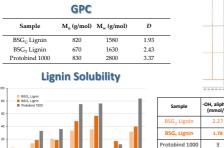
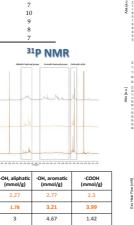

Sustainable Integrated Process towards a Complete Exploitation of Brewer's Spent Grain

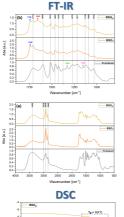
Paola D'Arrigo^{a,b}, C.Allegretti^a, E.Bellinetto^a, G.Griffini^a, S.Marzorati^b, L.A.M.Rossato^a, E.Ruffini^a, L.Schiavi^c, A.Strini^c, D.Tessaro^a, S.Turri^a and S.Serra^b

^aDepartment of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano (Italy) ^bIstituto di Scienze e Tecnologie Chimiche «Giulio Natta», Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Mario Bianco 9, Milano (Italy) clstituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), San Giuliano Milanese (Italy)

paola.darrigo@polimi.it




2. LIGNOCELLULOSE PROCESS


Ouantitative Data

Composition DES HBA/HBD	Molar ratio (HBA/HBD)	Density of pure DES (g/cm ³ , 18 °C)	BSGu Cellulose recovery (%w/w biomass)	BSGu Lignin recovery (%w/w biomass)
Choline chloride/Formic acid	1/2	1.147	ns	ns
Choline chloride/Acetic acid	1/2	1.103	39	7
Choline chloride/ L-Lactic acid	1/5	1.184	25	10
Betaine Glycine/Formic acid	1/2	1.161	55	9
Betaine Glycine/Acetic acid	1/2	1.107	32	8
Betaine Glycine/L-Lactic acid	1/5	1.203	53	7

3. LIGNIN CHARACTERIZATION

Microbial

strain

affia rhodoz (DMS 5626)

arrowia lipolyt/ (DSM 8218)

arrowia lipolyti (DSM 70562)

Opacus

ass ctivit

3.6 g/L (135 g/Kg BSG)

1.5 g/L

(55 g/Kg BSG)

1.6 a/L

(61 g/Kg BSG)

2.4 g/L

(89 g/Kg BSG)

2.1 g/L (80 g/Kg

BSG)

1.7 g/L (64 g/Kg

6 days 22°C, pH 6.5

4 days 25°C, pH 6.5

4 days

25°C, pH 6.5

4 days 28°C, pH 7.0

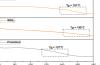
4 days 28°C, pH 7.0

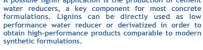
4 days 28ºC, pH 7.0

Fatty acid productivity

200 mg/L (7.5 g/Kg BSG)

220 mg/L


(8.2 g/Kg BSG) 547 mg/L (20.5 g/Kg BSG)


220 mg/L (8.2 g/Kg

BSG)

180 mg/L (6.7 g/Kg

iso anteiso others

4. LIGNIN EXPLOITATION

A possible lignin application is the production of cement

Linear FAs (%)

Saturated Unsaturated fatty acids fatty acids fatty acids

9.00

21.7

3.70

72.0

9.10

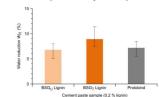
7.50

5.80

16.5

15.0

15.2 7.00


19.1 44.6

28.4 37.7 6.80

18.6 39.1 8.10

The obtained BSG_T Lignin demonstrates a water reduction capability for cement pastes comparable to Protobind, a well known commercial soda Lignin, indicating that it can constitute a promising starting point for the development of high performance sustainable cement water reducers.

Water reduction capability (cement pastes)

Acknowledgments

- Birrificio L'Orso Verde s.r.l. (Busto Arsizio, Varese, Italy)
- Regione Lombardia and Fondazione Cariplo
- (grant number 2018-1739, project: POLISTE) ovation Programme (grant Agreement no. 952941, project: BIOMAC)

Our References

Conclusions

. Allegretti, E. Bellinetto, P. D'Arrigo, G. Griffini, S. Marzorati, L.A.M. Rossato, E. Ruffini, . Schiavi, S. Serra, A. Strini, D. Tessaro, S. Turri vers' Spent Grain from a Circular Economy on of Br te Expl (2022) 8, 151, doi: 10.3390/fermentation8040151 30 OPEN ACCESS

□ Almost complete transformation and exploitation of starting BSG waste
□ A comprehensive approach combining biomass hot water treatment with successive deep eutectic solvent-mediated fractionation
□ BSG₁ tignin tested as water reducer in cement paste with comparable results as technical commercial lignin
□ 75-80 % of the mass of the latter important agro-food waste transformed into high value-added products of industrial relevance

etti, Francesco G. Gatti, Stefano Marzorati, Letizia Anna Maria Ro a, Alberto Strini, Paola D'Arrigo Reactive Deep Exterctic Solvents (RDESs): A New Tool for Phosph Catalyzed Preparation of Phospholipids 11060655 3 OPEN ACCESS

egretti, Simon Fontanay, Klaus Rischka, Alberto Strini, Julien Troquet, Stefano marco Griffini, Paola D'Arrigo Turn, Gianmarco Griffini, Paola D'Arrigo Two-Step Fractionation of a Model Technical Lignin by Combined Organic Solve Extraction and Membrane Ultrafiltration ACS Omega (2019) 4, 4615–4626, doi: 10.1021/acsomega.8b02851 🥚 0111/00353