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A B S T R A C T   

The key to optimizing spatial resolution in a state-of-the-art scanning transmission electron microscope is the 
ability to measure and correct for electron optical aberrations of the probe-forming lenses precisely. Several 
diagnostic methods for aberration measurement and correction have been proposed, albeit often at the cost of 
relatively long acquisition times. Here, we illustrate how artificial intelligence can be used to provide near-real- 
time diagnosis of aberrations from individual Ronchigrams. The demonstrated speed of aberration measurement 
is important because microscope conditions can change rapidly. It is also important for the operation of MEMS- 
based hardware correction elements, which have less intrinsic stability than conventional electromagnetic lenses.   

1. Introduction 

Aberration correction has been key to achieving sub-Å spatial reso-
lution in state-of-the-art transmission electron microscopes (TEMs) 
[1–4]. At the same time, it has required great effort in hardware fabri-
cation and instrument control. In order to circumvent the unavoidable 
spherical aberration of round electromagnetic lenses and residual 
non-symmetrical aberrations, many lenses and multipoles have to be 
combined and controlled with extreme precision [5–9]. The situation is 
similar to that of adaptive correction of aberrations in astronomical 
telescopes, for which rapid adjustments are required to account for at-
mospheric changes [10, 11]. 

The conceptual scheme that underlies control of aberration correc-
tion is based on the decomposition of the complex phase landscape that 
acts on an electron in a lens into well-known Zernike polynomials [12], 
which can be expressed in the form of a classical aberration polynomial 
series. Aberration correction aims to introduce a similar series of poly-
nomials of opposite sign, in order to provide near-perfect compensation 
up to a well-defined order. An experimental microscopist is typically 
trained to recognize and manually correct lower-order aberrations, such 
as defocus (C1) and astigmatism (A1). However, in order to obtain the 
best possible resolution of the microscope, higher-order aberrations 
must also be tuned. This procedure is too difficult to complete manually 

and requires sophisticated automated procedures for diagnosing and 
correcting the aberrations. Aberration diagnosis is a key factor that af-
fects the precision and speed of correction. Many ideas and concepts 
have been introduced to make aberration evaluation as reliable as 
possible for both the imaging system after the sample and the 
probe-forming system before it. 

For the imaging system, the gold standard is the use of a Zemlin 
tableau [13], which involves the use of different inclined plane wave 
illuminations to map variations in lower order aberrations such as 
apparent defocus and astigmatism. In the case of scanning TEM (STEM), 
a similar approach involves measurements of beam shift [14] or changes 
in contrast in STEM images as a function of the beam tilt [15]. In the 
latter approach, beam tilt series of STEM images recorded at different 
defoci (usually from an Au/C cross-grating replica) are used to deter-
mine the point spread function of the source by deconvolution [2]. This 
“STEM tableau” approach is the built-in procedure in the microscope 
used in the present work. It is used as a benchmark for our work due to 
its precision and accuracy in the measurement of aberrations. 

The work presented in this paper involves the analysis of a Ronchi-
gram, i.e., a coherent diffraction image of a convergent probe after 
scattering through a thin crystalline or amorphous sample [16]. A 
Ronchigram contains both diffraction information and a distorted image 
of the sample. The image has a locally-varying magnification, which 
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depends on the second derivative of the aberration phase [17]. Some 
methods combine information from Ronchigrams recorded at different 
beam tilt angles. However, the Ronchigram can itself be regarded as a 
superimposed diffraction map for different tilt components of the probe. 
In this sense, it is similar to a full Zemlin tableau. This correspondence 
has been used to propose an aberration measurement approach [18]. 
Lupini et al. demonstrated that, after segmenting a Ronchigram of an 
amorphous material into sub-images, each of which corresponds to a 
different effective beam tilt angle [19], it is possible to apply a defocu-
s/astigmatism fitting routine just as in a Zemlin-like scheme. Alternative 
aberration diagnosis methods make use of other features in Ronchi-
grams, which are indicative of the richness of the information that it 
contains [20–25]. If a single Ronchigram can be used to evaluate aber-
rations, then it can be used to provide fast correction feedback. This 
capability can also be useful for MEMS-based optics [26, 27], which can 
even be used for spherical aberration correction [28], albeit with lower 
stability than conventional optics. 

A recent addition to this complicated landscape of methods and 
concepts is the introduction of artificial intelligence (AI) and deep 
learning. AI makes use of a training procedure to recognize patterns and 
hidden recurrences in a dataset, allowing the parametric behavior of a 
system to be predicted [27, 29]. A recent example of the use of AI in 
electron optics, which also involves the use of MEMS technology, is our 
application of AI to tune an orbital angular momentum (OAM) sorter 
[30–33]. An OAM sorter is a combination of two tunable phase ele-
ments, which disperse an electron beam into a spectrum of discrete OAM 
states. We applied AI to a single image of an OAM spectrum to determine 
all of the relevant alignment parameters and to automatically tune the 
OAM sorter [26, 27]. Recent approaches have demonstrated the use of 
deep learning techniques to optimize a STEM aperture for improving 
resolution [34, 35], confirming that the analysis of a single Ronchigram 
[36] can be translated directly into aberration diagnostics. 

Here, we provide the first demonstration of aberration diagnosis 
based on an artificial neural network (ANN). We start from the idea of 
segmentation discussed by Lupini et al. [19] However, instead of relying 
on a semi-analytical approach, we apply ANN recognition to the full set 
of sub-images without assuming any approximation. 

2. Methods 

2.1. Ronchigram modeling 

As a starting point, we describe diffraction information in a Ron-
chigram in terms of the scattering of a convergent probe through a phase 
object. The probe is described in real space x by the expression ψp(x) =

IFT{e− iχ(q)A(q)}, where q is a reciprocal space coordinate (i.e., fre-
quency) conjugated to x, while χ(q) is the aberration function of the 
illumination system and A(q) is a top hat function that describes the use 
of a condenser aperture. Hereafter, IFT and FT refer to inverse and direct 
Fourier transforms, respectively. The sample has a multiplicative effect, 
which can be described by the transmission function T(x) = e− iσV(x), 
where the interaction parameter σ = 2πm0γeλ/h2, m0 and e are the rest 
mass and charge of the electron, λ  is the electron wavelength, γ is the 
relativistic factor, h is the Planck constant and σV(x) is the phase shift 
produced by the sample. If the sample is sufficiently thin, then V(x) is 
the effective projected atomic potential. The intensity I(q) of the Ron-
chigram function ψ t(q) in reciprocal space can be written in the form 

I(q) = |ψt(q)|
2
=

⃒
⃒FT

(
IFT

{
e− iχ(q)A(q)

}
e− iσV(x))⃒⃒2

. (1)  

2.2. Sample function 

The sample potential V(x) should be as close as possible to the real 
function that describes the potential of an amorphous phase object (in 
our case, a thin film of amorphous C, or a-C). The way in which the 

sample transmits spatial frequencies is critical for ANN training. As a 
first approach, a random distribution V(x) = (Vt)rand(x) can be used, 
where rand(x) is a uniform random number in the range [0, 1]. A good 
choice for σVt is the value π/4, as used by Schnitzer et al. [37], as it is 
close to the value obtained from the weak phase object (WPO) approx-
imation by considering an interaction constant σ = 0.0065 V − 1nm− 1 at 
300 kV, a sample thickness t ∼ 10 nm and a mean inner potential V =

10.7 V for a-C [38, 39]. However, in this first approach, the potential 
contains all frequencies with the same weight (i.e., white noise), which is 
unrealistic. A better way in which to build the potential is to also 
consider the dependence on the frequency of transmission of a thin 
amorphous C film (or the scattering intensity Ie(q)) in reciprocal space 
[40]. A good approximation (assuming azimuthal symmetry of scat-
tering) is given by the electron atomic scattering factor f(q), which can 
be calculated analytically as a sum of Gaussian functions, as described 
by Peng et al. [41] Its angular dependence is shown in Fig. 1, in which 
the electron scattering factor is compared with the square root of the 
scattered intensity measured from a thin a-C film at 300 kV. Thermal 
vibrations can be considered as a further multiplicative factor with a 
Gaussian function b(q) in reciprocal space by using a Debye-Waller 
factor, here taken to be 0.5 Å2 [42]. Both terms act as low pass filters 
in the frequency domain for V(x). We note here that the sample function 
is a critical part of the model and that the ANN failed to fit when a poor 
model of the amorphous film was used. 

2.3. Aberration function 

In the extended notation of Lupini et al. [19], which is derived from 
the well-established Krivanek notation [43], the aberration function 
χ(q) in reciprocal space can be written in the form 

χ(q) = 2π
∑

n
λn

∑n+1

m=0

[
Cn,m,aqn+1cos(mϕ) + Cn,m,bqn+1sin(mϕ)

n + 1

]

, (2)  

where Cn,m,a and Cn,m,b are aberration coefficients of order n and sym-
metry m, under the condition that n + m is an odd number. The co-
efficients reduce to one when m = 0 (e.g., for defocus and spherical 
aberration). In Eq. (2), q is the length of the vector q and ϕ is the 
azimuthal angle (with the optical axis in the center). Most software 
truncates χ(q) at n = 5. We use a similar truncation below, as explained 
in Section 3.2, as well as the traditional nomenclature for the lower 
orders (see Table 1). 

2.4. Detector 

The Ronchigram intensity I(q) is typically recorded using a digital 
detector, resulting in a convolution of I(q) with the point spread func-
tion (PSF) p of the camera: 

I(q̃) = |IFT{FT(I(q̃))FT(p(q̃))}| + c(q̃), (3)  

where q̃ indicates that the convolution is performed in the pixel 
dimension. The PSF introduces further attenuation of high spatial fre-
quencies. The function c(q̃) describes the counting noise of the camera. 
The absolute value is a reminder that the result of the convolution is real. 
A defocused Ronchigram (e.g., with C1,0 ~ − 2000 nm) of an amorphous 
thin object contains contrast that varies in a similar manner to that in an 
HRTEM image (recorded using parallel illumination). The PSF of the 
detector affects the frequency cutoff in the image and is comparable to 
scattering in the object [41]. This effect is not negligible and must be 
accounted for when training the ANN, otherwise its regression ability on 
experimental images is seriously compromised. 

An example of the fidelity of the model is presented in Fig. 2, in the 
form of a comparison of an experimental defocused Ronchigram 
(Fig. 2a,b) and a simulated model from Eqs. (1)-3 (Fig. 2c,d) at 300 kV. 
Fig. 2e shows radial profiles of the fast Fourier transforms of the 
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experimental Ronchigram (blue line) and the simulated model (orange 
line). The intensities of the maxima and minima are well reproduced, as 
is the decrease in contrast at higher spatial frequencies. 

3. Theory and calculations 

The method involves dividing an experimental Ronchigram recorded 
from an amorphous C film (e.g., a standard C film on a Cu mesh grid) into 
a set of sub-images and numerically performing a fast Fourier transform 
(FFT) of each sub-image. The results are stacked to form a 3D image, 
which is fed into the ANN for pattern recognition. Unlike the analytical 
method of Lupini et al. [19], the fitting procedure of the ANN analyzes 
the overall pattern and not the separate sub-images. 

3.1. ANN model 

In order to fit Ronchigram images, a convolutional neural network 
was implemented in Python using the TensorFlow library [44]. As ANNs 
are highly problem-specific mathematical tools, they need to be 
custom-tailored to improve their efficiency for a given task. A few 
distinct families of ANN are generally referenced in the literature. 
Among these families, some architectures excel in specific tasks and are 
given names. Our ANN is a custom network that belongs to the con-
volutional family [45]. It has similarities to other convolutional neural 
networks, such as AlexNet [46] and VGG16 [47]. We customized it in 
terms of the number and dimensions of the layers. The network consists 
of several sequential layers (deep structure), in which each layer has a 
specific functionality [48, 49]. The aim of the deep structure is to 

Fig. 1. (a) Plot of the square root of the intensity of elastic scattering from a thin film of a-C, as measured from electron diffraction (blue curve) [40] and compared 
with an analytical function for the atomic scattering factor of carbon f(q) (red curve) [41] and the scattering profile expected from thermal vibrations b(q) (orange 
curve) [42]. (b) Calculated V(x) after considering the scattering described in (a). (c) Fourier transform FT(V(x)). 

Table 1 
Mean absolute error (MAE) in each of the 8 low-order aberrations after ANN training. The aberrations were generated randomly over the intervals reported in the 
‘Range’ column. The MAE values were calculated from both the synthetic dataset (Section 4.1) and the experimental dataset (Section 4.2). The ‘Symbol’ column refers 
to the notation from Haider et al. [2], while the ‘Coefficients’ column refers to the notation used in the present work and in reference [19].  

Aberration Symbol Coefficients (this work) Range MAE synth. data MAE exp. data 

Defocus C1 C1,0 [− 2200 nm, − 1800 nm] 15 nm 31 nm 
Spherical aberration C3 C3,0 [− 100 µm, 100 µm] 3.49 µm 15 µm 
2-fold astigmatism A1 C1,2,a/C1,2,b [− 100 nm, 100 nm] 4.8 nm 17 nm 
Coma B2 C2,1,a/C2,1b [− 1000 nm, 1000 nm] 48 nm 204 nm 
3-fold astigmatism A2 C2,3,a/C2,3,b [− 1000 nm, 1000 nm] 39 nm 131 nm  

Fig. 2. Comparison between (a) an experimental defocused Ronchigram and (b) a simulated model according to Eqs. (1)-3 at 300 kV. The corresponding FFTs are 
shown in (b) and (d), respectively. (e) Radial profiles of the FFTs of the experimental defocused Ronchigram (blue curve) and the simulated model (orange curve). 
The other aberration values are set to zero. The defocus C1,0 can be calculated from the first minimum in the profile (C1,0 = − 1890 nm, dashed line). 
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recognize distinct features in the input images, in order to assign them to 
a specific class (e.g., an animal, or a flower, or ‘classification’) or to relate 
them to a set of varying parameters (e.g., the aberrations to be measured, 
or ‘regression’). A sketch of our network is shown in Fig. 3a. It is made 
up of 5 sequential convolutional blocks (orange), each of which com-
prises a 2D convolutional layer, followed by a 2D average pooling layer 
and a dropout layer, followed by fully connected (or dense) layers (blue 
block). These convolutional blocks apply a filter to the input to create a 
feature map that summarizes the presence of detected features in the 
input. In each block, the convolutional layer convolves the input image 
(or feature map) with a set of kernels. The average pooling layer 
down-samples the feature map (after convolution) by dividing it into 
sub-regions and taking the average in each sub-region, of dimension [2 
× 2] in our case. In order to avoid overfitting, which can occur when the 
ANN tries to memorize the training data instead of generalizing it to new 
data, as well as to improve robustness to noise, a dropout layer [50] is 
inserted after every pooling layer. In the dropout layer, a hyper-
parameter has the probability (20% in our case) to be set to zero before it 
is passed to the next convolutional block. We stacked 5 convolution 
blocks with increasing numbers of kernels in the 2D convolutional 
layers, in order to abstract features at different ‘length-scales’ in the 
input images. After the convolutional blocks, a flatten layer converts 
dimensionality to a single channel, in order to connect the extracted 
feature map to 3 dense layers that are fully connected each other (deep 
layers, analogous to neurons in biology), to reorganize the image fea-
tures and finally to output the 8 parameters that are needed to calculate 
C1,0, C1,2, C2,1, C2,3 and C3,0. A preliminary optimization of the network 
was performed by changing the kernel size in the convolutional layers 
from [3, 3] to [5, 5] and the starting set of kernels (the number of filters 
in the first convolutional layer) between 16, 32, 64 and 128. We found 
the lowest mean square error after convergence with 64 starting kernels 
with [3, 3] size, which results in ~2.7 M total hyperparameters in the 
network. 

3.2. ANN training 

A dataset was built with N = 24,000 sets of 25 (5  × 5) fast Fourier 
transforms (FFTs) from Ronchigram images (Fig. 3b). Each Ronchigram 
was calculated at angles up to 40 mrad according to Eq. (1) (with C1,0 ~ 
− 2000 nm) and at 2048  × 2048 pixels to reduce artifacts in the Fourier 
transforms due to the rapidly varying transmission function e− iχ(q). Each 
generated image I(q) was then resized to 320  × 320 pixels and divided 
into a set of 5  × 5 sub-images, each of which was 64  × 64 pixels in size 
(Fig. 3c). The 25 FFTs from the sub-images were then calculated 
(Fig. 3d). Each set of 25 FFTs constitutes one of 24,000 inputs for ANN 
training, i.e., the input matrix has dimensions (24,000, 64, 64, 25). The 
corresponding (24,000, j) matrix has j known aberration coefficients. 
For clarity, in the example shown in Fig. 3b-d the value of C3,0 (spherical 
aberration) is exaggerated to show its effect on the FFTs (C3,0 = 1 mm). 
ANN training was limited to the j = 8 low-order aberration values, which 
were generated randomly in the intervals reported in Table 1. Residual 
aberrations up to n = 5 were generated according to a normal distri-
bution centered around 0 (corrected values) with a standard deviation of 
0.1 of their maximum absolute values, which were considered to be 10 
µm for n = 3 (except for C3,0), 100 µm for n = 4, and 10 mm for n = 5. 
The network was trained for 200 epochs (where an epoch is one com-
plete pass of the training dataset through the algorithm) with a batch 
size of 40 (the number of sets of FFTs processed before the model was 
updated). From the full dataset, a validation dataset of 20% (i.e., 4800 
sets of FFTs) was initially extracted to provide a test against unseen data. 
The rest of the dataset (19,200 sets of FFTs) was used in the training 
procedure to fit the hyperparameters (training dataset). After conver-
gence, the loss function (the function specifying the penalty for an 
incorrect estimate) was below 0.01 and was evaluated as the mean 
square error between true values and estimates of the 8 free parameters 
(or aberration coefficients). 

Fig. 3. (a) Sketch of the artificial neural network (ANN) used to fit synthetic Ronchigrams from a 5  × 5 set of FFTs. The ANN consists of 5 sequential convolutional 
blocks comprising a 2D convolutional layer with an increasing number of filters (64, 128, 128, 256, 256) and kernel size [3, 3], followed by a 2D average pooling 
layer with kernel size [2, 2] and a dropping layer with probability 0.2. After these blocks, a flatten layer connects the last convolutional block to the sequence of 3 
fully connected (dense) layers with dimension 1024, 512 and 8, to finally output the 8 aberration values. The layers with hyperparameters are indicated in bold. (b- 
d) Example of a simulated Ronchigram used as a single input image for the ANN. (b) 2048  × 2048 defocused Ronchigram generated according to Eq. (3). (c) 320  ×
320 resized Ronchigram divided into 5  × 5 sub-images of 64  × 64 pixels. (d) Corresponding FFTs from the sub-images in (c) constituting one (64 × 64 × 25) input 
for the ANN. For clarity, in this example the value of C3,0 (spherical aberration) was exaggerated to show its effect on the FFTs (C3,0 = 1 mm). 
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4. Results and discussion 

4.1. ANN results on synthetic data 

Table 1 shows the mean absolute error (MAE) for the 8 fitted aber-
ration parameters after ANN training. The errors are ~5% of the 
maximum values of the aberrations in their respective ranges. The ANN 
is therefore capable of reducing the aberrations by a factor of ~20. This 
result is promising, considering that only a single image acquisition is 
needed for the ANN to measure the aberration coefficients. 

The precision achieved by the ANN in the estimations of the aber-
rations is limited (see Table 1). The dominant value limiting the reso-
lution is two-fold astigmatism C1,2, while the values for C2,1, C2,3 and 
C3,0 are in the range expected for sub-Å resolution [51, 52]. In order to 
reach optimal resolution (e.g., d < 80 pm or α > 15 mrad at 300 kV), the 
residual value of C1,2 should be kept below 1 nm. 

The present AI procedure cannot routinely achieve this level of 
precision from a single Ronchigram. The observed lack of precision may 
result partly from the fact that the amount of information in a single 
Ronchigram is limited. However, a comparison with existing methods 
based on measurements from a single Ronchigram indicates a similar 
level of uncertainty [18, 19]. Possible solutions may be a refinement 
directly from a series of STEM images [53], or a refinement based on an 
iterative procedure [27]. 

The strength of the ANN-based diagnosis resides in its speed of ~80 
ms on a machine with one Intel Core i7–7700 (4 cores with hyper-
threading, meaning 8 threads), including image pre-processing (image 
sub-division and FFTs calculation). We expect that this time will not 
scale with the number of parameters to fit, if higher-order aberrations 
are included, considering that ANNs can fit thousands of parameters 
simultaneously [54]. The time is much shorter than the acquisition time 
of the image (~1 s), leaving the acquisition time as the limiting factor 

and making our method suitable for real-time diagnosis. For compari-
son, the standard STEM method [2] requires several images to build a 
tableau (e.g., 7 images for diagnosis up to 2nd order and 17 images for 
full diagnosis up to 4th order, to be repeated at two defoci), resulting in 
precise aberration measurements at the expense of a relatively long total 
acquisition time. 

We can exploit the ability of the ANN to measure all low-order ab-
errations from a single image in an iterative approach to further increase 
the resolution. In the present procedure, only an optimal fraction R of 
the ANN-calculated correction was applied each time. R was updated at 
each iteration by measuring the optimal STEM aperture α according to 
the quarter-wave criterion [55, 56], which is the radius of the region of 
frequencies q with aberration phase |χ(q)| ≤ π/4. Based on the aperture 
α, the resolution of the STEM probe can be derived, according to the 
Rayleigh criterion, to be d = 0.61(λ /α). We chose a correction factor 
R = 1 − α/α0, where α0 is the target optimal convergence, set for 
instance to α0 = 12.1 mrad, which corresponds to a target resolution 
d0 < 100 pm at 300 kV. By using this criterion, the ANN typically 
reached convergence for correction in 1–5 iterations (i.e., 5–10 s 
including acquisition time). 

An example set of Ronchigram images for a defocus of C1,0 = 0 with 
corresponding probe images before and after aberration correction using 
iterative ANN correction is shown in Fig. 4, confirming that the optimal 
aperture α and resolution d improve after ANN correction, resulting in a 
probe that provides atomic spatial resolution. 

Future improvements could be achieved, for instance, by increasing 
the training dataset (by at least a factor 10) or by increasing the 
complexity and topology of the ANN. Another possibility would be to 
test different segmentation strategies of the Ronchigrams into sub- 
images, such as increasing the number of sub-images (e.g., from 5  ×
5 to 7  × 7) for better sampling in the radial direction q, or by mixing 
different segmentations (e.g., 5  × 5, 4  × 4, …). However, these 

Fig. 4. Simulated images illustrating ANN correction. (a) Uncorrected probe. (b) Corrected probe after subtraction of the aberration values measured using the ANN. 
(Left) Ronchigram intensity I(q) and (center) corresponding aberration phase χ(q) calculated at a defocus of C1,0 = 0 nm. The blue circle indicates the optimal probe 
aperture α used to estimate the resolution according to the Rayleigh criterion. (Right) Corresponding calculated probe intensity Ip(x) in vacuum. 
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techniques require an increase in hardware memory requirements and 
computation time for generating the training dataset and for achieving 
ANN convergence. 

4.2. ANN results on experimental data 

Motivated by the results obtained using synthetic data, we tested the 
ANN on a limited set of experimental data. Since the network has never 
seen real data during training, effects due to the sample, environmental 
conditions and noise, or systematic errors such as the centering of the 
Ronchigram, will result in errors in estimates of the aberration values. 
Such errors can only be reduced with direct training on a large set of 
experimental data, which we cannot acquire automatically at present 
(and it would be too long a procedure to perform manually). Several 
series of Ronchigrams were recorded at 300 kV on a Thermo Fisher 
Scientific Spectra TEM equipped with a probe aberration corrector from 
CEOS GmbH. A convergence aperture of 64 mrad was used and 2048 ×
2048 images were acquired with a Ceta camera (Thermo Fisher Scien-
tific). The aberrations C1,2, C2,1, C2,3 and C3,0 were mis-tuned inten-
tionally over a broad range of combinations. A defocused Ronchigram 
image was acquired for every mistuned value (9 images for C1,2, C2,1, 
C2,3 and 2 images for C3,0). C1,0 was set to − 2000 nm for all of the ac-
quisitions. The mis-tuned aberrations were quantified from the Ron-
chigram images using the ANN. Before passing the image to the ANN, 
the Ronchigram was centered based on the center of expansion/ 
contraction in a quick focal series (4–5 images). Fig. 5 shows ANN results 
obtained for C1,2, C2,1, C2,3 and C3,0 (blue points). The vertical bars are 
errors in the ANN estimations, calculated as 95% confidence intervals 
from the MAE values measured from the synthetic data (see Table 1). 
The horizontal bars are 95% confidence intervals from the STEM tableau 
built-in procedure. As expected, the performance on experimental data 
is worse than on synthetic data. By assuming that the estimation from 
the built-in method is the ground truth, the MAE values measured from 
the experimental data were found to be ~2 times larger for C1,0, ~3 
times larger for C1,2, and C2,3 and ~4 times larger for C2,1 and C3,0. The 

experimental MAE values are reported in Table 1. 
The best results were seen for two-fold astigmatism (C1,2) and three- 

fold astigmatism (C2,3), with most values measured by the ANN close to 
STEM tableau values based on the 95% confidence intervals. Higher 
deviations were found for coma (C2,1) and spherical aberration (C3,0). In 
the case of coma, the higher error may result from an apparent beam tilt 
caused by a systematic error in the center of the Ronchigram on the 
camera. In the case of spherical aberration, the ANN measured a bias of 
approximately +15 µm with respect to the STEM tableau. This difference 
may result from a misinterpretation (or cross-talk) with defocus (C1,0) 
due to the limited sampling in q from the 5  × 5 sub-division. A solution 
to this problem may be to increase the sub-division. However, we cannot 
exclude some drift in the aberration values due to instrumental in-
stabilities during a long experimental session. 

These first results are promising, demonstrating that it is possible to 
use an ANN to fit aberrations in real experiments. The results can be 
improved by refining the training dataset on experimental Ronchigram 
images at the microscope. In this way, the ANN can be trained against 
instabilities, such as drift of aberration values, shift of the image on the 
detector and noise. The synthetic model cannot reproduce the experi-
mental data completely. The model can also be improved, for instance 
by accounting for small deviations seen at low frequencies in experi-
mental FFTs, defects in the amorphous sample (e.g., contamination 
during acquisition or irregularities in the film), or by building a better 
model for the (probably correlated) noise in images recorded using a real 
detector. 

Possible future implementations can also involve training the ANN 
on higher-order aberrations (initially up to 5th order) and coupling it 
with miniaturized hardware (MEMS) that can be mounted on apertures 
or holders, in order to realize affordable hardware for beam shaping or 
aberration correction. It would be particularly interesting to test a 
similar ANN on crystalline materials [20–25] to verify if it can discern 
aberrations directly from a sample under investigation. It has been 
demonstrated that the complex structure of a diffraction spot in defo-
cused Ronchigrams from very thin crystalline samples encodes 

Fig. 5. (a-d) Experimental aberration 
values measured using the ANN (blue 
squares) plotted as a function of values ob-
tained using the built-in STEM tableau 
method of the probe corrector of the mi-
croscope, which are taken as a reference. 
(a) Comparison for 2-fold astigmatism 
(C1,2). (b) Comparison for coma (C2,1). (c) 
Comparison for 3-fold astigmatism (C2,3). 
(d) Comparison for spherical aberration 
(C3,0). The error bars are calculated as 95% 
confidence intervals from MAE values from 
the synthetic data in Table 1 (vertical bars) 
and as 95% confidence intervals from the 
STEM tableau built-in procedure (horizon-
tal bars).   
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information about aberration phase [23,24]. The use of ANN to extract 
this information would remove the need to move the probe onto an 
amorphous film, thereby reducing the acquisition time and the risk of 
drift of aberration values for fully automated experiments at the mi-
croscope [57–59]. 

5. Conclusions 

We have demonstrated that an ANN can be used to measure aber-
rations from single Ronchigrams for fast online tuning, offering an 
approach that can be used to keep a STEM tuned and to assist an 
operator. Iterative correction, resulting in a spatial resolution better 
than 100 pm, has been demonstrated on synthetic data from a series of 5 
consecutively acquired Ronchigrams. Despite the currently lower pre-
cision and accuracy of the ANN with respect to the established STEM 
tableau method when applied to experimental data, the speed of the 
ANN makes it promising for tuning and continuous diagnosis of lower- 
order aberrations during high-resolution STEM directly at the 
microscope. 
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