Fig.7. Final values of f.(f,), fg, tso and A for ellipsoidal initial con-
ditions, as a function of ¢«(0). The points are averages for 20 realisa-
tions and the error bar, the corresponding standard deviation (for A we
show the error on the mean). As in the previous figure the lower panel
also displays (red points, dashed line) the final angular momentum nor-
malised to Ly).

also the limit ¢«(0) — 0 of the ellipsoidal initial conditions). In
both figures, we also show in the lower panel the final angular
momentum normalised to Ly. Compared with A, we see that
around @ = 0, where the relaxation is most violent, there is a
significant difference. This arises simply from the fact that there
is a considerable ejected mass and energy in this case. Indeed
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the relative amplitude of the two quantities can be expressed as

A (ﬂ)m(@)‘” _ L+ fp)'?
o \My) \|E| (1= fi)32

Thus, the final spin includes an amplification which comes from
the change in the characteristic scale of angular momentum that
results from the mass and energy ejection (which leads to a more
bound, but less massive, structure than the initial condition).

It is clear, however, from the two plots that this amplifica-
tion from the normalisation is not the main factor explaining the
much larger final angular momenta from the ellipsoidal initial
conditions. In fact, the main effect, which amplifies the spin in
the ellipsoidal initial conditions compared to the spherical ones,
comes clearly from the essential difference in the initial condi-
tions: the stronger initial breaking of the spherical symmetry.
This initial asymmetry leads both to a more anisotropic col-
lapse, compared to that in the spherical case and, at the same
time, the ejection of a comparable amount of mass to that in the
small a spherical models. As described in detail in Benhaiem &
Sylos Labini (2015), the particles on the stretched axis of the ini-
tial condition fall slightly later and receive a large energy boost.
We note that it is only for ¢gp(0) < 0.15 that the final ¢(¢) is lin-
early proportional to the initial one. Instead, for ¢go(0) > 0.15,
substructures form during the collapse, leading to a substantial
difference in the shape of the virialised structure, see Benhaiem
& Sylos Labini (2015). Similarly the percentage of ejected par-
ticles decreases linearly with ¢gy(0) only for ¢g9(0) < 0.15.

Besides the angular momentum itself, the generation of a net
relative motion of the centre of masses of the final bound and
ejected mass is also a direct measure of symmetry-breaking. We
would thus expect to possibly find a similar trend in the final
linear momentum of the ejected (or bound) particles. Figure 8
shows a plot, for all our simulations with N = 10* particles, of
both A and u, the modulus of the “final” linear momentum of the
ejected particles (equal and opposite to that of the bound mass
up to a numerical precision that is smaller by several orders of
magnitude in all cases.) We observe that there is indeed a clear
correlation between the two quantities. Furthermore, it appears
highly consistent with a roughly linear relation, as one might
expect, given that they are both indirect measures of an initially
small break in spherical symmetry.
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Fig.9. Spin parameter A'(r) (see Eq. (11)), averaged over 20 realisa-
tions, for @ = 0,0.5,1,1.5,2, and N = 10°. The distance is normalised
to the structure size Rp.x.

Finally, we have also studied the scale-dependence of the
normalised spin parameter, defined as (Bullock et al. 2001)

Lp()

where Lg(r) is the angular momentum of bound particles with
distance <r from their centre of mass, and M(r) is the mass en-
closed in a sphere of radius r. The results for five different sets
of simulations with @ = 0,0.5,1,1.5,2, and N = 10° are shown
in Fig. 9. The profiles are similar in all cases, but their ampli-
tude depends on « as highlighted in Fig. 6. The fact that A’(r) is
larger for @ = 0 than for @ > 0 is related to the fact that orbits
are slightly more radial in the former case.

A(r) = (11

3.6. Correlation of angular momentum with final spatial
distribution

As analysed in detail in Benhaiem & Sylos Labini (2015),
Sylos Labini et al. (2015), for both classes of initial conditions,
there is a correlation between the direction in which mass is
ejected and the longest axis of both the initial condition and the
final bound mass. The latter of these two are strongly correlated
because it is the growth of the initial fluctuations breaking spher-
ical symmetry, amplified by the mass ejection, which leads to the
final spatial asymmetry. The ejection of mass is amplified along
these same directions because they are the particles which fall
latest and, as a result, pick up a large energy kick. Given that we
have seen that most of the final angular momentum is generated
at the time of ejection, we would expect that it to preferably be
aligned orthogonal to the preferential axis for ejection.

Figures 10 and 11 show histograms for 20 realisations of
each indicated initial condition, of the modulus of the cosine
of the angle between the final angular momentum of the bound
mass, LP, and the eigenvector corresponding to the longest axis
of the final bound mass (blank histograms) and the final ejected
mass (filled histograms). For the ellipsoidal initial conditions —
which very strongly single out an initial preferred axis and which
remains strongly correlated with the final longest axis — the an-
ticipated correlation is very clearly present. In the spherical ini-
tial conditions, the correlation is weaker but nevertheless visible,
except perhaps in the case @ = 0. Indeed in this latter case, as
discussed in Sylos Labini et al. (2015), the symmetry-breaking
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different @ indicated in the caption.
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Fig. 11. Pdf of the cosine of the angle well after the collapse between
LE and the eigenvector corresponding to the longest principal axis of
the final bound (blank histograms), and of the ejected mass (filled his-
tograms) for 20 realisations of ellipsoidal initial conditions for different
1(0), indicated in the caption.

in the final state is, in fact, much weaker, as is the correlation be-
tween the final and initial asymmetry. In this case, with the fall
time of all particles being the same in the limit N — oo, there
is a much weaker correlation between the initial radial position
of a particle and the energy change it undergoes in the violent
collapse.

3.7. Dependence on N

The N dependence of the angular momentum that was generated
by mass ejection has been explored in Worrakitpoonpon (2015)
for the case a = 0, and evidence for a monotonic decrease ~N 7,
with a best fit around 8 = 1/3, was found. In the case of simula-
tions with N = 10* and N = 10, the results we reported above
are consistent with this finding, while for initial conditions with
a > 0, an apparent decrease of the average Lg as N grows is
also observed. To explore this further, we performed a more de-
tailed study of the case @ = 1, performing a larger number of
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Fig. 12. Logarithm of the final angular momentum of bound virialised
mass L} (in units of L) as a function of particle number N, for spher-
ical initial conditions with @ = 1. The point for the cases N = 10°
corresponds to the results reported above, at t = 5, while for the other
N there is data at three times, extending to ¢t ~ 14. Each point is an
average over M realisations, with M = 90 for N = 1000, M = 50 for
N = 2000, M = 40 for N = 4000, M = 30 for N = 8000, M = 6 for
N = 16000, M = 4 for N = 32000, and M = 4 for N = 10°. The
error bars indicate the corresponding estimated error on the mean. The
continuous line (e« N~%4) is a best fit to the data, while the dashed lines
correspond to N~/2 and N~1/3.

simulations for a greater number of values of N in the range 10°
to 10°. In this case, we also evolved each simulation for a longer
time to study the stability of our “final” measures of the different
quantities and to check for the possible role of finite N effects.

Figure 12 shows the result for the measured angular mo-
mentum LE, at the indicated times, in a series of simulations
for the different indicated values of N. As anticipated, in the
cases where different (and longer) times have been analysed, the
measured angular momentum shows no significant dependence
on the time: after a few dynamical times there is negligible in-
teraction between the ejected and bound mass and the angular
momentum of each is constant. On the other hand, as a function
of N, there is a clear monotonic decrease, which is well fitted by
a power-law dependence, LE o« N7, withy = 0.4.

Figure 13 shows the result for the same data as in the pre-
vious figure and, for the different N shown, for the flatness ra-
tio tgp. In contrast, in this case we see that the value measured,
for all but the largest value of N, shows visible dependence on
time. More specifically the bound mass evolves towards a more
spherical distribution in time, at a rate which is clearly faster for
the smaller N. This kind of N dependence of the timescale of
the evolution of the virialised structure is clearly qualitatively
coherent with collisional relaxation and, indeed, a quantitative
analysis of this type of behaviour from similar initial conditions
in Theis & Spurzem (1999) shows that the timescale of this evo-
lution is, indeed, in agreement with that predicted by two-body
collisionality. At the very largest N, on the other hand, the result
appears to converge to a time-independent value. In the small
range of (larger) N, in which the time-dependence that results
from two-body collisionality is small, the final value appears to
be consistent with an N-independent behaviour, but clearly ex-
trapolation to larger N would be needed to reach a firmer con-
clusion. However, we underline that we do not have this problem
for the above determination of the scaling with N of Lg since this
quantity is essentially frozen, as we have seen, at about # ~ 2, and
thus not modified by the two-body collisionality at longer times.
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Fig. 13. Flatness ratio gy as a function of particle number N, for the
same simulations in the previous figure (o = 1) for the indicated values
of N. For this quantity the observed N dependence is due to two-body
relaxation, which make the system evolve in time towards a more spher-
ical quasi-equilibrium.

We note that Joyce et al. (2009) report tests for collisionality dur-
ing the collapse phase, for the very extreme case of a flat (& = 0)
profile, and conclude, in line with the study of Aarseth et al.
(1988), for N > 103 that collisional effects during the collapse
phase are indeed negligible. This result, consistent with theoret-
ical prediction for the collisional timescale, is borne out by the
observation that the evolution of the macroscopic features of the
collapse, i.e. potential energy, viral ratio, size of structure and,
in particular, the fraction of the mass ejected, are stable when N
increases and, likewise, when the gravitational force-softening
is varied, provided it is sufficiently small to resolve the mean
gravitational field.

Given that, as we have emphasized, the breaking of spherical
symmetry in the initial conditions is due to finite N fluctuations,
the fact we find that the final angular momentum Lg decreases
as N increases, and in principle goes to zero as N — oo, is what
one would naively expect. A similar decrease in amplitude, with
an exponent of about the same value, has been observed for the
case a = 0 in Worrakitpoonpon (2015). In our simulations of ini-
tial conditions from elliptical conditions, we have not been able
to detect a clear trend for Lg to decrease as N increases within
the significant scatter of different realisations at given N. This
is probably because of a weaker N-dependence in this case, as
the spherical symmetry is “mostly” broken by ¢(0) # 0, which
does not depend on N. In contrast, the lack of evidence for any
N dependence in the final ¢ — once N is sufficiently large so that
collisional relaxation plays no role on the time scales probed —
may be indicative of the true physical behaviour: in the limit of
exact spherical symmetry of a perfectly cold system, it is ex-
pected that symmetry will be broken because of a so-called ra-
dial orbit instability. In future work we will study more fully the
N-dependence of both the breaking of symmetry and that of the
angular momentum of the ejected particles, and their connection
to one another.

4. Discussion and conclusions

The origin of the angular momentum in astrophysical struc-
tures — notably that measured observationally in galaxies — is a
fascinating open problem in astrophysics and cosmology. In this
article, we have discussed and studied a way, which is different
to commonly considered ones, such as tidal torques, in which

angular momentum can be generated by self-gravity only. This
can occur, in principle, for initial conditions which evolve suffi-
ciently violently, with large variations of the gravitational mean
field, so that mass is ejected during relaxation towards a viri-
alised state. Using numerical simulations, we have shown for
two simple broad classes of initial conditions of this kind that
significant angular momentum can, indeed, be generated in this
way. In most cases this angular momentum is orders of magni-
tude larger than the angular momentum induced by numerical
errors.

For illustrative purposes and for simplicity, we have consid-
ered initial conditions very close to spherical symmetry. Indeed,
in all our initial conditions rotational symmetry is only fully
broken by the Poissonian density fluctuations that are associ-
ated with the finite number of particles. Interestingly we find
that, despite the “artificiality” of our initial conditions, which
are not motivated by any detailed specific physical model, we
obtain angular momenta that are of comparable size, i.e. only
smaller by a factor of two in some cases, than those typically
estimated observationally for galaxies. Indeed we have obtained
values of the normalised “spin parameter” up to 4 ~ 0.02, while,
for example, Hernandez et al. (2007) estimate its average value
in the 11597 spirals and elliptical galaxies observed by the Sloan
Digital Sky Survey to be 1y = 0.04+0.005. Clearly, while galaxy
formation, in particular, involves much more complicated non-
gravitational processes than is described by the simple models
we have considered here and, moreover, our specific initial con-
ditions are quite ad hoc (and not directly motivated by a cosmo-
logical model) it is intriguing that the order of magnitude of the
values we obtain are in line with those observed.

We note that studies of dark matter halos in cosmological
N-body simulations (see e.g. Vitvitska et al. 2002; Bullock et al.
2001; Bett et al. 2007) give rise to similar values of spin pa-
rameter (1 ~ 0.04), i.e. of the same order as those observed in
elliptical galaxies, and as those we find in our simulations in
certain cases. As dark matter halos of standard cold dark matter
cosmologies form through a hierarchical process rather than in
the kind of monolithic collapse we have studied, the mechanism
we have studied has likely no relevance in this particular context.
Indeed it is the strong violence of the collapse leading to mass
ejection which is crucial, and the formation of halos in a cold
dark matter cosmology setting is not of this kind. Nevertheless,
as discussed in Carucci et al. (2014), Samsing (2015), signif-
icant mass ejection can occur in a cosmological setting when
halos merge, and it would be interesting to investigate whether
this could also lead to the generation of angular momentum at
a significant level, compared to the processes of mass accretion,
for example, which has been argued in Vitvitska et al. (2002), to
account for the spin of dark matter halos.

Just as in cosmological simulations we underline that, es-
sentially, we are simulating the collisionless regime of the grav-
itational dynamics (apart from the two-body collisional effects
which we observed to be present at longer times in smaller N
simulations). In so far as this is true, the particle number N
is relevant, in principle, in the properties of the final state be-
cause it fixes the amplitude of the initial fluctuations. Indeed
these fluctuations are, for our initial conditions in this paper,
simply Poissonian, and thus their amplitude at any scale (and
all their statistical properties) are regulated by this single pa-
rameter. Alternatively one could consider setting up an ini-
tial particle configuration with the same average density profile
but with statistical fluctuations with non-trivial correlation, de-
scribed for example by non-trivial two-point correlation prop-
erties. In this case one could then, in principle, vary N while
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keeping the relevant fluctuations fixed and obtain results inde-
pendent of N. As the fluctuations play an essential role in the
symmetry-breaking, we expect that the detailed nature of these
initial fluctuations may have an impact on the properties of the
final structure. We postpone a detailed study of this interesting
issue for a future work. We will also explore whether cold but
more irregular/clumpy initial conditions can produce values of
the spin of the order of magnitude to those observed for galax-
ies. Furthermore, we will explore whether the kind of correla-
tion we discussed briefly in the last part of the paper — between
the shape of the asymmetric virialized structure and its angular
momentum — could be used to find observational evidence for
or against the role of very violent relaxation in generating the
structure of galaxies.

Numerical simulations have been run on the Cineca PLX
cluster (project ISCRA BSS-GC), and on the HPC resources of
The Institute for Scientific Computing and Simulation financed
by Region Ile de France and the project Equip@Meso (refer-
ence ANR-10-EQPX- 29-01) overseen by the French National
Research Agency (ANR), as part of the Investissements d’ Avenir
programme.
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