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Fractional conductance is measured by partitioning ν = 1 edge state using gate-tunable fractional
quantum Hall (FQH) liquids of filling 1/3 or 2/3 for current injection and detection. We observe
two sets of FQH plateaus 1/9, 2/9, 4/9 and 1/6, 1/3, 2/3 at low and high magnetic field ends of the
ν = 1 plateau respectively. The findings are explained by magnetic field dependent equilibration of
three FQH edge modes with conductance e2/3h arising from edge reconstruction. The results reveal
remarkable enhancement of the equilibration lengths of the FQH edge modes with increasing field.

Topological phases of matter such as the quantum
Hall states possess gapless protected surface states that
carry the current, while the bulk remains insulating. At
the smooth boundary Coulomb interaction leads to re-
construction of the edge states in integer quantum Hall
(IQH) systems [1–3], fractional quantum Hall (FQH) sys-
tems [4–8], quantum spin Hall insulators [9, 10] and
graphene nanoribbons [11] etc. Edge reconstruction [12–
15] can result in additional integer and fractional edge
modes as well as neutral modes with short equilibra-
tion lengths [9–11, 16] due to quasi-particle scattering
between the modes. Transient FQH edge modes with
short equilibration lengths of a few micrometers have
been demonstrated in IQH [17] and FQH [18] systems.
Robust reconstructed FQH edge modes with long equili-
bration lengths [19, 20] can have non-trivial implications
on investigating braiding statistics [20–24], quantum in-
terferometry [25–27] and design of hybrid quantum Hall
systems [28]. A suitable system to explore robust FQH
edge modes is ν = 1 IQH state, where three edge modes
with conductance e2/3h [1] are formed by edge recon-
struction. Robustness of the FQH edge modes is investi-
gated here for the first time by varying magnetic field.

In this letter we show enhancement of equilibration
length of a FQH edge mode of conductance e2/3h upon
increasing magnetic field within the ν = 1 IQH plateau.
The equilibration length of the mode is estimated to be
as high as 777±40 µm at the high field end of the plateau.
Enhancement of the equilibration length with increasing
field is corroborated by investigating equilibration length
of FQH edge modes at bulk filling ν = 2/3. Our results
reveal the way to find the robust FQH edge modes.

The experiments are carried out on a modulation
doped heterostructure, in which the 2DEG resides in
a GaAs/AlGaAs heterointerface located 100 nm below
the top surface. Figure 1 (inset a) shows a topologically
equivalent schematic device structure [29], where the two
sides of IQH region of filling ν is bounded by regions of
filling fractions ν1 and ν2 that are tunable using top-gates
g1 and g2 as in Ref. 30. For transport measurements, four

standard Ohmic contacts (S1,S2,D1,D2) are deployed on
the device. The sample is mounted in a dilution refrig-
erator equipped with 14 T superconducting magnet at
base temperature 7 mK, where the lowest electron tem-
perature achieved is about 30 mK. All measurements
are carried out at 30 mK unless stated otherwise. The
carriers are injected by light illumination at 3 K with a
GaAs LED and the injected carriers are persistent at low
temperature [31]. After illumination, the sample carrier
density and mobility become n ∼ 2.27 × 1011 cm−2 and
µ ∼ 4 × 106 cm2/Vs respectively. At S2, a customized
preamplifier SR555 (the RC filter is removed from the
bias input) is deployed to facilitate simultaneous mea-
surement of the output current and application of AC
excitation voltage. Source contacts S1 and S2 are excited
by 25.8 µV at frequency 17 Hz and 26 Hz respectively
[29], such that the excitation injects a system current of
1 nA corresponding to a quantized conductance of e2/h.
Output currents at D1 and D2 are measured by lock-in
technique using suitable current to voltage preamplifiers.

To set the filling fraction ν = 1 of the 2DEG, two ter-
minal magneto-resistance (2TMR) is measured between
contacts S1 and D2 (Fig. 1) disconnecting all other con-
tacts and setting gate bias V g1 = V g2 = 0 V [29]. A
ν = 1 IQH plateau is formed in the magnetic field B
range of 8 to 11 T. Figure 1 (inset b) shows the trans-
mitted conductance between S1 to S2 (blue curve) and
the reflected conductance between S1 to D2 (red curve)
at B = 9.95 T keeping the top gate g2 in pinch-off condi-
tion. This g1 gate transmission characteristic shows in-
compressible FQH plateaus at filling fractions ν1 = 1/3
and 2/3 similar to Ref. 32. The transmitted conductance
does not reach 1 at V g1 = 0 V , because of insufficient
electron density beneath the top gates. Total conduc-
tance stays fixed (magenta line) at unity as expected from
current conservation. The characteristics of both g1 and
g2 gates are identical and the positions of 2/3 and 1/3
plateaus shift to higher gate voltage bias with increasing
B field [32] to achieve the same incompressible state.

In our experiments, the current from the source S2
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FIG. 1. (color online) Two terminal magneto-resistance
(2TMR) trace. Inset-a: Topologically equivalent device struc-
ture. Magenta line shows the current path connecting the
ohmic contacts. Inset-b: Characteristics of the top gate g1 at
9.95 T. Blue and red curves represent transmitted (S1 → S2)
and reflected (S1 → D2) conductance respectively and ma-
genta line represents sum of those two conductance.

transmitted through the ν1 FQH fluid and the current
from the source S1 reflected by the ν1 fluid, flow along the
top mesa boundary (Fig. 1 inset a). At the detector side,
the transmitted current through ν2 FQH fluid reaching
D1 and the current reflected by ν2 FQH fluid reaching D2
are measured. Corresponding low frequency (DC) two-
terminal combined conductance (TTCC) is denoted by
G ν1,ν2

S→D incorporating all the conditions of measurements,
where S(D) denotes the source(detector) contact.

By setting ν = 1 and ν1 = 2/3, a 2/3 nA current
at 26 Hz transmitted from S2 source and 1/3 nA at
17 Hz reflected current from source S1 are injected into
the edge states along the top mesa boundary. Measured
TTCCs are plotted as a function of V g2 in Figs. 2(a-b) at

B = 9.95 T. We see an enhancement of G
2/3,ν2
S2→D1 from ex-

pected universal conductance values defined by the filling
fractions: ν1 × ν2 = 4/9 and 2/9 (Fig. 2(a), blue line)
when ν2 is 2/3 and 1/3 respectively [33–35]. Also, we

see suppression of G
2/3,ν2
S1→D1 from the expected universal

values (1 − ν1) × ν2 = 2/9 and 1/9 (Fig. 2(b), orange
line) when ν2 is 2/3 and 1/3 respectively. Conservation
of current is evident from the compensating nature of
the measured TTCCs in Figs. 2(a and b). The TTCCs
corresponding to the currents that reach the contact D1
when injected from the sources S1 and S2 are plotted to-
gether in Fig. 2(c). The sum of the two curves (magenta
line) resembles the universal gate characteristics of g2 by
compensating deviations of the TTCCs.

Deviation of the TTCCs from the expected universal
limits depends on the magnetic field strengths. Figures
3(a-d) show the TTCCs similar to Fig. 2(c) maintaining
ν1 = 2/3 but at different magnetic fields within ν = 1
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FIG. 2. (color online) (a) Two-terminal combined conduc-
tance (TTCC) vs V g2 at ν1 = 2/3 by exciting S2. Arrows
indicate deviation of the TTCC (blue curve) measured at D1
from the expected values (dotted lines) (b) TTCC vs V g2 at
ν1 = 2/3 by exciting S1. Arrows indicate deviation of the
TTCC (orange curve) measured at D1 from the expected val-
ues (dotted lines) (c) Replotting of blue and orange curves
and plot of sum of the two (magenta). Gray strips indicate
ν2 = 1/3 (left) and 2/3 (right) region.

IQH plateau. At a field B = 8.5 T, the TTCCs reach the
expected universal quantized conductance values (Fig.
3(a)). The TTCC values increasingly deviate from the
universal limits (Figs. 3(b-d)) with increasing B fields
and tend to saturate at high field (B = 10.9 T) to new
TTCC limits tabulated in Table I. Similar deviation of
TTCCs from the expected universal limits with increas-
ing B fields can be seen also maintaining ν1 = 1/3 (Figs.
3(e-h)) and the new TTCC limits are tabulated in Table
I. These new TTCC limits at strong B fields are the main
observation of this letter.

These new TTCC limits cannot be explained by a sim-
ple picture with an integer edge mode. The observa-
tion of new TTCC limits suggests edge reconstruction at
the natural mesa boundary consistent with Ref. 1, where
three downstream 1/3 charge modes arise from incom-
pressible Laughlin like gaps [36] corresponding to filling
fraction 2/3 and 1/3 as the ν value reduces from the
bulk value 1 to zero [37]. Of these three, the two outer
most 1/3 charge modes are similar to the fractional edge
modes of 2/3 FQH state [13, 18], having charge equilibra-
tion length lor of the order of few micrometers. These two
outer modes completely equilibrate with each other over
propagation length l = 125 µm along the top boundary
within ν = 1 plateau. We assume that the innermost 1/3
charge mode possess longer equilibration length lir � l at
high B field end and equilibrates with the others at low
B field end of ν = 1 plateau. With this model, the new
TTCC limits at high B and universal TTCC values at
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FIG. 3. (color online) (a-d) Two-terminal conductance (TTC) vs V g2 at different B fields when ν1 = 2/3. (e-h) TTC vs V g2
at different B fields for ν1 = 1/3. Dotted lines in (a) and (e) show expected universal values of TTC at 8.5 T. Dashed lines in
(d) and (h) show new limits of TTC at 10.9 T. Gray strips indicate ν2 = 1/3 (left) and 2/3 (right) region. (i-l) Paths of three
1/3 modes at different ν1 and ν2 values inferred from the measurements. Non current carrying modes are not shown.
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FIG. 4. (color online) (a) Equilbration length of the inner-
most mode vs B field at T = 30 mK (green curve) and vs
temperature at B = 10.55 T (red curve). (b) Two-terminal
conductance (TTC) vs V g2 at ν = 2/3 for ν1 = 1/3. Gray
strip indicates ν2 = 1/3 region. Dotted line shows expected
universal conductance limit for ν1 = ν2 = 1/3. (c) Schematic
quantum Hall circuits for ν = 2/3 and ν1 = ν2 = 1/3 based
on two downstream 1/3 charge modes (blue lines).

FIG. 3. (color online) (a-d) Two-terminal combined conductance (TTCC) vs V g2 at different B fields when ν1 = 2/3. (e-h)
TTCC vs V g2 at different B fields for ν1 = 1/3. Dotted lines in (a) and (e) show universal values of TTCC at 8.5 T. Dashed
lines in (d) and (h) show new limits of TTCC at 10.9 T. Gray strips indicate ν2 = 1/3 (left) and 2/3 (right) region. (i-l) Paths
of three 1/3 modes at different ν1 and ν2 values inferred from the measurements. Non current carrying modes are not shown.

low B can be explained using the schematic Figs. 3(i-l).
In Fig. 3(i) both the top-gated regions are at 2/3 fill-

ing, where the two 1/3 charge modes from S2 reach D1
without equilibrating with the innermost mode. As a re-

sult the TTCC reaches the new limit G
2/3,2/3
S2→D1 = 2/3 as

observed in Fig. 3(d). In Fig. 3(j), out of two modes
from S2, outermost 1/3 charge mode reaches D1 and the
other is reflected to D2, as a consequence the new TTCC

limitG
2/3,1/3
S2→D1 = 1/3 is observed in Fig. 3(d). None of the

modes from S1 reach D1 in the above two cases, resulting

in the new TTCC limits of G
2/3,2/3
S1→D1 = G

2/3,1/3
S1→D1 → 0 as

observed in Fig. 3(d). At lower magnetic field all three
modes completely equilibrate leading to equipartition of
the injected current and hence the TTCCs reach the uni-
versal values (Table I) as observed in Fig. 3(a).

When ν1 = 1/3 (Figs. 3(k-l)), the outermost 1/3
charge mode from S2 completely equilibrates with the
middle 1/3 mode along the top boundary. One (Fig.
3(l)) or both (Fig. 3(k)) of these two modes reach D1
depending on ν2 values 1/3 or 2/3 respectively. As a

consequence TTCCs reach to the new limits G
1/3,1/3
S2→D1

= 1/6 and G
1/3,2/3
S2→D1 = 1/3 (blue line, Fig. 3(h)). At

ν1 = 1/3, the current in the middle 1/3 charge mode in-
jected from S1 similarly equilibrates with the outermost
mode. Again, one (Fig. 3(l)) or both (Fig. 3(k)) of these
two modes reach to D1 depending on ν2 values. Result-

ing new TTCC limits can be estimated to be G
1/3,1/3
S1→D1 =

Two-terminal combined
conductance (TTCC)

Universal
limit at low B

New limit at
high B

G
2/3,2/3

S2→D1 4/9 2/3

G
2/3,1/3

S2→D1 2/9 1/3

G
2/3,2/3

S1→D1 2/9 0

G
2/3,1/3

S1→D1 1/9 0

G
1/3,2/3

S2→D1 2/9 1/3

G
1/3,1/3

S2→D1 1/9 1/6

G
1/3,2/3

S1→D1 4/9 1/3

G
1/3,1/3

S1→D1 2/9 1/6

TABLE I. Low and high field limits of conductances (e2/h).

1/6 and G
1/3,2/3
S1→D1 = 1/3 (orange line, Fig. 3(h)) when ν2

is 1/3 and 2/3 respectively. At low B fields (Fig. 3(e))
the TTCCs reach the universal conductance values (Ta-
ble I). Using the model (Figs. 3(i-l)), all the TTCC can
be represented in terms of the transmission probabilities
[34] of the fractional edge modes [29].

Within the QH edge modes, energy is equilibrated by
heat transfer [38–40] and charge is equilibrated by quasi-
particle scattering [17, 18]. In this experiment charge
equilibration length lir of the innermost mode can be es-
timated from the current measured between S1 and D1
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most mode vs B field at T = 30 mK (green curve) and vs
temperature at B = 10.55 T (red curve). (b) Two-terminal
conductance (TTC) vs V g2 at ν = 2/3 for ν1 = 1/3. Gray
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FIG. 4. (color online) (a) Equilibration length of the in-
nermost mode vs B at T = 30 mK (green curve) and vs T
at B = 10.55T (red curve). (b) Two-terminal combined con-
ductance (TTCC) vs V g2 at ν = 2/3 for ν1 = 1/3. Gray
strip indicates ν2 = 1/3 region. Dotted line shows expected
universal conductance limit for ν1 = ν2 = 1/3. (c) Schematic
quantum Hall circuits for ν = 2/3 and ν1 = ν2 = 1/3 based
on two downstream 1/3 charge modes (blue lines).

when ν1 = ν2 = 2/3 (Fig. 3(i)). The current injected
from S1 in the innermost mode is transferred by quasi-
particle scattering into two outer modes over the prop-
agation length l [29] that reach D1 and corresponding
TTCC can be derive [29, 41–43] as:

G
2/3,2/3
S1→D1 =

2

9
− 2

9
e−3l/2l

i
r , (1)

where the pre-factors are fixed by the boundary condi-
tions - no scattering into outer modes at l = 0 and full
equilibration at l � lir. Figure 4(a) (green line) shows
the B field dependence of the equilibration length esti-

mated from variation of G
2/3,2/3
S1→D1 obtained from measure-

ments similar to Figs. 3(a-d). Estimated equilibration
length of the innermost mode increases from about zero
to 777± 40 µm with increasing B field. Qualitatively B
field dependent equilibration length can be understood
from decreased equilibration rate due to increase in sep-
aration between the modes resulting from shrinking of
the ν = 1 region (Figs. 3(i-l)) with increasing B field.
For a fixed magnetic field lir generaly increases with low-
ering temperature and saturates to quantum scattering
limit [29] as shown in Fig. 4(a) for B = 10.55 T.

Increased equilibration length of the innermost mode
with B field (Fig. 4(a)), suggests the possibility of higher
equilibration length lor of the two outermost modes at
high B field beyond the ν = 1 plateau. At higher mag-
netic field, inner most 1/3 charge mode disappears as
the bulk filling fraction reaches ν = 2/3 and the outer
most two 1/3 charge modes remain in the FQH system
[1, 13, 18]. To examine the equilibration properties of the

two 1/3 charge modes at ν = 2/3, we measure the TTCC
from S1 to D1 by setting ν1 = ν2 = 1/3 as shown in Fig.
4(c). If fully equilibrated, half of the current form S1
should reach D1 and the TTCC limit would be 1/6. At
the largest field B = 13.98 T accessible; we find TTCC
value of 0.155± 0.003 instead of 1/6 (Fig. 4(b)) and this
TTCC can be written as [29, 41–43]

G
1/3,1/3
S1→D1 (ν = 2/3) =

1

6
− 1

6
e−2l/l

o
r . (2)

The equilibration length of the 1/3 edge modes at ν =
2/3 is increased to lor = 104± 4 µm at B = 13.98 T. The
lor must be increasing within ν = 1 plateau in micrometer
range but much smaller lor results in full equilibration of
the outer modes.

Increased equilibration lengths lir and lor of the FQH
modes potentially results from high stability of incom-
pressible FQH regions between the modes due to en-
hancement of Coulomb energy at higher B fields. Quan-
titative analysis of magnetic field dependent equilibration
of the 1/3 charge modes is left for future investigations.

Our model relies on adiabatic continuity of the edge
modes of the FQH fluids beneath the gates g1/g2 into
the FQH edge modes of the ν = 1 IQH fluid (Figs. 3(i-
l)). Such adiabatic continuity is not expected if multiple
modes coupled to one [32] or a FQH edge mode partially
reflected at this interface. Inhomogeneous carrier dis-
tribution [44] or high disorder [17] in samples can also
prevent such adiabatic continuity. These complications
are absent in our device, allowing quantized partition of
ν = 1 edge state.

In conclusion, we have demonstrated three fractional
modes at a ν = 1 edge originating from dominated in-
compressibility of FQH states at filling 1/3 and 2/3 along
the smooth mesa boundary. Our results suggest a pos-
sibility of finding more complex edge reconstruction in
cleaner 2DEGs. Fractionalized IQH edge presents inter-
esting new possibilities to explore fractional quasiparticle
interferometry, tunneling, equilibration and statistics.
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SUPPLEMENTAL MATERIAL: MAGNETIC FIELD DEPENDENT EQUILIBRATION OF FRACTIONAL
QUANTUM HALL EDGE MODES

In the supplemental material, we discuss the experimental techniques, present further experimental data and analy-
sis. In section I, we discuss the device structure and dimensions as well as the circuit diagram used in the experiment.
In section II, we discuss the current distribution under the gate g1 to address formation of a uniform fractional fluid
of filling ν1 = 1/3 or 2/3 underneath the gate. We discuss charge equilibration between the co-propagating frac-
tional edge modes in section III and the TTCC values are estimated as a function of equilibration length. In section
IV, TTCC is represented by transmission probabilities of the fractional edge modes and observed TTCC limits are
explained in terms of transmission probabilities. In the last section emergent characteristics features of the charge
equilibration length lir are discussed.

I. DEVICE STRUCTURE, CIRCUIT DIAGRAM AND DETAILS OF MEASUREMENTS
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Figure 1. Optical image of the device structure. Pink lines denote current path in the mesa under the quantum Hall regime.
Separation between the two gates g1 and g2 is l = 125 µm. Length of the gate boundary beside the central mesa region is
lg = 25 µm.
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Figure 2. Topologically equivalent device structure and measurement circuit diagram under quantized condition.

In this experiment, we use a one-sided modulation-doped AlGaAs/GaAs hetero-structure grown by molecular
beam epitaxy. The two-dimensional electron gas (2DEG) resides at the AlGaAs/GaAs hetero-interface located 100
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nm below the top surface. A Si δ-doped layer placed 42 nm above the hetero-interface for modulation doping. The
mesa is defined by wet chemical process and the Ohmic contacts are made by thermal deposition of metallic layers of
Ni/AuGe/Ni/Au of thickness 10/100/10/100 nm after photolithography. Ohmic contacts are annealed for a duration
of 90 s at 450oC using a rapid thermal annealer. The gates are made by thermal evaporation of 10 nm Ti followed by
100 nm Au [1].

The optical image of the device is presented in Fig. 1. Size of Ohmic contacts (S1, S2, D1 and D2) on the mesa is
approximately 20 × 20 µm2. The contacts S1 and D2 are directly connected to the central mesa region. The device
is symmetric about the bottom boundary of Fig. 1 and only the top half of the device is shown for simplicity. The
topologically equivalent circuit diagram is shown in Fig. 2. The mesa width of the device is nearly 70 µm. The pink
lines show the current paths in the device at filling fraction ν = 1 in the quantum Hall (QH) regime. Ineffective
current paths are not shown. From source S1, a fraction of current reaches contact S2 flowing underneath the gate
g1 and rest of the current travel along the g1 gate boundary of length lg = 25 µm (Fig. 1). Similarly a part of the
current also travel along the g2 gate boundary of length lg = 25 µm to reach D2 contact and rest of the current reach
D1 contact passing underneath the gate g2. The gate g1 controls the amount of current from S2 reaching the central
mesa region passing through the top edge underneath the gate g1, as well as the amount of current reaching S2 from
S1 passing along the bottom edge underneath the gate.

To set the central mesa region at filling ν = 1, we measure the two-terminal magneto-resistance (2TMR) between
S1 and D2 [1]. The output current at the contact D2 is measured with a voltage excitation at the S1 contact, keeping
all other contacts S2 and D1 disconnected. Therefore, no current passes through the contacts S2 and D1. As a result,
total current in the central meas region is unaffected by gate voltage V g1 and V g2. In particular, at filling ν = 1
of the central mesa region 2TMR must corresponds to e2/h conductance irrespective of gate voltage V g1 and V g2.
During 2TMR measurement V g1 and V g2 is set to zero Volt. Inset-a of Fig. 1 of the main paper shows the 2TMR
trace as a function of the applied magnetic field. This allows us to know the range of the magnetic fields at which a
ν = 1 plateau is formed in the central mesa region. We have not done any correction of contact/wire resistance in the
2TMR and conductance measurements because wire/contact resistance is much lower than the QH resistance 25.8
kOhm. Therefore in our sample, contact resistances are low enough that quantized conductance values are obtained
without much error.

In Fig. 2, the measurement circuit diagram is shown with a topologically equivalent device structure under quantized
condition. At S2 contact a customized SR555 current-to-voltage pre-amplifier is connected to facilitate simultaneous
measurement of output current from S1 to S2 and putting voltage excitation on the contact S2. Source contacts
S1 and S2 are excited with 25.8 µV at frequency 17 Hz and 26 Hz respectively. Output currents from D1 and D2
at frequency 17 and 26 Hz are measured by four lock-in amplifiers using suitable current to voltage pre-amplifiers.
Output current at S2 having frequency 17 Hz is measured by a lock-in amplifier. During the experiment, we measure
all the above five output currents simultaneously and always monitor the quantization condition of the fractional
incompressible fluid beneath the gate g1 and IQH fluid in the central mesa region.

II. CURRENT DISTRIBUTION UNDERNEATH THE GATE g1
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Figure 3. Two-terminal combined conductance (TTCC) vs V g2 at two different magnetic fields when ν1 = 2/3. The TTCCs
measured at D1 and D2, in response to a 26 Hz voltage excitation at S2 are shown using the blue and wine curves respectively,
similar to Fig. 2a of the main paper. The sum of the two TTCCs, indicated by the green curve is the total conductance of the
top edge passing underneath the gate g1. Constancy of the top edge conductance (green line) indicates conservation of current
with V g2 sweep. Dashed line corresponds to the two-terminal transmitted conductance between S1 and S2, when S1 is excited
by 17 Hz voltage signal.
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Figure 4. Two-terminal combined conductance (TTCC) vs V g2 similar to Fig. 3, at two different magnetic fields when ν1 = 1/3.
The sum of the blue and wine curves is green line, which corresponds to the total conductance of the top edge underneath the
gate g1. Dashed line corresponds to the conductance of the bottom edge underneath the gate g1.

At S2 contact a customized SR555 current to voltage pre-amplifier enables us to measure output current coming
from S1 and passing through the bottom edge underneath the gate g1 when filling fraction ν1 is set at 1/3 or 2/3.
Before taking data in Fig. 3 of the main paper, we always set the filling fraction ν1 = 1/3 or 2/3 by measuring this
conductance between S1 and S2, and accordingly V g1 is adjusted (inset b of Fig. 1 of the main paper). During data
acquisition of Figs. 3(a-h) of the main paper, we also monitor transmitted conductance S1 → S2, which is plotted
(black dashed line) in Fig. 3 for the case of ν1 = 2/3 and in Fig. 4 for the case of ν1 = 1/3. The plots reveal that
the conductance of the bottom and top edge modes underneath the gate g1 is same for any V g2, any filling fraction
ν1 = 1/3 or 2/3 and any magnetic field within the ν = 1 QH plateau. Quantization of these conductances to 2/3 and
1/3 indicates a uniform FQH state formation under the gate g1, as any non-uniformity will lead to back scattering
between the top and bottom edge modes beneath the gate, resulting in a deviation from the quantization.

III. EQUILIBRATION ALONG THE EDGE

The experiment is conducted by selectively exciting a set of fractional modes and detecting same or another set
of modes with electrostatic gating technique as described in the main paper. These populated modes co-propagate
with other unpopulated modes along the top edge of the central region during which the different modes equilibrate
transferring charges into the unpopulated modes. After equilibration between the modes the current in a subset of
the modes are then measured at D1 and D2 contacts. The resulting two-terminal combined conductances (TTCCs)
depend on the the extend of equilibration between the modes. Since equilibration happens along the top edge of the
central mesa region, it forms the key physical length scale l = 125 µm in the problem. In this section we describe the
two-terminal combined conductance as a function of the length l.

We will first focus on equilibration processes between the two copropogating modes (labeled A and B) of identical
conductance σ via quasi-particle scattering/transfer. We follow and adapt the stochastic process of equilibration
introduced in Ref. 2. We define a single parameter namely the equilibration length lor which corresponds to the
average distance traveled by a quasi-particle between two inter-mode scattering event. The average number of inter-
edge mode scattering events per unit length is 1/lor . Such an uncorrelated quasiparticle scattering model is suitable
under small excitation voltage and weak disorder.

We consider the case where a current is injected only into mode A at position l = 0. The current in mode A
at position l along the channel is proportional to the probability P (l) of finding each quasi-particle at a distance l
injected into mode A at l = 0. Assuming incoherent scattering at the rate 1/lor per unit length, the probability P (l)
evolve with l as follows

P (l + dl) = P (l)

[
1− dl

lor

]
+ [1− P (l)]

dl

lor
, (1)

where the two terms correspond to the charge retained in A and that scattered back from B to A over a short distance
dl. The solution, with the initial condition P (0) = 1, is

P (l) =
1

2
(1 + e−2l/l

o
r ). (2)

The current σV carried by the mode A at l = 0, is distributed between the modes A and B as P (l)σV and (1−P (l))σV
respectively at position l. In our experiment at bulk filling fraction ν = 2/3, two edge modes have conductance 1/3
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each in unit of e2/h. We excite one edge mode connected to contact S1 and measure the output current at D1 (see
Fig. 4c of the main paper). TTCC between S1 and D1 is linked with the current transfer between the modes and
hence the TTCC is given by (Eq. 2 of the main paper)

G
1/3,1/3
S1→D1 (ν = 2/3) =

1

3
(1− P ) =

1

6
− 1

6
e−2l/l

o
r . (3)

Based on the experimental results summarized in Figs. 3(a-h) and 4a of the main paper, we infer the existence of
three fractional edge modes of conductance σ = 1/3 each around the bulk state of filling fraction ν = 1. The results
also indicate that the two outer most modes have very short equilibration lengths and completely equilibrate with each
other over the extent of ν = 1 IQH plateau. The inner mode posses finite equilibration length lir and equilibrates with
the two outer modes. We extend the model described above to the present case of three channels and assume that
equilibration of the inner mode with the outer ones happen through uncorrelated quasi-particle scattering. During
the measurement of the conductance between S1 and D1 (orange line in Figs. 3(a-d) of the main paper), the current
σV injected into the inner mode, partly scatters into the two outer modes at the top edge and is measured at D1.
The probability Q(l) that a quasi-particle injected at l = 0 in inner mode to be found at a distance l in the same
mode is governed by the condition

Q(l + dl) = Q(l)

[
1− dl

lir

]
+ [1−Q(l)]

αdl

lir
. (4)

Here 1/lir is the rate of scattering per unit length from the inner mode to the two outer modes and α/lir is rate of
scattering per unit length from one of the outer modes to the inner mode. Solving this with boundary condition
Q(0) = 1 and assuming steady state equilibrium at large l to Q(∞) = 1/3 (current is divided equally in all modes),
gives α = 1/2 and

Q(l) =
1

3
(1 + 2e−3l/2l

i
r ). (5)

From above Eq. 5 the TTCC between S1 and D1 is given by (Eq. 1 of the main paper)

G
2/3,2/3
S1→D1 =

1

3
(1−Q) =

2

9
− 2

9
e−3l/2l

i
r . (6)

Moreover, the above stochastic model gives results identical to the model that is studied and verified in Ref. 3 (also see
Ref. 4) with inter-channel scattering conductance per unit length. The exponential form describing the equilibration
process has been extensively used for inter-mode charge transfer in IQH and FQH systems[2, 5–8] and the form have
been verified with different sample lengths [2, 7, 8].

IV. REPRESENTATION OF TTCC BY TRANSMISSION PROBABILITIES

In this section, we discuss two-terminal combined conductance (TTCC) in terms of transmission probabilities
originating from equilibration between co-propagating fractional edge modes along the top boundary of the central
mesa region. TTCC between two contacts can be expressed as a combination of transmission probabilities of fractional
edge modes connecting the source and detector contacts. For the representation, the outer, middle and inner modes
are labeled 1,2 and 3 respectively. Following Büttiker approach [9, 10] in fractional edge modes, the TTCC can be
expressed as

G ν1,ν2
S→D =

1

3

∑

i;j

Tij , (7)

where Tij represents the probability for the transmission of a current from mode i connected to the source into mode
j connected to the detector. The summation i(j) is over all the modes in the top edge connected to the source
S(D). Transmission probability (Tij) between the respective modes depend on the charge equilibration over the co-
propagation length l = 125 µm and is symmetric (Tij = Tji). At high magnetic field end of the ν = 1 plateau (Fig. 1 of
the main paper), only outer two modes completely equilibrate, but inner most mode does not equilibrate with the outer
modes, hence transmission probabilities are T11 = T22 = T12 = T21 = 1/2, T33 = 1 and T13 = T23 = T31 = T32 = 0.
At low magnetic field end of the plateau, all the three modes completely equilibrate with each other; hence all the
transmission probabilities become 1/3. In the intermediate values of magnetic field, the transmission probabilities Tij
varies from one limit to the other.
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In case of ν1 = ν2 = 2/3 outer two modes connect S2 to D1 and inner mode connects S1 to D2 (Fig. 3i of the main
paper). The corresponding TTCC can be expressed as:

G
2/3,2/3
S2→D1 =

1

3

∑

i=1,2;j=1,2

Tij =
1

3
(T11 + T12 + T21 + T22) and

G
2/3,2/3
S1→D1 =

1

3

∑

i=3;j=1,2

Tij =
1

3
(T31 + T32). (8)

Putting the values of Tij , we get the TTCC values as tabulated in table 1 of the main paper. Similarly for all other
combinations (Figs. 3(j-l) of the main paper), TTCC values can be estimated at the low and high magnetic field end
of the ν = 1 QH plateau as tabulated in table 1 of the main paper.

Now we discuss the resemblance of the gate characteristics to the total conductance shown in Figs. 3(a-h) of the
main paper. In case of ν1 = ν2 = 2/3, total conductance 2/3 of the top edge underneath the gate g1 (Fig. 3 here)
can be expressed as

G
2/3,2/3
S2→D1 +G

2/3,2/3
S2→D2 =

2

3
. (9)

From the symmetry of Tij , we obtain

G
2/3,2/3
S2→D2 =

1

3
(T13 + T23) = G

2/3,2/3
S1→D1 . (10)

The above two equations suggest following TTCC relation:

G
2/3,2/3
S2→D1 +G

2/3,2/3
S1→D1 =

2

3
. (11)

The above relation (Eq. 11) indicates that the total conductance (measured by 26 Hz and 17 Hz excitation) should
reach 2/3 for ν1 = ν2 = 2/3 for any magnetic field within the ν = 1 QH plateau. This resembling of gate characteristic
is solely arising from the symmetry of transmission probabilities Tij = Tji and is experimentally verified in Figs. 3(a-
d) of the main paper. This verification is the proof that the length l is the key dimension of the experiment, since
transmission probabilities Tij depends on the co-propagation length l and equilibration lengths of the fractional edge

modes. In this experiment, the quantity G
2/3,2/3
S1→D1 = (T31 +T32)/3 is measured by varying magnetic field (Figs. 3(a-d)

of the main paper) and magnetic field dependent equilibration length lir of the inner most mode is estimated (Fig. 4a
of the main paper).

V. CHARACTERISTICS OF lir
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Figure 5. (a) Temperature dependence of 1/lir at three different magnetic fields (b) Color plot of two terminal combined
conductance (TTCC) between (S1 → D1) at ν1 = ν2 = 2/3 as a function of magnetic field and temperature. Red shade
indicates value closer to the universal conductance of 2/9.

Temperature dependence of charge equilibration, quantified by the inverse of the equilibration length 1/lir of the
innermost mode is plotted in Fig. 5a as a function of T for three different magnetic field values. The equilibration
lengths are obtained by fitting the TTCC (between S1 and D1 when ν1 = ν2 = 2/3) to Eq. 1 of the main paper.
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Equilibration rate decreases with lowering temperature and saturates at the lowest temperatures. The nature of the
variation suggests a quantum scattering assisted charge equilibration at low temperatures, and additional thermal
scattering assisted equilibration as temperature increases. Increase of magnetic field reduces equilibration as seen in
Fig. 4a of the main paper.

Color plot in Fig. 5b shows the variation of the TTCC between S1 and D1 as a function of the magnetic field and
temperature for ν1 = ν2 = 2/3. Decreasing equilibration rate with increasing magnetic field and low temperatures is
reflected in the deviation (green shade) of the conductance from the universal value 2/9 (red shade).
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