
Parallel Traversal of Large Ensembles of
Decision Trees

Francesco Lettich , Claudio Lucchese , Franco Maria Nardini , Salvatore Orlando ,

Raffaele Perego , Nicola Tonellotto , and Rossano Venturini

Abstract—Machine-learnt models based on additive ensembles of regression trees are currently deemed the best solution to address

complex classification, regression, and ranking tasks. The deployment of such models is computationally demanding: to compute the

final prediction, the whole ensemble must be traversed by accumulating the contributions of all its trees. In particular, traversal cost

impacts applications where the number of candidate items is large, the time budget available to apply the learnt model to them is

limited, and the users’ expectations in terms of quality-of-service is high. Document ranking in web search, where sub-optimal ranking

models are deployed to find a proper trade-off between efficiency and effectiveness of query answering, is probably the most typical

example of this challenging issue. This paper investigates multi/many-core parallelization strategies for speeding up the traversal of

large ensembles of regression trees thus obtaining machine-learnt models that are, at the same time, effective, fast, and scalable. Our

best results are obtained by the GPU-based parallelization of the state-of-the-art algorithm, with speedups of up to 102.6x.

Index Terms—Efficient machine learning, learning-to-rank, decision tree ensembles, parallel algorithms, SIMD,

NUMA multiprocessors, GPUs

Ç

1 INTRODUCTION

RECENT advances in Machine Learning (ML) have opened
new horizons for modeling phenomena and devising

effective and actionable solutions for complex problems in
diverse application domains. In many application contexts
the widespread adoption of complex machine-learnt models
asks for novel efficient algorithmic solutions. Instead of focus-
ing on improving the efficiency of the off-line training phase
of complex machine learning models, this paper deals with
the deploying phase of such learnt models, by efficiently
exploiting their application to a stream of data instances. In
particular, the learnt models on which we focus are additive
ensembles of decision trees. These models, which are generated
by boosting meta-algorithms that iteratively learn simple
decision trees by incrementally optimizing some given loss
function, have been shown to be themost general and compet-
itive solutions for several “difficult” tasks. For example,
consider the Yahoo! challenge [1],which fostered the develop-
ment of novel Learning-to-Rank (LtR) methods, i.e., super-
vised ML techniques aimed at addressing the fundamental
problem of ranking items according to their relevance to
queries [2], [3]. All theseML-based rankers assign a numerical

score to each item, in turn used to reorder the input list, and
thus are commonly known as scorers. The most robust and
effective ranking models resulted the ones based on ensem-
bles of regression trees, learnt with the GBRT [4] and
�-MART [5] algorithms. All top competitors in this challenge
leveraged decision trees and ensemble methods, and the win-
ner deployed an ensemble model encompassing a total of
24,000 regression trees. Another notable example regards
Yandex, the main Russian search engine, which repeatedly
announced the exploitation of very large tree-based ranking
models within their systems, and solutions based on multi/
many-core parallelism to speed-up both their training and
testing [6], [7]. Also Amazon uses more than 100 tree-based
models, onemodel per category per site, for ranking the prod-
ucts returned as answer to user queries [8]. Finally, ensembles
of regression trees are used in production for ads clickthrough
rate prediction [9], and are the most common choice in solu-
tions forML competitions, such as Kaggle.1

Without loss of generality, in the following we concentrate
on the Web Search Engine (WSE) scenario, and adopt the LtR
terminology to discuss the state-of-the-art and investigate par-
allel algorithms to traverse large tree-based ensembles. How-
ever, all algorithms and processing strategies discussed can
be applied “as is” in other scenarios, different from document
ranking inWSE, since they regard the general problem of tra-
versing large forests of binary decision trees, given an item
represented as a feature vector. Specifically, they can be thus
used to deploy any ensemble model trained on any kind of
continue, binary, and ordinal feature. Categorical features are
instead not efficiently handled by our solution since it does
not support efficient set-inclusion operations.

Large scaleWSEs commonly exploit LtR solutions within a
multi-stage ranking architecture [10], [11], [12], [13], [14]

� F. Lettich is with the Federal University of Cear�a, Fortaleza, CE 60020-
181, Brazil. E-mail: francesco.lettich@gmail.com.

� C. Lucchese and S. Orlando are with the Ca’ Foscari University of Venice,
Venezia 30123, Italy. E-mail: {claudio.lucchese, orlando}@unive.it.

� F.M. Nardini, R. Perego, and N. Tonellotto are with ISTI–CNR, Pisa
56127, Italy. E-mail: {f.nardini, r.perego, n.tonellotto}@isti.cnr.it.

� R. Venturini is with the University of Pisa, Pisa 56126, Italy.
E-mail: rossano.venturini@unipi.it.

Manuscript received 25 Oct. 2017; revised 25 May 2018; accepted 9 July 2018.
Date of publication 9 Aug. 2018; date of current version 7 Aug. 2019.
(Corresponding author: Franco Maria Nardini.)
Recommended for acceptance by O. Rana.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2860982 1. https://www.kaggle.com/competitions

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019 2075

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6914-2961
https://orcid.org/0000-0001-6914-2961
https://orcid.org/0000-0001-6914-2961
https://orcid.org/0000-0001-6914-2961
https://orcid.org/0000-0001-6914-2961
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0002-7427-1001
https://orcid.org/0000-0002-7427-1001
https://orcid.org/0000-0002-7427-1001
https://orcid.org/0000-0002-7427-1001
https://orcid.org/0000-0002-7427-1001
https://orcid.org/0000-0002-9830-3936
https://orcid.org/0000-0002-9830-3936
https://orcid.org/0000-0002-9830-3936
https://orcid.org/0000-0002-9830-3936
https://orcid.org/0000-0002-9830-3936
mailto:
mailto:
mailto:
mailto:
https://www.kaggle.com/competitions

optimized for top-k retrieval. This architecture design aims to
find a trade-off between effectiveness and efficiency, by
applying increasingly accurate and computationally expen-
sive models at each stage, where each stage re-ranks candi-
date items coming from the previous stage by also pruning
some of them. Ensembles with thousands of regression trees
are commonly deployed in the last ranking stage, to achieve
high quality results that meet user satisfaction. Due to the
incoming rate of queries and QoS expectations, the efficiency
requirements of the ranking stage—are very strict, and thus
the traversal of complex tree ensemble model to score candi-
date items has to complete within a very small time budget.
Table 1 illustrates the difficulty in meeting such requisites, by
reporting typical figures of tree-based rankers used by large
scale WSEs [1]. Note that, for each query, the ranking stage
has to reorder hundreds/thoudsands documents, while each
query-document pair is in turn represented by a multidimen-
sional numerical vector of hundreds of features. Each ensem-
ble model is composed of thousand of trees, each featuring
tens of leaves, where leaves store the partial numerical contri-
bution of a tree to the final score of a document.

In this paper we investigate multi/many-core paralleli-
zation strategies for making the traversal of ensembles fast
and scalable. In particular, we investigate diverse strategies
to parallelize QUICKSCORER (QS), the state-of-the-art algo-
rithm for traversing tree ensembles [15], [16] (we present
QUICKSCORER in Section 2). Making faster QS allows the
deployment of very large, complex, and effective ML mod-
els, by still producing the final ranking of a set of documents
within a fixed small time budget. Alternatively, when the
desired level of accuracy is already granted by a given
model, we can rely on a parallel implementation of QS to
reduce latency and increase query processing throughput.
We devise in Section 3 three possible general strategies for
parallelizing QS by exploiting the various opportunities
offered by modern CPU architectures and studying them in
three separate sections. Specifically, we study: (i) SIMD
extensions of CPUs to vectorize the code (Section 4), (ii)
multi-core architecture for shared memory multi-threading
(Section 5), and (iii), many-core graphic cards (GPUs)
exploiting massive data parallelism (Section 6). We report
in Section 7 on extensive experiments conducted on three
publicly available LtR datasets. In the experiments we fine-
tune the parallel algorithms to investigate strengths and
limitations of the proposed solutions. Although the experi-
mental setting is the one commonly used by the scientific
community to evaluate LtR solutions, the results achieved
and the lessons learnt are completely general and can be
exported without modifications to other use cases character-
ized by similar efficiency and effectiveness requirements—
for instance, product search and recommendation, social
media filtering and ranking, on-line advertisement, classifi-
cation or regression tasks on big data. Finally, Section 8 dis-
cusses related works and concluding remarks are presented
in Section 9.

2 QUICKSCORER

Let us denote with T ¼ fT0; T1; . . .g an ensemble of binary
decision trees, and let L be the maximum number of leaves
of each tree. Moreover, let x be the feature vector represent-
ing an input instance (e.g., a query-document pair in the
LtR WSE scenario). Let F be the feature set, and let jF j be
the number of dimensions of vector x. We use f to refer to
the fth feature, with x½f� storing the value of feature ff 2 F .
Moreover, let sðxÞ be the numerical score eventually com-
puted for x by traversing T .

Branching decisions in internal nodes of a tree take the
form of a boolean test x½f� � g, where g is a real-valued
threshold for feature ff. The output of each decision tree
Th 2 T , i.e, its contribution to the score sðxÞ, corresponds to
the so-called exit leaf of Th, identified by traversing the tree
with the input instance x. QS identifies this leaf by a bitvec-
tor leafindexes[h], made of L bits, one per leaf.2 Specifi-
cally, the bits of this bitvector set to 0 denote the leaves that
cannot be reached during the tree traversal for a given x.

The traversal of a decision tree performed by QS can be
viewed as the process of converting a bitvector leafindexes
[h], where all bits are initially set to 1, to a final bitvector
where the leftmost 1 identifies the exit leaf of the tree [15]. The
bitvector is manipulated through a series of bit masking
operations that use a set of pre-computed bitvectors mask,
still of L bits, each associated with an internal branching
nodes of Th. To pre-compute these mask’s, we consider that
the right branch is taken if the branching internal node is rec-
ognized as a false node, i.e., if its binary test fails. Whenever a
false node is identified, we annotate the set of unreachable
leaves in leafindexes[h] through a logical AND (^) with
the corresponding mask bitvector. Therefore, the purpose of
mask is to set to 0 all the bits of leafindexes[h] corre-
sponding to the unreachable leaves of Th, i.e., all the leaves
that belongs to the left subtree not selected by the failed test of
the branching node. The reader is invited to refer to [15] for
the formal proof of the correctness of this process.

Algorithm 1 illustrates the QS [15], [16] algorithm for the
fast traversal of the ensemble. The algorithm restructures
the data layout of an ensemble of regression trees to lever-
age modern memory hierarchies and reduce the branch pre-
diction errors to limit the control hazards. In addition, QS
accesses data structures with high locality, since the tree for-
est traversals, repeated for each query-document pair, is
transformed into a scan of linear arrays.

To efficiently identify all the false nodes in the ensemble,
QS processes the branching nodes of all the trees feature by
feature, taking advantage of the commutative and associa-
tive property of the logical AND operand, according to
which the masking operations for traversing each tree of the
ensemble can be made in arbitrary order. Specifically, for
each feature ff, it builds a list N f of tuples ðg; mask; hÞ,
where g is the test threshold of a branching node of tree Th

performing a test over the feature ff of the input instance x,
and mask is the pre-computed mask that identifies the
leaves of Th that are un-reacheable when the associated test
evaluates to false. The data structure layout is illustrated in
Fig. 1. Hereinafter, we refer to the tuples ðg; mask; hÞ and to
the leafvalues as the model data structure. Note that the

TABLE 1
Typical Figures for WSEs’ Tree Ensembles

Number of trees in the ensemble 1;000-20;000
Leaves per tree 4-64
Documents per query 3;000-10;000
Features per query-document pair 100-1;000

2. Hereinafter we will focus on ensembles whose trees have 32 or 64
leaves (L ¼ 32; 64), since they provide the best trade-off between effec-
tiveness and efficiency in the LtR scenario [10].

2076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

model data structure is pre-computed off-line and accessed
in read-only mode, as opposed to the leafindexes which
are document dependent and updated at runtime. N f is
sorted in ascending order of g. Hence, when processing N f

sequentially, as soon as a test evaluates to true, i.e., x½f� � g,
the remaining occurrences of N f evaluate to true as well,
and thus their evaluation can be safely skipped. We call
mask computation the first step, during which all the bitvec-
tors leafindexes[h] are updated, and score computation
the second step, where such bitvectors are used to retrieve
tree predictions.

Algorithm 1. QUICKSCORER

1 QUICKSCORER (x; T):
2 foreach Th 2 T do
3 leafindexes[h] 11 . . . 11
4 foreach ff 2 F do // Mask Computation

5 foreach ðg; mask; hÞ 2 N f in asc. order of g do
6 if x½f� > g then
7 leafindexes[h] leafindexes[h] ^ mask

8 else
9 break
10 score 0
11 foreach Th 2 T do // Score Computation

12 j index of leftmost bit set to 1 of leafindexes[h]
13 l h � Lþ j
14 score scoreþ leafvalues½l�
15 return score

To make efficient and cache-friendly the access to the QS
data structure we adopt a Struct of Arrays (SoA) data layout
rather than a classic Array of Structs (AoS) [17]. According to
the SoA layout, the tuples ðg; mask; hÞ are stored in three
independent arrays, hence solving possible alignment
issues due to different sizes of the fields of each tuple and
simplifying the exploitation of data parallelism.

Time and Space Complexity. The running time of QS
depends on the number of false nodes evaluated during the
mask computation step and on the number of partial scores
accumulated during the score computation step. In the
worst case, the number of false nodes evaluated is LjT j and
the number of partial scores accumulated is jT j. Therefore,
the complexity of QS in the worst case is linear time, i.e.,
QðLjT jÞ time. However, experiments on real datasets [16]
show that the number of false nodes visited per tree is only
a small fraction of L, and, admittedly, QS outperforms other
algorithms with better worst-case time complexity.

Concerning the space needed to score a feature vector x
of jF j elements, the read-only data structures used to store
the tree ensemble T depends on the number of trees (jT j),
the number of internal branching nodes (L� 1) and leaves
(L) of each tree. Specifically, for each internal branching
node QS uses L=8þ 2þ 4 ¼ QðLÞ bytes to store, respec-
tively, the node’s bitvector mask of L bits, the correspond-
ing tree ID h (stored as a 16 bit int), and the threshold g
used in the test (stored as a single precision float). In total,
jT jðL� 1ÞðL=8þ 6Þ ¼ QðjT jL2Þ bytes to store the internal
nodes of the whole ensemble. In addition, QS stores in
leafvalues the score contribution of each leaf (stored as a
double), for a total of 8LjT j bytes, and manages a per-tree
bitvector leafindex for a total of LT =8 bytes. Thus the
space complexity of QS is QðjT jL2Þ bytes.

3 QUICKSCORER PARALLELIZATION

In the following we will focus our analysis on the paralleli-
zation of the mask computation step as the parallelization
of the score computation step can be achieved with a a
straightforward parallel reduction.

Given a set of query-document pairs, we want to investi-
gate the following scoring parallelization strategies:

� Inter-document parallelism: multiple documents are
evaluated in parallel;

� Intra-document parallelism: multiple features, trees, or
nodes are evaluated in parallel;

� Hybrid parallelism: combining the two strategies
above.

Inter-Document Parallelism. The rationale behind this
strategy stems from the observation that each document can
be scored independently. Inter-document parallelism takes
advantage of this property, and employs multiple threads
to score simultaneously multiple documents. Although the
latency associated with each document scoring does not
improve over the sequential case, inter-document parallel-
ism ensures better throughput in terms of number of docu-
ments scored per time unit. To realize this strategy, the data
structure associated with the model must be shared among
all the threads, while each document must be associated
with its own copy of leafindexes.

Intra-Document Parallelism. The key idea behind this strat-
egy is to partition the scoring of a single document into sub-
tasks that can be executed in parallel. Consequently, intra-
document parallelization aims at reducing the scoring
latency of each document, which in turn has the effect of
increasing the throughput.

Fig. 1. Data layout example of the QS algorithm.

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2077

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

Subtasks can be naturally identified in QS by decompos-
ing the work performed over features; more precisely,
each subtask consists in processing the list of tuples
ðg; mask; hÞ 2 N f associated with a single feature ff, and
updating the corresponding leafindexes. Note that differ-
ent tuples in N f, related to different features ff, may be
associated with the same tree Th. As a consequence, updat-
ing leafindexes may generate race conditions that have to
be properly managed. Depending on the targeted architec-
ture, race conditions can be generally managed in two dif-
ferent ways. On the one hand, one can eliminate race
conditions by creating one copy of leafindexes per sub-
task, provided that increasing the memory footprint does
not represent an issue; this strategy, however, incurs in the
additional cost of having to perform a final merge of the var-
ious leafindexes—this can be achieved by logical AND
operations. On the other hand, if memory occupancy repre-
sents a major concern (such as in the case of GPUs) leafin-
dexes must be shared across the subtasks, thus requiring
the use of atomic updates to manage race conditions.

Hybrid Parallelism. This strategy exploits the combined
use of massive and fine-grained parallelism. The idea is to
process p1 documents independently in parallel (inter-docu-
ment parallelism) by using p2 threads to score each docu-
ment (intra-document parallelism), for a total of p ¼ p1 � p2
threads.

Tuning Performance.All the above strategies have room for
several performance improvements that attempt to leverage
task granularity andmodel partitioning. Given a workload split
in independent tasks among a pool of concurrent workers,
task granularity impacts load balancing: in general, the
smaller the granularity and the larger the number of tasks,
the better the resulting balancing. For each of the paralleliza-
tion strategies introduced above, task granularity can be
opportunely tuned from the finest to the coarsest level; in the
inter-document case, the finest granularity can be achieved
by associating each task with a single document, while in the
intra-document case the finest granularity is achieved by
associating each task with a single feature. In both cases,
granularity can be simply increased by assigning multiple
documents (features) to individual task.

As modern CPU and GPU architectures feature complex
memory hierarchies, devising algorithms with a reduced
memory footprint may provide remarkable benefits: smaller
data structures, accessed with high spatial and temporal
locality, easily fit into the smaller—but faster—cache memo-
ries. Large tree ensembles, however, may be too large to
even fit the lowest level of cache. Consequently, an ensemble
model may need to be partitioned in blocks of trees, such that
the data structure of each block fits into a given cache size.

The final score of a document then becomes the sum of
the scores produced by the various blocks. In this context
we note that inter-document parallelism improves the tem-
poral locality of memory accesses, as smaller blocks of the
model are used to score the documents; however, the very
same parallelism requires multiple copies of leafindexes,
thus increasing the memory footprint of the algorithm.
Overall, making the best use of cache memories requires to
find a proper trade-off between the size of tree blocks and
the number of documents evaluated in parallel.

Correctness and Complexity. We discuss here the correct-
ness of the parallelization strategies illustrated above, start-
ing from the most expensive mask computation step.

The first strategy, named inter-document, is straightfor-
wardly correct. Each parallel thread scores one of n docu-
ments, and for this purpose is providedwith a private copy of
the leafindexes bitvectors so as to make the scoring of each
document independent. The second parallelization strategy,
named intra-document, performs a parallel visit of the branch-
ing nodes of the given ensemble. Note that the parallel visiting
order is different from the sequential one. This does not affect
the correctness of QS, thanks to the commutativity and asso-
ciativity of the logical AND operations applied to the leafin-
dexes bitvectors. However, this parallelism introduces race
conditions on leafindexes which can be solved either by
using per-thread replicas of leafindexes that are eventually
merged together, or by enforcing atomic updates.

Regarding the score computation step, a trivial parallel
add reduction is performed, after accessing in parallel the
exit leaves of all trees in T , to retrieve their additive contri-
butions to the final score of a given query-document pair.

The worst-case parallel complexity of QS on p process-
ors for scoring n documents is Q

� nLjT j
p

�
time. Limited

slowdowns with respect to a linear speedup derive from
synchronization overheads (atomic updates in intra-docu-
ment parallelism) or from an increase in the memory foot-
print (replication in inter-document parallelism), which
may negatively impact the performance of the various
levels of dedicated/shared caches.

4 VECTORIZED QUICKSCORER

In this section we discuss V-QUICKSCORER (VQS),3 the
enhanced single-threaded version of QS that exploits CPU
vector extensions to leverage Data-Level Parallelism (DLP)
(preliminary results concerning this section were already
presented in [18]). The extended DLP instruction sets pres-
ent in modern CPUs permit the parallel execution of the
same operation on different data items, i.e., they allow to
realize the single instruction multiple data (SIMD) paradigm.
Specifically, Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions (AVX) are sets of Intel’s vector
instructions that exploit wide registers of 128 and 256 bits,
where the registers pack multiple elements of some simple
data type. For instance, a 256 bit register can store eight sin-
gle precision or four double precision floats. We note that
recent high-end processors already provide support for
even larger, i.e., 512 bits, registers. For the sake of clarity,
we hereinafter refer to the 256 bits register architecture
(AVX), the most common SIMD extension present in current
Intel CPUs; we observe that VQS can be modified to support
wider registers in a straightforward manner.

Inter-document parallelism represents the most natural
source of parallelism that can be exploited in VQS, although
the number of documents scored in parallel is bounded by
the number of parallel ways of the AVX-256 extension. Both
the mask computation and score computation steps of QS can
be parallelized. During the first step, multiple documents
can be tested against a given node condition, and their
leafindexes updated in parallel. Similarly, the scores of
multiple documents can be computed simultaneously dur-
ing the second step. Inter-document parallelism requires to
replicate the data structure leafindexes used to encode
the exit leaves. VQS interleaves bitvectors of 8 different
documents (256 bits) in consecutive memory locations, i.e.,

3. Source code: https://github.com/hpclab/vectorized-quickscorer

2078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hpclab/vectorized-quickscorer

leafindexes½8hþ i�; 8i ¼ 7:0. This allows to update 8
leafindexes simultaneously with a single SIMD operation.

In the following we adopt a generic vectorial notation
where variables stored in wide registers are accented by a
right arrow and SIMD operations have a subscript denoting
the width of the parallel operand. For example, the sub-
script s used in the following parallel operand:

c! a! > s b
!
;

corresponds to a SIMD operation where an element-wise
greater-than comparison is executed between a! and b

!
on

their operands with single precision equivalent size (the sub-
script d is used for double precision) and the result is stored
to c!. If 256-bit registers are used, this parallel operation > s

would perform 8 simultaneous comparison on 32-bit
operands, while >d would perform 4 simultaneous opera-
tions on 64-bit operands. Finally, we use the notation
m½end : start� to address consecutive elements of the array m

from start to end inclusive.

Algorithm 2. VQS (with L ¼ 32)

1 V-QUICKSCORER (fxigi¼0;1;...;7, T , scores½7:0�):
2 foreach Th 2 T do
3 8i ¼ 7:0 : leafindexes[8hþ i] 11 . . . 11�1 Mask Computation Step

4 foreach ff 2 F do
5 foreach ðg; mask; hÞ 2 N f in asc. order of g do
6 g! ðg; g; g; g; g; g; g; gÞ
7 x! ðx7½f�; x6½f�; x5½f�; x4½f�; x3½f�; x2½f�; x1½f�; x0½f�Þ
8 c! x! > s g!
9 if c!¼ 0 then
10 break
11 m! ðmask; mask; . . . ; maskÞ
12 b

! ðleafindexes½8hþ 7�; . . . ; leafindexes½8hþ 0�Þ
13 y! m!^s b

!

14 leafindexes½8hþ 7 : 8hþ 0� �c
!

y!�2 Score Computation Step

15 s1
! ð0; 0; 0; 0Þ

16 s0
! ð0; 0; 0; 0Þ

17 foreach Th 2 T do
18 8i ¼ 7:0 : ji index leftmost 1 bit of leafindexi[h]
19 8i ¼ 7:0 : li h � Lþ ji
20 v1

! ðleafvalues½l7�; . . . ; leafvalues½l4�Þ
21 v0

! ðleafvalues½l3�; . . . ; leafvalues½l0�Þ
22 s1

! s1
!þd v1

!
23 s0

! s0
!þd v0

!
24 scores½7:4� s1

!
25 scores½3:0� s0

!

Specific optimizations used by VQS depend on the maxi-
mum number of leaves L in the trees of the ensemble. Algo-
rithm 2 shows the pseudocode of VQS when L ¼ 32. As
regards the mask computation step, VQS identifies false nodes
like QS, by processing feature thresholds in ascending
order; however, VQS exploits 256 bit registers to compare
multiple documents simultaneously against each feature
threshold. Since document features are stored as single pre-
cision floats, we have a first register, g!, that stores 8 copies
of the same test threshold g, and a second register, x!, that
stores the features fxi½f�gi¼0;1;...;7 of the 8 input instances
(lines 6-7). A single SIMD instruction is then used to test the
feature values of the documents against the threshold (line

8): if all tests evaluate to false (line 9), i.e., VQS does not find
any false node, the inner loop terminates and the next feature
is processed. Unlike QS, VQS needs to pass the test over 8
documents at a time to break the loop (line 10), which intro-
duces some overhead.

The bitvector update is implemented as shown in Algo-
rithm 2 (lines 12-14). First, mask is replicated eight times
into m!, then the eight leafindexes½8hþ 7 : 8hþ 0� are
loaded to the register b

!
. Subsequently, a bit-wise logical

and between b
!

and m! produces the updated bitvectors,
regardless of the test outcome c!. Finally, a masked store
operation is used to copy back to memory the updated bit-
vectors: the copy is performed only for the bits of y! where
the corresponding bits c! are set.

The score computation step is also parallelized (Algorithm 2,
from line 15). To provide the required precision, tree predic-
tions are stored as double precision float values (64 bits)—this
implies that only 4 document scores can be processed simulta-
neously using 256 bits registers. Thus, VQS uses two registers,
namely s1

! and s0
!, to maintain the scores of 8 documents. For

each tree h, the predicted partial scores relative to the 8 input
instances fxigi¼0;1;...;7 are similarly stored to v1

! and v0
!, and

added up to update the final document scores. Finally, the
final document scores are copied toscores½7:0�.

Processing ensemble models with trees featuring many
leaves, e.g.,L ¼ 64, impacts on the size of the arrays of bitvec-
tors leafindexes and mask. As a consequence, the number
of elements that can be processed simultaneously in a register
decreases. Note that c! stores each result of a threshold com-
parison test as a string of 32 bits; conversely, the bitvectors
mask and leafindexes, stored respectively inm! and b

!
, are 64

bits wide. VQS handles this mismatch as follows: instead of
processing 8 input feature vectors xi½f� at once, VQS processes
only 4 vectors in parallel by packing themwith replication

x! ðx3½f�; x3½f�; x2½f�; x2½f�; x1½f�; x1½f�; x0½f�; x0½f�Þ:

Indeed, by replicating twice each xi½f� VQS produces 64 bits
masks that represent the output of the comparison tests, thus
solving the mismatch; in turn, this allows to process the reg-
ister x!without any othermodification of Algorithm 2.

5 MULTI-THREADED QUICKSCORER

The SIMD-based parallelization strategies presented in Sec-
tion 4 are restricted within a single thread running on a sin-
gle CPU core. Since modern CPUs are multiprocessors that
provide several cores, it is interesting to investigate a multi-
threaded parallelization of QUICKSCORER. We can mix SIMD
and MIMD parallelism by running multiple threads, where
each thread exploits inter-document fine-grained SIMD par-
allelism as discussed in Section 4. We call VQS-MT (Vector-
ized QUICKSCORER Multi-Threading4) such hybrid parallel
implementation of QUICKSCORER.

Even in the case of multi-threading parallelism we have
different possible parallelization strategies, either inter-,
intra-document, or hybrid. From preliminary tests we found
that inter-document is always the best choice: this is due to
the large number of documents to score per query (from
hundreds to thousands in real settings) and the limited
number of cores of multicores/multiprocessors (from tens
to hundred in common configurations). We adopt the same

4. Source code: https://github.com/hpclab/multithread-quickscorer

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2079

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hpclab/multithread-quickscorer

inter-document strategy among the various threads and
within each single thread; for example, a multicore CPU
with 8 cores, each with 256 bits wide AVX vector registers,
may run 8 threads with each thread scoring 8 documents
(when L ¼ 32) in parallel, for a total of 8� 8 ¼ 64 docu-
ments scored in parallel.

In our study we also consider the complexity of the
shared-memory architecture of modern multiprocessors. In
particular, such systemmay include several multicore CPUs,
also called sockets or nodes, all accessing the same shared
memory according to a Non-Uniform Memory Access
(NUMA) scheme. To increase memory bandwith, the shared
memory in a NUMA scheme is distributed to each node,
namely a multicore CPU, thus introducing two different
speeds for accessing the shared memory—fast access to the
local one and slower access to remote ones; migrating a
thread from a multicore CPU to another may hinder perfor-
mance, hence it is good practice to restrict the execution of
threads to the samemulticore CPUwhere theywere created.

We implemented the multi-threaded version of QS by
using OpenMP [19], an API that supports multi-platform and
multi-language shared memory multiprocessing program-
ming. To realize inter-document parallelism with OpenMP,
we denote as a parallel for the loop that iterates over the
documents to score. More precisely, a single-thread program
calls Algorithm 2 fromwithin a for, thus scoring either 8 (for
L ¼ 32) or 4 documents at a time (forL ¼ 64). Using the direc-
tives of OpenMP, the output and temporary data structures
used to score each group of 4 (8) documents are declared pri-
vate, and thus allocated on a per-thread basis. Specifically,
such private data structures are the leafindexes½3:0�
(leafindexes½7:0�) bitmask arrays, and the final scores½3:0�
(scores½7:0�) accumulators.

A final remark concerns the lower levels of cache equip-
ping each multicore CPU, and the possible issues deriving
from their shared use bymultiple threads. In general, running
multiple threads, each operating on a different working set,
may increase the pressure on the shared levels, since each
thread needs a different cache residency for their data. In our
case, however, the largest dataset is the tree-based model that
is accessed read-only by all the threads. The per-document
read-write data, namely the private data structures mentioned
above, are small. From our tests, we will show that multi-
threading does not impact too much on shared cache perfor-
mance of VQS-MT, except for very large ensemblemodels.

6 GPU-BASED QUICKSCORER

Before detailing the strategies adopted to parallelize
QUICKSCORER on GPUs, we first introduce some GPU back-
ground [20], [21], [22]. Although the GPU terminology used
in the following refers to the NVIDIA CUDA framework,
different programming frameworks and architectures adopt
similar solutions with slightly different names.

6.1 GPU Architectural Background
A GPU includes m multithreaded streaming multiprocessors
(SMs), each with n cores. Each SM is able to run blocks of
threads, i.e., thread-blocks, executing the same kernel code.
The unit of scheduling is the warp, composed of 32 synchro-
nous data-parallel threads belonging to a given thread-block.
Each SM is equipped with private registers used to manage
the stack of threads, and a fast but relatively small shared
memory. Since such shared memory is statically partitioned

and assigned to the thread-blocks running on the SM, the
amount of shared memory required by each thread-block
influences the number of blocks the SM can run concur-
rently. Moreover, GPUs feature a global memory that can be
accessed and modified by both the host CPU’s cores and the
GPU SMs. Accesses to the global memory benefit of an L2
cache, which is shared among all the SMs. In some models,
including the one used for our experiments, each SM is also
equipped with a dedicated L1 cache.

Performance Optimization for GPUs. In the context of
GPUs,multi-threading becomesmulti-warping as the units of
scheduling are groups/warps of 32 identical threads. As in
the case of multi-threading, executing warps concurrently is
useful to hide latencies, for instance those caused by global
memory accesses. To this end, a good strategy is to optimize
the utilization of each SM by increasing the number of active
warps per SM, thus realizing a sort of excess parallelism. This
can be attained by increasing the number of thread-blocks
concurrently running on each SM, along with the number of
threads per block. The maximum number of warps per SM
depends, however, on the specific GPU scheduler, on the
number of cores per SM, and on other characteristics of the
GPU architecture family considered. In addition, due to the
SIMD-style execution of warps, it is important to avoid branch
divergence within warps, since these may cause under-utiliza-
tion of GPU’s computational resources, thus hindering warp
efficiency.

To achieve optimal performance, the complex memory
hierarchy of GPUs must be properly exploited. As regards
global memory, GPU devices try to coalesce loads/stores
issued by the threads of a warp into as few global memory
transactions as possible. Consequently, if threads identified
by consecutive IDs access consecutive words in global
memory, their accesses can be merged (coalesced) into
fewer memory transactions, thus fully exploiting the band-
width of global memory. Consequently, the cost of access-
ing the global memory is measured in terms of number of
memory transactions needed to load/store memory blocks
(of up to 128 bytes). A fast L2 cache, shared by all SMs, may
significantly reduce global memory latencies.

The shared memory of each SM is structured in interleaved
memory banks; memory banks can thus work in parallel to
serve concurrent requests from the threads of a warp. How-
ever, performance degrades in presence of bank conflicts
due to the serialization of conflicting accesses. As a general
rule, if an algorithm needs to randomly access a data struc-
ture and the access pattern is not predictable, it is desirable
to move such data to shared memory. In fact, random mem-
ory accesses directed to global memory cannot be coalesced,
while the same requests directed to the shared memory
may have the chance to be fulfilled with high throughput if
memory banks conflicts do not occur. However, given the
limited size of shared memory available per thread-block,
suitable data structures have to be allocated.

6.2 GPU-QUICKSCORER

From the above discussion we highlight two main chal-
lenges in designing efficient GPU algorithms: providing a
sufficiently large degree of parallelism to profit from the
thousands of cores available and deal with the GPU com-
plex hierarchy of memories, by properly defining the layout
of data structures and orchestrating over such data struc-
tures the accesses of the parallel threads.

2080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

Inter- and Intra-Document Parallelism and Task Granularity.
To obtain a sufficient parallelism degree in parallelizing QS,
we combine inter- and intra-document parallelism, as dis-
cussed in Section 3. This hybrid technique allows both coarse
and fine-grained parallelism to be exploited, by processing in
parallel p1 documents (inter-document parallelism) using p2
parallel threads for scoring each document (intra-document
parallelism)—thus yielding p ¼ p1 � p2 threads running in par-
allel. Theway to realize this parallelism scheme on aGPU is to
assign each of the p1 documents to a different thread-block.
Therefore we have p1 ¼M, whereM is the number of thread-
blocks allocated, in turn scheduled over the m GPU SMs.
Moreover, if N is the number of parallel threads in each
thread-block, we have that p2 ¼ N threads run concurrently
to score a given document. We increase the granularity of the
inter-document task (see Section 3) by assigning multiple
documents per block, since in general we have to score large
batches of input documentsD 	 D, where jDj
M.

Within each thread-block, rather than assigning each
document feature to a single thread of the block, we assign
each feature to a warp. The main reason behind this strategy
is to favor coalesced accesses to the tuples ðg; mask; hÞ asso-
ciated with a given feature. In addition, since we have usu-
ally fewer warps than features (N32� jFj), we also end up
increasing the intra-document task granularity by assigning
more features per warp.

Model Partition and Allocation. We recall that QS adopts
two main data structures besides the input vector D:

� the model data structure, composed of the tuples
ðg; mask; hÞ encoding the branch nodes of the forest
T , and of leafvalues, the vector that stores the
scores associated with the leaves of the trees in T ;

� the output vectors leafindexes—one for each tree of
the forest T ; these are updated during the computa-
tion to eventually identify the exit leaves of the trees.

The model data structure is read-only, and QS accesses it
feature-by-feature, with perfect spatial locality. Conversely,
QS needs to access randomly the output vectors in read-write
mode, thus not allowing to exploit any predictable access
pattern that promote locality. The model data structure is
too large to be entirely stored in the GPU shared memory
(typically few tens of KBs). For example, let us consider a
model T made up of a forest of 10,000 trees, with L ¼ 64
leaves each: just for storing the leafvalues of all the trees,
where each leaf value is represented as a double of 8 bytes,
we need about 5 MB. The size of global memory, is typically
in the order of 4-8 GB, thus representing the best candidate
to store T . However, high-throughput access to such mem-
ory is possible only when exploiting coalescing.

QS perfectly fits the above requirement: the model data
structure is stored as a Structure of Arrays in global memory,
and it is accessed sequentially feature-by-feature by means of
linear scans that promote spatial locality. More precisely, we
assign each feature to a warp, thus assigning to the threads
of the warp consecutive memory locations that store the val-
ues of the tuples ðg; mask; hÞ associated with a feature
ff 2 F : in turn, this leads to coalesced accesses. We finally
mention that partitioning T increases the chance that indi-
vidual tree-blocks fit into the L2 cache, thus further increas-
ing the achieved memory bandwidth.

Regarding the output vector leafindexes, its size
depends on the number of trees jT j and on the maximum
number of leaves L. Considering the example above: 10,000

trees with 64 leaves per tree require 80 KB of memory, which
is greater than the amount of shared memory typically avail-
able for individual thread-blocks. Since the threads of a warp
perform unpredictable read-write accesses to leafindexes,
using the global memory to manage leafindexes would
unfortunately result into random memory accesses that can-
not be coalesced; this, in turn, would impact negatively the
performance. Hence, rather than storing leafindexes into
the global memory it is far more efficient to partition the
model, as already discussed in Section 3. More precisely, T is
partitioned into multiple tree-blocks T 	 T of size t ¼ jT j,
where t is chosen to be small enough tomake the correspond-
ing leafindexes fitting the amount of shared memory avail-
able per thread-block. Since the sharedmemory is at least one
order of magnitude faster than the global memory and it does
not require coalescing, it can serve up to 32 parallel requests
by effectively managing potential conflicts with efficient
atomic operations. As mentioned above, another motivation
to adopt a small size for t is to increase the chance that each
partition fits into the L2 cache, thus minimizing the average
memory access latency.

A final remark concerns where the input data, i.e., the
feature vectors associated with the documents to score, are
stored. These vectors are moved from the CPU to the GPU
global memory in large batches of D 	 D documents. As
the global memory is large, it can easily host large batches
of input documents: for instance, a batch of 10,000 docu-
ments, each having 1,000 features, takes only about 40 MB.

Algorithm 3. GPU-QUICKSCORER

1 GPU-QUICKSCORER (D; T):
2 COPYHOSTTOGPU ðT Þ
3 foreach document batch D,D 	 D do
4 COPYHOSTTOGPU&TRANSPOSE ðDÞ
5 SD fs0 ¼ 0; . . . ; sjDj�1 ¼ 0g
6 foreach tree-block T , T 	 T do
7 pos pivot FINDFALSENODESGPU ðD; T Þ
8 UPDATESCORESGPU ðT;pos pivot;SDÞ
9 return SD

The GPU Algorithm. GPU-QUICKSCORER (QSGPU), the GPU
version of QUICKSCORER,5 is sketched in Algorithm 3. The algo-
rithm starts by transferring the entire model from the host
(CPU) memory to the GPU global memory (line 2). We note
that themodel is stored in a partitioned layout of disjoint tree-
blocks T 	 T , and it is entirely loaded into the global memory
(line 2). The documents to be scored are transferred from the
host memory to the GPU global memory in batches (line 4),
while their initial scores are set to zero (line 5). Each batch of
documents gets also transposed in parallel by the GPU; more
precisely, the original layout ofD is a matrix where each row
stores a document vector x 2 D, while the transposed layout
stores document vectors column-wise. This arranges the same
feature of different documents in contiguous memory loca-
tions, thus allowing to coalescememory accesses.

After completing the transfer, the algorithm iterates across
the various tree-blocks T 	 T (line 6). Unlike the sequential
QS, the identification of false nodes (FINDFALSENODESGPU, line
7) is executed entirely before computing leafindexes and
the document scores (UPDATESCORESGPU, line 8).

5. Source code: https://github.com/hpclab/gpu-quickscorer

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2081

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hpclab/gpu-quickscorer

First Phase—Finding Pivot Positions. For each feature ff in
eachdocument x 2 D theGPU threads in FINDFALSENODESGPU
work in parallel to identify the positions of the so-called pivots
in the sorted list of tuples ðg; mask; hÞ. Given a feature ff and a
document x 2 D, a pivot represents the greatest position in the
sorted list of tuples such that for all the subsequent positions
the inequality x½f� � g holds. A pivot thus separates the false
nodes from the true nodes in the branching nodes that per-
form their tests over ff. Note that using the transposed layout
for a given batch of documentsD allows us to use an efficient
GPU binary search algorithm6 to search in parallel the pivots
and store them inpos pivot.

Finally, we highlight that the separation between the FIND-

FALSENODESGPU and the UPDATESCORESGPU steps implies a
better access to the data structures holding the tree-based
model. FINDFALSENODESGPU needs, for all x 2 D, to access just
the thresholds g, while UPDATESCORESGPU needs to access just
mask and h. This limits the memory footprint of QSGPU, thus
favoring a better exploitation of the global memory caching.

Second Phase—Updating Document Scores. Once the posi-
tions of the pivots are available in pos pivot (line 7), the
algorithm proceeds to update the partial scores of the cur-
rently considered batch of documents by adding the contri-
butions of the tree-block T , T 	 T . We note that at this
point we do not need to access the model thresholds g, but
just the masks mask and tree ids h. This second phase is
realized by function UPDATESCORESGPU (line 8, Algorithm 3)
detailed in Algorithm 4.

Algorithm 4. The UPDATESCORESGPU Kernel

1 UPDATESCORESGPU (T;pos pivot;SD):
2 parallelblock foreach x 2 D do
3 shared leafindexes½t�; where t ¼ jT j
4 parallelthread foreach th 2 T do
5 leafindexes½h� 11 . . . 11
6 synchthreads�1 Mask Computation Step

7 parallelwarp foreach ff 2 F do
8 parallelthread foreach ðg; mask; hÞ 2 N T

f

in ascending order, up to the pos pivot½x�½ff� th element
do

9 leafindexes[h] (leafindexes[h] ^atomic

mask)

10 synchthreads�2 Score Accumulation Step

11 local accScores 0
12 parallelthread foreach th 2 T do
13 local j index of the leftmost bit set in

leafindexes½h�
14 local l h � Lþ j
15 accScores accScoresþ leafvalues½l�
16 synchthreads�3 Score Reduction Step

17 SD½x� SD½x� þBlockSumReductionðaccScoresÞ
18 return SD

As discussed above, we need to combine inter-document
and intra-document parallelization strategies to optimize the
utilization of the GPU cores. For what concerns inter-docu-
ment parallelization, each document is assigned to a single

block of threads—in Algorithm 4, line 2, we use the notation
parallelblock to indicate that each iteration of the loop is
assigned to a different block of threads. The model T is par-
titioned to make sure that each block of threads has suffi-
cient resources to store leafindexes in the shared memory
(line 3). For what concerns intra-document parallelization,
this is achieved within each thread-block by properly
orchestrating the operations conducted within themask com-
putation and score computation steps.

First, the elements of leafindexes are initialized
(line 4)—we use the keyword parallelthread to indicate that
iterations of the loop are partitioned among the threads of
the thread-block and executed in parallel. A barrier (line 6),
denoted by synchthreads, makes sure that the initialization
is completed by all threads before proceeding further.

The algorithm then performs the mask computation step,
where we take advantage of the grouping of threads into
warps. We explicitly assign a different feature ff to eachwarp
of the thread-block—to this end, we note the use of the nota-
tion parallelwarp (line 7). Going further on, the construct
parallelthread at line 8 indicates the nested parallelism within
each warp, where the threads process in parallel the set of

tuples, N T
f , associated with f in the tree-block T . Due to the

memory layout used with tuples, the accesses performed by
the threads of a warp are distributed sequentially in global
memory, thus yielding coalesced accesses. Subsequently, the
retrieved masks are used to update in parallel the leafin-

dexes of the corresponding trees. Since the accesses toleaf-
indexes are random and potentially conflicting, atomic
updates are employed to guarantee consistency (line 9).
Finally, the loop ends when all the false nodes for the current
document x and feature ff have been processed, i.e., until the
position pos pivot½x�½ff� in the tuple array is reached by some
of the threads of the warp. Note that when this position is
reached within a warp, some of its threads may result inac-
tive, since leafindexes must not be modified by the nodes
following the pivot: the resulting branch divergence may
have a limited impact on the algorithm performance.

When all the features have been processed, the algorithm
proceeds to update the document score by adding the contri-
butions of the currently considered tree-block T . First, the vec-
tor leafindexes is partitioned among the threads of the
thread-block (line 12) such that each thread accumulates in a
private, local register the contributions of a subset of trees by
identifying their exit leaves in leafindexes. We note that
accesses to leafvalues cannot be coalesced and that this
data structure is stored in the global memory. However,
thanks to the fact that the model is partitioned into several
sub-forests T 2 T , and that leafvalues is typically small in
size, by picking up a proper t it is possible to maximize the
chance that leafvalues fits into the L2 cache. Finally, the
threads of the block perform a block-wise sum-reduction over
the accumulated scores, thus yielding a partial score that is
used to update the overall score of the document in global
memory (line 17).7

7 EXPERIMENTS

We conduct experiments on three public datasets that are
commonly used in the scientific community to evaluate LtR

6. Available in the Thrust library, v1.7.0, provided by the CUDA
framework. 7. CUB lib v1.7.0, https://nvlabs.github.io/cub/

2082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://nvlabs.github.io/cub/

solutions. The training/test datasets are composed of query-
document pairs, in turn represented by multidimensional
feature vectors, each labeled with relevance judgments
ranging from 0 (irrelevant) to 4 (perfectly relevant). Specifi-
cally, the datasets used are: the first fold of theMSN (herein-
after MSN-1),8 the Yahoo datasets (hereinafter Y!S1),9 and
the full Istella dataset (hereinafter Istella).10 Table 2 reports
their main characteristics.

We use these datasets to train additive ensembles of
boosting regression trees by exploiting the �-MART [5]
algorithm, which aims to optimize NDCG@10, i.e., a com-
mon measure used to evaluate ranking quality [23]. The
trees of the ensembles learnt have a maximum number of
leaves L equal to either 32 or 64. In more detail, we use the
efficient implementation of �-MART provided by Quick-
Rank,11 an open-source LtR C++11 framework [10]. How-
ever, in the paper we focus on the efficiency at testing time
of tree ensembles, and thus our results are independent of the
specific LtR algorithm used to train them.

Experimental Setting for Efficiency Tests. For the tests we
use a shared-memory NUMA multiprocessor equipped
with two Intel Xeon CPU E5-2630-v3 clocked at 2.40 GHz
(3.20 GHz in turbo mode), and with 192 GB RAM. Each
Xeon CPU has 8 general-purpose cores, where each core has
a dedicated L1/L2 cache of 32/256 KB, and a shared L3
cache of 20 MB. The system also includes an NVIDIA GTX
1,080 GPU, with a global memory of 8 GB GDDR5X, a 2 MB
L2 cache, 20 SMs each featuring 128 cores, a 96 KB shared
memory unit (48 KB accessible by individual thread-blocks),
and a dedicated 48 KB L1 cache.

All the versions of QUICKSCORER are written in C++11, and
are compiled with GCC 6.3.0, plus the latest version of
CUDA 8 for the GPU version. The -O3 flag is used for the
GCC compiler, while the flags -Xptxas=-dlcm=ca and
-gencode arch=compute_61,code=sm_61 are used for
the CUDA compiler. In detail, the former flag enables global
memory caching via L1 cache, while the latter generates
optimized code for the GPU used in the experiments.

To measure the efficiency of the above methods, we run
for 10 times the scorer on the test sets of the MSN-1, Y!S1,
and Istella datasets, and compute the average per-document
scoring cost. Moreover, to profile the behavior of each CPU-
based QS version, we employ perf,12 a performance analy-
sis tool available under Ubuntu Linux distributions. Ana-
loguously, to profile GPU-QUICKSCORER we employ nvperf,
a GPU performance analysis tool provided by the NVIDIA
CUDA framework.

7.1 Vectorized and Multi-Threaded QUICKSCORER

Table 3 reports the per-document scoring times (ms) of VQS
and VQS-MT, and compares themwith those achieved by the
sequential QS. While VQS is a single-threaded algorithm that
uses the AVX-256 SIMD extension, VQS-MT is the multi-
threaded version of VQS that exploits all the 16 cores of our
NUMA system. From the table we see that VQS outperforms
QS with significant speedups. When dealing with trees hav-
ing L ¼ 32 leaves each, we observe that VQS achieves speed-
ups over QS that range between 1.9x and 3.2x. The
superiority of VQS persists also when L ¼ 64. In this case we
observe that the speedups achieved by VQS over QS—speed-
ups that range between 1.2x and 1.8x—slightly decrease due
to the halved number of documents that can be scored in par-
allel with respect to L ¼ 32 (4 rather than 8). As explained in
Section 4, this is a consequence of the increase in the space
required to store bitvectors mask and leafindexes (64 bits),
thus limiting to only 4 the number of elements that can be
stored in a single vector register of 256 bits.

We also compare VQS-MT with VQS and QS. We employ
OpenMP to distribute VQS among the processing cores avail-
able within our multiprocessor. Each thread thus runs VQS
and uses the AVX SIMD extensions to score bunches of docu-
ments at a time (either 8 or 4 documents, depending on L).
The final results, reported in terms of per-document scoring
time (ms), are obtained by running VQS-MT on the 16 physi-
cal cores of our NUMA multiprocessor, without the use of
hyper-threading—our threads are compute-bounded, and
we experimentally verified that the adoption of INTEL’s
hyper-threading actually reduces the overall performance.
Moreover, we use the numactl tool to force thread alloca-
tion on the NUMA architecture. This means that a thread
will use the local memory of the node where it is executed
during all its life-cycle; this avoids to slow down the accesses
to the memory of different nodes of the NUMA architecture.
We also experiment several OpenMP loop scheduling poli-
cies, i.e., static, dynamic, guided, and auto, and report
the best results obtained by using the auto strategy.

Table 3 shows that when L ¼ 32 VQS-MT achieves speed-
ups ranging between 20.7x and 35x over QS,while it achieves
speedups ranging between 6.3x and 14x over VQS. Note that
the best possible speedup of VQS-MT over VQS is 16x (linear
speedup), since our multiprocessor has 16 cores. We are able
to approach the best possible speedup only when consider-
ing the smallest MSN dataset (1,000 trees), as this allows to
better fit the various levels of dedicated/shared cache.When
considering L ¼ 64, VQS-MT achieves speedups over QS
that range between 8.2x and 19.3x: again, we notice a perfor-
mance degradation with respect to the L ¼ 32 case caused
by the reduced SIMDparallelismwithin each thread. Finally,
when L ¼ 64 the speedups achieved by VQS-MT over VQS
are between 6.3x and 12.5x: this still represents a good result,
but it is worse than the result achieved for the L ¼ 32 case.
The performance degradation is mainly due to the increased
size of the tree-based models (the size of all bitwise masks
are doubled), which in turn increases the competition among
threads over the L3 cache of each multi-core CPU: in fact, the
worst speedups are obtained when considering very large
ensembles (20,000 trees).

Instruction Level Analysis. We use the perf tool to mea-
sure the total number of instructions, number of branches,
number of branch mis-predictions, L3 cache references, and
L3 cache misses for the different scorers, running on a single

TABLE 2
Main Characteristics of the Three Datasets

MSN-1 Y!S1 Istella

length of feature vectors 136 700 220
queries in train/validation 8,000 22,938 23,319
docs in train/validation 958,671 544,217 7,325,625
queries in test 2,000 6,983 9,799
docs in test 241,521 165,660 3,129,004
avg docs/query in test 120.7 23.72 319.31

8. http://research.microsoft.com/en-us/projects/mslr/
9. http://learningtorankchallenge.yahoo.com
10. http://blog.istella.it/istella-learning-to-rank-dataset/
11. http://quickrank.isti.cnr.it
12. https://perf.wiki.kernel.org

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2083

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

http://research.microsoft.com/en-us/projects/mslr/
http://learningtorankchallenge.yahoo.com
http://blog.istella.it/istella-learning-to-rank-dataset/
http://quickrank.isti.cnr.it
https://perf.wiki.kernel.org

core of the Intel Xeon CPU by exploiting its SIMD extension.
In these tests we compare QS against VQS over ISTELLA, the
largest and most challenging dataset. The experiments con-
ducted on the other datasets are not reported, as they
exhibit similar results. Table 4 reports the results achieved
with all measurements normalized per-document and per-

tree. It is worth specifying that the figures for L3 cache refer-
ences reported in the table account for memory accesses that
cause a miss in any of the previous levels of cache, while L3
cache misses account also for the percentage of L3 cache
references that miss in L3.

Interestingly, the analysis reveals that the use of the
AVX-256 instruction set causes a significant decrease in the
average number of instructions needed to score a single
document. This reduction justifies the speedups achieved
by VQS. In terms of branch figures, VQS shows lower mis-
prediction rates than QS. The total number of per-tree per-
document branches is also lower, demonstrating that the
chosen parallelism represents a good strategy to increase
the throughput of QS. The same results are achieved for the
cache utilization. As in the preceding case, L3 cache misses
and references are always lower than the ones achieved by
QS, thus revealing a more effective use of the cache.

The instruction level analysis of the multi-threaded
implementation of QUICKSCORER (VQS-MT) shows that it
inherits the same figures from VQS. The use of the OpenMP
library to parallelize VQS does not incur in computational
overhead, as the instruction count is the same as VQS—the
same considerations hold for the total number of branches
and branch mis-predictions. In terms of L3 cache misses,
the number of misses increases for VQS-MT when the model
size increases—this is again caused by an increased compe-
tition in the usage of the L3 cache. Finally, we argue that the
high number of threads working concurrently affects nega-
tively the temporal and spatial locality, thus leading to a
higher number of cache misses.

7.2 GPU-Based QUICKSCORER

GPUs have constraints that impact on the design and tuning
of algorithms, with different GPU models possessing quan-
titatively different constraints. Since the constraints are sim-
ilar in nature across different GPUs, without loss of

TABLE 3
Per-Document Scoring Time (ms) of QS, VQS, and VQS-MTon MSN-1, Y!S1, and Istella

Speedups of both VQS and VQS-MT over QS are between round brackets (�), and speedups of VQS-MT over VQS between squared brackets [�].

TABLE 4
Per-Tree Per-Document Low-Level Statistics on Istella

with 64-Leaves �-MART Models

Method Number of Trees
1,000 5,000 10,000 15,000 20,000

Instruction Count

QS 67 70 79 81 73
VQS 57 61 66 65 57
VQS-MT 57 60 66 65 57

Num. branch mis-predictions (above)
Num. branches (below)

QS 0.139 0.036 0.022 0.013 0.010
7.86 7.44 8.34 8.62 7.64

VQS 0.03 0.004 0.002 0.002 0.001
4.47 4.81 5.22 5.17 4.56

VQS-MT 0.02 0.004 0.003 0.002 0.001
4.45 4.80 5.22 5.17 4.55

L3 cache misses (above)
L3 cache references (below)

QS 0.005 0.001 0.001 0.002 0.004
2.0 1.47 1.57 1.75 1.94

VQS 0.004 0.003 0.025 0.004 0.026
0.51 1.04 1.31 1.86 1.38

VQS-MT 0.005 0.004 0.190 0.085 0.151
0.47 1.14 1.59 1.62 1.64

2084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

generality we focus on the GPU used in our experiments, a
NVIDIA GTX 1,080. Table 5 reports its constraints. In the
following we discuss the possible impact of these con-
straints on the design of QSGPU—specifically, warp efficiency,
number of resident thread-blocks and occupancy, and L2 cache
size impact.

Warp Efficiency. Within the UPDATESCORESGPU kernel,
which represents the time-dominant component of the algo-
rithm, QSGPU exploits the shared memory of each SM to
store leafindexes, where each bitvector is of L bits. There-
fore, let St ¼ t � L=8 be the size (in bytes) of the shared
memory footprint of a model of t trees for each thread-
block. Since a thread-block is constrained to access up to
48 KB of shared memory, then St � 48 KB.

Example. Given a large model composed of 20,000 trees
with L ¼ 32, the size of the leafindexes data structure
would be St ¼ 20;000 � 32=8 ¼ 80;000 bytes, thus much
larger than the limit of 48 KB. Therefore, the maximum
number of trees of a single partition of the ensemble is
t ¼ 12;288 for L ¼ 32, and t ¼ 6;144 for L ¼ 64.

As discussed previously, this does not represent a major
issue for QSGPU, as any model can be evaluated in partitions
of any custom size t. However, splitting a model into parti-
tions introduces overhead, as part of the threads constitut-
ing a warp become inactive when reaching a pivot that
separates true nodes from false ones in a given partition of
the model. This inefficiency is measured by warp efficiency,
i.e., the average fraction of active threads per executed
warp. We observe that each partition made of t trees has its
own set of pivots: therefore, increasing the partitions of the
model increases proportionally the number of pivots, thus
harming warp efficiency. Even if this phenomenon is more
evident with large feature sets, or when the number of false
nodes is very small, in general we have that the larger
the number of partitions (or, equivalently, the smaller t),
the smaller the warp efficiency.

Number of Resident Thread-Blocks and Occupancy. t also
determines the maximum number of resident thread-blocks
that can run concurrently on the same SM. Since each SM is
equipped with only 96 KB of shared memory, this limits the
number of resident thread-blocks to a maximum of
bt ¼ b96 KB=Stc.

While satisfying the above constraint, it is also important
to maximize occupancy, i.e., the average ratio between the
number of active warps per cycle per SM and the maximum
number of active warps that are supported per SM (64 in our
GPU, for a total of 2,048 threads). Generally, by maximizing
occupancy we increase the chance for SM schedulers to
hide/tolerate warp stalls caused by globalmemory accesses.

Note that we could maximize occupancy by simply
increasing the number of threads per thread-block. However,
this strategymay end up reducing the number of per-SM resi-
dent thread-blocks, due to the constraint on the total number
of threads per SM (max 2,048). Instead, along with occupancy
it is also important to maximize the number of resident
thread-blocks, as this allows to mask stalled warps of a block
with eligible warps (i.e., warps that are ready to issue their
next instruction) of other thread-blocks. In fact, all the warps
of a thread-block can be stalled due to a block-level barrier.

Given a specific t, the policy we adopt to maximize
occupancy, along with the number of per-SM resident
thread-blocks, is to choose the minimum number of threads
per thread-block (n threads) that allows to run enough
concurrent thread-blocks per SM with full occupancy. More
formally

min n threads ¼ 2n

subject to 5 � n � 10;

2 � 2;048

n threads
� bt:

Note that the first constraint forces n threads to be a multi-
ple of 32 (warp size) and a divisor of 1,024 (max threads per
thread-block). Since we minimize n threads, this choice
actually maximizes the number of per-SM resident thread-
blocks (i.e, 2,048=n threads), provided that this number is
not greater than bt.

Note also that the number of resident thread-blocks must
be at least 2: indeed, the maximum shared memory allo-
cated to each thread-block is 48 KB—exactly half of the total
shared memory available—while the maximum n threads
per thread-block is 1,024, exactly half of the maximum num-
ber of threads per SM that guarantees full occupancy (see
Table 5).

We validated the above policy by conducting a grid
search over t and n threads, with ensembles featuring
20,000 trees and L ¼ f32; 64g leaves per tree (results are
omitted for brevity).

Example. Let t ¼ 4,000 and L ¼ 32. A single thread-block
requires St � 16 KB, which allows to have at maximum
bt ¼ 96=16 ¼ 6 concurrent thread-blocks per SM. If we
use 6 thread-blocks per SM, we can have at most
n threads ¼ 320 threads per thread-block, due to the limit
of 2,048 threads per SM, thus yielding a total of 1,920
threads: this implies a sub-optimal occupancy, i.e.,
1;920=2;048 ¼ 0:9375 < 1. We rather use n threads ¼
29 ¼ 512, which yields full occupancy and 2,048/512 ¼
4 � bt thread-blocks per SM.

Another parameter is n total blocks, i.e., the overall num-
ber of allocated thread-blocks to be dinamically scheduled
on the various SMs. In general we have that the greater
n total blocks, the finer the granularity of aggregated task
assigned to each thread-block, hence guaranteeing a better
load balancing of the workload distributed over the SMs.
Specifically, we need that n total blocks
 m� bt, where m
is the number of GPU’s SMs (m ¼ 20 in our GPU), and
m� bt is the maximum number of resident blocks that can
run concurrently on all the SMs of a GPU. As QSGPU typi-
cally needs to score huge amounts of query-document pairs,
our problem setting allows us to easily set n total blocks to a
sufficiently high value—value much larger than m� bt—to

TABLE 5
NVIDIA GTX 1,080 Constraints

NVIDIA GTX 1080 Feature Limit

Threads (warps) per SM 2,048 (64)
Threads (warps) per thread-block 1,024 (32)
Thread-blocks per SM 32
Shared memory per SM 96 KB
Shared memory per thread-block 48 KB
Registers per thread-block 65 K
Warp schedulers per SM 4
L2 cache size 2 MB

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2085

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

achieve optimal performance, while ensuring at the same
time that each thread-block has an adequate workload.

L2 Cache Size Impact. The L2 cache memory size (2 MB)
has a strong influence on the tuning of t. The cache size also
impacts on the access time to the remaining data structures
stored in the GPU global memory.

More precisely, for each internal node QSGPU uses
L=8þ 2 bytes to store, respectively, the node’s bitvector
mask and tree ID h, while it uses 8 bytes (a double) for each
leaf score in leafvalues. In general, note that the cache
size imposes a stricter upper bound than the shared mem-
ory constraint.

Example. QSGPU requires ðL=8þ 2Þ � ðL� 1Þ plus 8 � L
bytes for each tree. Given a model with 20,000 trees, the
2 MB constraint is already violated when t ¼ 5;000 with
L ¼ 32, or t ¼ 2;000with L ¼ 64.

To exploit the computational power of a GPU we need
to pursue two contrasting goals: maximizing the warp effi-
ciency by using a large t, and maximizing the hit rate of the
L2 cache by using a sufficiently small t. We argue that
these goals can be achieved by using a value of t that is
sufficiently close to the size of the L2 cache, while the
number of threads per thread-block, n threads, and the

number of per-SM resident thread-blocks can be statically
determined as shown above.

In the batch of experiments that follows we validate our
analytic performance model and the choice of t for optimal
performance. We vary t in the ½1;000-10;000� range, and for
each value of twe set the number of threads per thread-block,
n threads, by means of the previously illustrated policy. Also,
the number of thread-blocks, n total blocks, is set to the high-
est possible value, 64K � 1, as this ensures an optimal balanc-
ing of the workload. The datasets feature jT j ¼ 20;000 and
L ¼ f32; 64g. We also use nvprof to collect two profiling
metrics, i.e., the L2 cache hit ratio and thewarp efficiency. Finally,
we report that the trends observed in the plots can be repro-
duced with different values of jT j and L (we omit the results
for brevity). Fig. 2 presents the results of the analysis.

We first notice that the L2 hit rate remains close to 1 until
t � 5;000 (L ¼ 32) and t � 2;000 (L ¼ 64); this is expected,
considering the amount of L2 cache available (2 MB) and the
space required by each partition of the model. Second, we
observe that warp efficiency increases as t increases (this
reduces the number of tree-blocks): this is again expected, as
having less partitions implies less pivots, which in turn
reduces the chances that part of the threadsmaking up awarp
become inactivewhen reaching some pivot of some feature.

Fig. 2. Performance analysis of QSGPU by varying the size of tree-blocks t. L = 32 (left) and 64 (right), jT j ¼ 20;000, variable number of threads per
thread-block, and fixed number of thread-blocks (64K � 1).

2086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

Overall, increasing t improves the scoring time (this is
mainly due to the improved warp efficiency) until the L2 hit
rate remains close to 1, thus indicating the existence of a
tradeoff. When the cache performance starts to degrade
(t
 6;000with L ¼ 32, and t
 3;000with L ¼ 64), the scor-
ing time starts to increase noticeably.

Table 6 shows the per-document scoring time in ms and
the speedup obtained, for different sizes jT j of the model and
different numbers of leaves L. When jT j becomes large,
QSGPU partitions the model in different blocks of size t, and
adopts a suitable number of threads per thread-block to
ensure the best occupancy of each SM in the GPU. Details
about the two parameters that are crucial for QSGPU’s perfor-
mance are reported in the Threads per block and t columns.
QSGPU achieves consistent speedups over the sequential QS—
up to 102.6x, 65.6x, and 90.9x on MSN-1, Y!S1, and Istella,
respectively. In general, we observe that QSGPU dominates the

implementations previously discussed in all the settings con-
sidered, and achieves the best results when the size of the
ensembles becomes large in terms of number of trees and
leaves per tree—in fact, the best results are always achieved
when jT j ¼ 20;000 and L ¼ 64, as the larger computational
workload to score each query-document pair favours themas-
sive parallelism ofGPUs.

8 RELATED WORK

The Information Retrieval community has recently investi-
gated possible strategies to reduce the scoring time of the
most effective LtR rankers based on ensembles of regression
trees. These strategies can be roughly divided into two
groups: tree removal strategies and algorithm optimization.

Tree removal strategies focus on boosting the scoring
time by limiting the number of trees processed, trading off
effectiveness for efficiency. Cambazoglu et al. [12] proposed
to early terminate the trees traversal, on a single query-doc-
ument basis, as the score contributions of the remaining
trees become low. Lucchese et al. [24] proposed to statically
remove low-contributing trees and re-train the weights
according to a given effectiveness measure.

Algorithmic optimization, although do not change the
time complexity, aims to better exploit the underlying CPU
architecture, in particular instruction-level parallelism,
data-level parallelism, and memory hierarchies [25].

A first proposal toward efficient traversal of binary
regression trees was the VPRED algorithm [11]. VPRED
stores such trees as binary heaps implemented as linear
arrays, and substitutes the branches, needed to select the
traversal path of a tree in a traditional code, with a
sequence of instructions that use the results of each Boolean
test to identify the index of the next heap cell to visit. Since
the directions of branches employed by a traditional tree
traversal code are quite unpredictable, this optimization
tries to remove the problem at the root, by completely
removing conditional statements. However, this technique,
aiming to transform control dependencies into data depen-
dencies, is not enough to fully exploit the multiple pipe-
lines of a processor. To achieve a better exploitation of
the pipelines of the CPU VPRED scores multiple query-
document pairs on the same tree thus allowing the proces-
sor to identify and issue independent instructions in paral-
lel working on distinct pairs. The memory footprint of
VPRED is not so large, since it accesses a tree of the ensem-
ble at a time to score groups of documents. Another investi-
gation toward efficient traversal of forests of regression
trees relies in the definition of a blocking strategy allowing
a better temporal and spatial cache location of the scoring
process. Tang et al. [26] propose a cache-conscious layout
for ensemble models able to achieve a up to 50 percent
improvement over VPRED.

The QUICKSCORER (QS) algorithm [15], [16], which restruc-
tures the data layout and the processing of an ensemble of
regression trees to leverage modern memory hierarchies
and reduce branch prediction errors to limit control haz-
ards, resulted up to 6.6x faster than VPRED.

Literature about GPU-based algorithms that score/clas-
sify with forests of trees is limited to classifiers based on
small ensembles of random trees and have a very narrow
scope. Schulz et al. [27] exploited the characteristics of a

TABLE 6
Per-Document Scoring Time in ms of QS and QSGPU on MSN-1,

Y!S1, and Istella Datasets

Speedups of QSGPU versus QS are reported between parentheses.

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2087

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

given problem, i.e., image labeling, to overcome issues
related to the structural irregularity of random trees. Van
Essen et al. [28] proposed a GPU-based approach that use
Compact Random Forests (CRFs), i.e., forests of binary deci-
sion trees having fixed depth, to control the structure and the
size of trees, thus fitting well the architectural characteristics
of the GPUs. The approach adopts design choices that make
it similar to VPRED [11]: it stores decision trees as binary
heaps and visits each tree by employing a less refined tra-
versal strategy than the one used in VPRED—more precisely,
loops and conditional statements are not completely elimi-
nated. Given a CRF and a set of documents to score, the
GPU-based approach first partitions the CRF into sub-forests
that can fit into the texture cache of a streaming multiproces-
sor, and assign each sub-forest to amultiprocessor. Each doc-
ument is then assigned to a single GPU thread, which
accumulates the scores of the sub-forest assigned to the mul-
tiprocessor executing the thread. Partial scores are finally
reduced by the host (CPU). Due to the data structures and
the traversal strategy used, the approach proposed in [28]
suffers of the same limitations that characterize VPRED
when compared tomore recent approaches.

9 CONCLUSION

In this paper we presented and evaluated several strategies
to parallelize the traversal of large ensembles of decision
trees. The motivation of this this research is the need of
deploying large tree forests in real large-scale settings, and
using such complex ML models to process each incoming
item within a small time budget. Large ensembles of deci-
sion trees are adopted in different ML scenarios such as
Web or product search, social media ranking or recommen-
dation, on-line advertisement, classification/regression
tasks, etc. We focused the proposed parallelization strate-
gies within the LtR framework, where a relevance ordering
of documents w.r.t. a user query is induced by the scores
assigned to the documents. The proposed solutions are
seamlessy applicable to any of the discussed ML scenarios
and boost the efficiency of decision trees processing.

Our proposed strategies take advantage of the algorith-
mic framework introduced by QUICKSCORER, the state-of-the-
art algorithm in the literature, to leverage different types of
parallelism available in modern CPUs and GPUs. We com-
pared the proposed parallel solutions with the original
sequential version of QUICKSCORER. The CPU-based paralleli-
zation strategies, namely VQS (SIMD) and VQS-MT (multi-
threading + SIMD), achieved large speedups over
QUICKSCORER: more precisely, VQS obtained speedups up to
3.2x (32 leaves per tree) and 1.8x (64 leaves per tree), while
VQS-MT achieved speedups up to 35.0x (32 leaves per tree)
and 19.3x (64 leaves per tree) on a 16 cores machine. The
performance gains originated from the exploitation of dif-
ferent types of parallelism coupled with an efficient use of
CPU resources, as observed from the low-level monitoring
of instruction counts, branch mispredictions, and L3 cache-
miss rates. The main advantage of our parallelization strate-
gies is to provide increased throughput, which in turn
allows to better satisfy quality-of-service constraints. In fact,
while the use of larger ensembles improves the accuracy of
machine-learned models, the reduced scoring times allow
to process such models within smaller time budgets.

Our GPU-based parallelization strategy, namely GPU-
QUICKSCORER, provides the lowest document scoring times

in all the tested settings and should be the solution of choice
when absolute performance maximization is more impor-
tant than the increase of the hardware cost for GPUs equip-
ment. Specifically, GPU-QUICKSCORER achieved speedups up
to 102.6x (32 leaves per tree) and 100.8x (64 leaves per tree)
over QUICKSCORER on a NVIDIA GTX 1,080 GPU. These
impressive performance gains are the result of a careful
design of the data layout and of the orchestration of the
accesses over the GPU-QUICKSCORER data structures of the
massive number of parallel threads run by modern GPUs.
As future work we plan to investigate if these characteristics
of our solution can be exploited by a Field-Programmable
Gate Arrays (FPGAs) implementation.

ACKNOWLEDGMENTS

This paper is partially supported by the BIGDATAGRAPES
(grant agreement No780751) project that received funding
from the European Union’s Horizon 2020 research and
innovation programme under the Information and Commu-
nication Technologies programme.

REFERENCES

[1] O. Chapelle and Y. Chang, “Yahoo! Learning to rank challenge
overview,” J. Mach. Learn. Res., vol. 14, pp. 1–24, 2011.

[2] T.-Y. Liu, “Learning to rank for information retrieval,” Found.
Trends Inf. Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[3] C. J. Burges, “FromRankNet to LambdaRank to LambdaMART: An
overview,” Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-
TR-2010-82, Jun. 2010.

[4] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[5] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting
for information retrieval measures,” Inf. Retrieval, vol. 13, pp. 254–
270, 2010.

[6] I. Segalovich, “Machine learning in search quality at Yandex,”
Presentation at the industry track of the 33rd Annual ACM SIGIR
Conf., 2010. [Online]. Available: https://goo.gl/xUAq3r

[7] A. Shchekalev, “Using GPUs to accelerate learning to rank,” 2014.
[Online]. Available: https://goo.gl/seikPf

[8] D. Sorokina and E. Cantu-Paz, “Amazon search: The joy of rank-
ing products,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2016, pp. 459–460.

[9] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers, and J. Q. Candela, “Practical lessons from pre-
dicting clicks on ads at Facebook,” in Proc. 8th Int. Workshop Data
Mining Online Advertising, 2014, pp. 5:1–5:9.

[10] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego,
and N. Tonellotto, “Quality versus efficiency in document scoring
with learning-to-rank models,” Inf. Process. Manage., vol. 52, no. 6,
pp. 1161–1177, Nov. 2016.

[11] N. Asadi, J. Lin, and A. P. de Vries, “Runtime optimizations for
tree-based machine learning models,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 9, pp. 2281–2292, Sep. 2014.

[12] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao,
Z. Zheng, and J. Degenhardt, “Early exit optimizations for addi-
tive machine learned ranking systems,” in Proc. ACM Int. Conf.
Web Search Data Mining, 2010, pp. 411–420.

[13] R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper, “Efficient
cost-aware cascade ranking in multi-stage retrieval,” in Proc. Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 445–454.

[14] N. Tonellotto, C. Macdonald, and I. Ounis, “Efficient and effective
retrieval using selective pruning,” in Proc. ACM Int. Conf. Web
Search Data Mining, 2013, pp. 63–72.

[15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto,
and R. Venturini, “QuickScorer: A fast algorithm to rank docu-
ments with additive ensembles of regression trees,” in Proc. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2015, pp. 73–82.

[16] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego,
N. Tonellotto, and R. Venturini, “Fast ranking with additive
ensembles of oblivious and non-oblivious regression trees,” ACM
Trans. Inf. Syst., vol. 35, no. 2, pp. 15:1–15:31, Dec. 2016.

2088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/xUAq3r
https://goo.gl/seikPf

[17] W.-M.Hwu,GPUComputing Gems Jade Edition, 1st ed. San Francisco,
CA, USA:Morgan Kaufmann, 2011.

[18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto,
and R. Venturini, “Exploiting CPU SIMD extensions to speed-up
document scoring with tree ensembles,” in Proc. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2016, pp. 833–836.

[19] OpenMP Application Programming Interface. (2015). [Online].
Available: https://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf

[20] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,”
ACM SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 152–163,
2009.

[21] J. Hennessy and D. Patterson, Computer Architecture - A Quantita-
tive Approach, 5th ed. San Mateo, CA, USA: Morgan Kaufmann,
2012.

[22] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammar-
lund, R. Singhal, and P. Dubey, “Debunking the 100X GPU versus
CPU Myth: An evaluation of throughput computing on CPU and
GPU,” in Proc. ACM Annu. Int. Symp. Comput. Archit., 2010,
pp. 451–460.

[23] K. J€arvelin and J. Kek€al€ainen, “Cumulated gain-based evaluation
of IR techniques,” ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446,
Oct. 2002.

[24] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and
S. Trani, “Post-learning optimization of tree ensembles for effi-
cient ranking,” in Proc. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2016, pp. 949–952.

[25] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. San Francisco, CA, USA: Morgan Kauf-
mann, 2011.

[26] X. Tang, X. Jin, and T. Yang, “Cache-conscious runtime optimiza-
tion for ranking ensembles,” in Proc. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2014, pp. 1123–1126.

[27] H. Schulz, B. Waldvogel, R. Sheikh, and S. Behnke, “CURFIL: A
GPU library for image labeling with random forests,” in Proc. Int.
Joint Conf. Comput. Vis. Imag. Comput. Graph., 2015, pp. 416–432.

[28] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger,
“Accelerating a random forest classifier: Multi-core, GP-GPU, or
FPGA?” in Proc. IEEE 20th Int. Symp. Field-Programmable Custom
Comput. Mach., 2012, pp. 232–239.

Francesco Lettich received the PhDdegree from
the Universit�a Ca’ Foscari di Venezia, in 2015. He
is a researcher with the Federal University of
Cear�a (Brazil). His main research interests focus
on general purpose computing onGPU and analy-
sis of mobility data. For more information: https://
www.linkedin.com/in/francesco-lettich-43741a7.

Claudio Lucchese received the MSc and PhD
degrees from Ca’ Foscari University, in 2003 and
2008, respectively. He is an associate professor
with the Ca’ Foscari University of Venice. His
main research activities are in the areas of data
mining techniques for information retrieval and
large-scale data processing. He has published
more than 100 papers on these topics in interna-
tional journals and conferences. For more infor-
mation: http://hpc.isti.cnr.it/�claudio.

Franco Maria Nardini is a researcher with the
National Research Council of Italy. His research
interests focus on web information retrieval, data
mining, and machine learning. He has authored
more than 50 papers in peer reviewed interna-
tional journal and conferences and received the
Best Paper Awards at ACM SIGIR 2015. For
more information: http://hpc.isti.cnr.it/�nardini.

Salvatore Orlando received the MSc and PhD
degrees in computer science from the University
of Pisa, in 1985 and 1991, respectively. He is a
full professor with the Ca’ Foscari University of
Venice. His research interests include data and
web mining, information retrieval, parallel/distrib-
uted systems. He has published more than
140 papers in journals and conference proceed-
ings on these topics. For more information: http://
www.dais.unive.it/�orlando.

Raffaele Perego is a senior researcher with
ISTI-CNR, where he leads the HPC Lab (http://
hpc.isti.cnr.it/). His main research interests include
high performance computing, web information
retrieval, and data mining. He has coauthored
more than 140 papers on these topics published in
journals and proceedings of international confer-
ences. For more information: http://hpc.isti.cnr.it/
�raffaele.

Nicola Tonellotto received the PhD degree from
the Information Engineering Department, Univer-
sity of Pisa, in 2008. He is a researcher with the
National Research Council of Italy. His main
research interests include cloud and web
information retrieval. He has published more than
50 papers in journals and proceedings of interna-
tional conferences. He received the Best Paper
Award at ACM SIGIR, in 2015. For more informa-
tion: http://hpc.isti.cnr.it/�khast.

Rossano Venturini received the PhD degree
from the University of Pisa, in 2010. He is a
researcher with the Computer Science Depart-
ment, University of Pisa. His research interests
include mainly focused on the design and the
analysis of algorithms and data structures with
focus on indexing and searching large textual col-
lections. He received two Best Paper Awards at
ACM SIGIR in 2014 and 2015. For more informa-
tion: http://pages.di.unipi.it/rossano.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LETTICH ETAL.: PARALLELTRAVERSALOF LARGE ENSEMBLES OF DECISION TREES 2089

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on April 02,2021 at 14:58:18 UTC from IEEE Xplore. Restrictions apply.

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.linkedin.com/in/francesco-lettich-43741a7
https://www.linkedin.com/in/francesco-lettich-43741a7
http://hpc.isti.cnr.it/~claudio
http://hpc.isti.cnr.it/~claudio
http://hpc.isti.cnr.it/~nardini
http://hpc.isti.cnr.it/~nardini
http://www.dais.unive.it/~orlando
http://www.dais.unive.it/~orlando
http://www.dais.unive.it/~orlando
http://hpc.isti.cnr.it/~raffaele
http://hpc.isti.cnr.it/~raffaele
http://hpc.isti.cnr.it/~khast
http://hpc.isti.cnr.it/~khast
http://pages.di.unipi.it/rossano

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

