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SUMMARY. A masonry dam with triangular cross section 1is
subjected to its own weight and to hydrostatic pressure in a
state of plane strain. Under the constraint that the principal
stresses be strictly negative in the interior, it is shown that
there 1s a section of minimal area and, consequently, a dam of

lowest weight.

1.INTRODUCTION

There is a renewal of interest for the mechanics of materials
weakly reacting to tension, a theme long neglected. Some recent
contributions notwitstanding, to determine the stress and
deformation fields at equilibrium in elastic solids that do not
support tension is still an open problem, even in apparently
simple cases (cf., for instance, {1],{2]).

Fortunately, an alternative presents itself to the designer of a
masonry structure : for a linearly elastic material and

prescribed external loads, find structural shapes, if any, that

give rise to purely compressive states in their interior. Here. .

we use this approach for the classical problem of a dam with
triangular cross section subjected to its own weight and to
hydrostatic pressure in a state of plane strain. Among .the cross
sections that allow for purely compressive equilibrium states,

we seek those of minimal area.
2 .THE ELASTIC PRORLEM FOR A RIGHT-ANGLED TRIANGLE

A gravity dam has the cross section € of the form of a

right-angled triangle: H is its height and B (0 < B < ®/2) is
the angle formed by the faces. The plane of the section is
referred to an orthogonal system x0y with the axes oriented as
in fig. 1.

The left side OA is subjected to the hydrostatic pressure
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- ¥xj, where ¥ is the specific weight of the liquid. Besides
its own weight, the dam is subjected to the reactions of the
supporting plane AB, which, for sake of simplicity, are supposed

to be linear in y, in agreement with the design criteria usually
employed.
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Fig. 1

Assume further that the material of the dam is linearly elastic
with constitutive equation

(1) T = 2UE + A(trE)I,

where T is the stress tensor, E the strain tensor; trE its

trace, I the identity tensor, and A and } the Lame' moduli.

If the dam is infinitely long in the direction orthogonal to its
plane section, there results a plane strain problem. The stress

components in € satisfy the equilibrium equations

.+ T = -p
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where p is the specific weight of the material of the dam,

together with the compatibility equation
(3) A(C_+ 0y) =0

In addition, the stress components must satisfy the boundary

conditions
Gy(x,O) = - ¥x ,
(4)
tgy(x,O) =0,
on OA, and

—O%(x,xth)sinB + t;y(x,xth)cosB =0,

il
(@]
~

—t;y(x,xtgﬁ)sinﬁ + O&(x,xth)cosB

on OB. Furthermore, as the reactions at the Dbottom wvary
linearly, the following boundary conditions must hold on the
side AB:

H(Z-pt ) 1 2
(6) o, (H,y) = P9 ) L I (eeg’B-2d)y
tg B tg B
1
| 'Z,"Xy(H,‘l) = T T b/y
tg B

The field equations (2) and (3) can be satisfied by choosing a

stress function
(7) F(x,y) = ax® + bx?y + cxy? + dy? ,

with a, b, ¢ constants, such that



J F(x,
C_(x,y) = (X2 v) /
dy
J F(x,
() ] 0, x,y) = SEEL
ox
2
J F(x,Vy)

Substituting (8) into (4) and (5), we obtain

a = —-% T,
b=20,
1 2
c = — [T - ptg'B1 ,
2tg B
2
d = 3 [ptg B - 2%] ,

6tg B

and, correspondingly,

1 1
6, = —— [¥ - ptg”Blx + —— [ptg’B - 281y ,
tg B tg B
(9) yO, = - Tx ,
=*—£—-5y,
x 2
! tg B

which is also in agreement with (6). The stress components turn
out to be linear functions of the wvariables x and y. This

permits easy control of their sign. For example,

Tx 2
x,0) = —— [1-ktg g1,

tg B

O
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and




Tx

2
tg B

o, (x,xtgf) = -

H

where k = p/¥ . Consequently, O (x,y) <0 in Q \ 0Q2 whenever

(10) B > arctg (1/J/k).

It is very easy to examine the sign of the determinant of the

stress matrix T. In fact,

~ sz
§(x,M) = detT = - —— §(1) ,
tg B

where T = y/xtgB , 0 < T < 1, and
O = n? + (ktg?B - 2)M + (1-ktg?B)

is a convex quadratic function of T , vanishing for
m, = 1-ktg®f , M, =1

Thus, in order that & > 0 in Q\dQ, it is sufficient to require

m, < 0, that is, once again, B 2 arctg(l/v/k). Consequently, the

condition (10) garantees that the principal stresses are
negative everywhere in £, with the possible exception of the
boundary points. When condition (10) fails to be satisfied,

tensions arise in a region adjacent to the upward side. Indeed,

for B < arctg(l/v/k), § < 0 whenever M€ [0,7,), with

n, = 1-ktg?B > 0. Thus, the portion of Q where one of the
principal stresses 1s positive coincides with the triangular

region defined by the inequalities x > 0, 0 <y < xtgPf (1-ktg?B).
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3. THE CASE OF GENERAL TRIANGULAR SECTION

Let us suppose now that the upward face of the dam, instead of
being vertical, makes an angle « (0 < « < TI/2) with the y-axis

(see Fig. 2).
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- The elastic-selution of this preblem, due-te Levvy [31, can be
obtained exactly in the same way, by only modifying the boundary
conditions (4), (5) and (6), and by expressing the stress
function again with the cubic expression (7). For our purpose,

however, it is useful to represent the solution in the reference

x,0y; , which is obtained by rotating the reference x0y

clockwise by « in such a manner that x; coincides with the

upward side of the dam.In this reference the field equations in

Q are




where p; = psinx, p,
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sides OA and OB are, respectively ,

(13)

and

Oyl(xl,O) = - ?flxl ,

T, (x,0) =0,

X1 ¥1

-C_ (x,,x,tgB") sinf” + 7

X 2Sh 41

* : * * *
- l(xl,xltgﬁ ysinP™ + Oyl(xl,xlth ) cosB

*Y

*
where Zfl = ¥ cosx, B7 = «x + B. If we assume

the field equations (11) and (12) are satisfied by choosing for

T_= -
%Yy axlay1

a2
O = ————
X4 2

ay:L

a2

Fo(x,5,)

O = ———,
Y1 2

0x

1

5
Fo(2,,y,)
T P TRPyYy

(x,,%,£gB%) cosB”

pcosx. The boundary conditions on the

I



F, the cubic expression
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Fixy,yy) = agx®

2 2
+ blx1 Y1 t CiX,y,° *

+dly153 where a;, by, Cq/ d, are constants. By substituting (15)

in the boundary condit

ions (13) and (14), we obtain

1
al = = '-6- 2{1 ’
B 1
bl = = —2— pl I
1 2,% Py
2tg P 2tgf
* P
q, = _——:'L;—: [pzthB - 28,1 - 12 *
6tg B 3tg B

The corresponding stress components becomne

oxl (Xllnl) =
(16)
Oy, s My) =
'C'lel <Xl, nl) B
where T, = vy, /xtgB”

¥.x

171

{- 14+xtgB (tgB -tgx)+

*

tg B

+ (2-ktg®B +2ktgoegB) M, ),

- ¥, (1-ktgtgB M),

¥.x *
ST e B m
- (1-kigoegd iy

tgB

with ﬂlé[O,l}. With the aid of (16),

it

is easy to examine the sign of the principal stresses in the

interior of the cross section.

v = tg. Then we have

For convenience set u = tgf,



ut+v u+v 1-uv,y 2

o 0) = - ¥.x [-1+k -

x, F1r 0 1 1[ [ p— w1 u+tv )"

utv 1-uvy 2

O, (x,1) = - lel[ukv 1_uv] — Yy,

(17) pyl(xl,O) = - &%,

utv

O, (x,1) = - ¥x, [1-kv l—uv]

It then follows that Oy, (%, M) is less than zero in Q\2Q

whenever

u+v

(18) H(u,v) = kv
i-uv

whereas OxlbﬁrTh) is less than zero in Q\90f) whenever

utv

(19) I(u,v) = k(

Given k, the relations (18) and (19) define a region R of the
plane u,v where O?1< 0 and O&1< 0 in the interior of £. Thus,

the region S, where the solutions are purely compressive,is a
subset of R, which is not empty, since it contains the straight
iine originating from-the point L(WJJK,O} and with 2cuaticn y
v = 0, u 2 1/v¥kx. In addition, it is easy to verify that the

interior of S is not empty. In fact
§,(x,,M,) = det T = - ¥ 2x,2 [G(u,v)M,2 + B(u,v) 7+

1-uvy ?
)

+ F(u,v) | ( -

with




a 2
G(u,v) kv uty [2— ( A ) 2kv ]+[1-kv oy ] Y
1-uv 1—uv 1-uv 1-uv
v 4 2 utv utv utv
(20) Eluv) = - 2%k (l—uv) N 1-uv { - 1—-uv [l—uv - V] }'
ut+v ut+v
F (u,v) + 1 -k [ = V] '
l-uv 1-uv

is a quadratic function of T,, always vanishing for n, = 1. Thus
in the subset S* of R, defined by G(u,v)>0 or, equivalently, by
u+v ( u+v )2_ utv ]

3kv
1-uv 1-uv 1-uv

(21) kv

- 81 is a convex function of ﬂl, and, consequently, s* is a

subset of § also.

av=tga
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The Fig.3 shows the regions R and s* of the plane u,v when
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k=2.5. We can see that, among the points of S, M is the one
which corresponds to the minimal value of P compatible with the

property that the principal stresses are negative at each

internal point of £ . The coordinates of M satisfy the
equations
kv (ut+v) - (l-uv) = 0 ,
(22) 2 2
k (u+v) — kv (ut+v) (1-uv) - (l-uv) = 0.
Thus,
k 1
= v, = —
Uy 2 M 2k
2 (k+1)

When k = 2.5 B, = arctg U, = 17.7° and o, = arctg v, = 24.1°,

For each point of S, the elastic solutions can be regarded as
solutions of the corresponding problem for a material that does

not support tension. Therefore, for any slope of the upward side

between 0 and « with oy dependent on k, it is always possible

M 7
to determine the minimal slope of the downward side in such a

way that the resulting cross section be compatible with the use

- of materials that support only weak tensions. Conversely, for

sufficiently small values of B there is no value of « for which

the cross section belongs to S. That cross sections with small

angles « are to be preferred, is confirmed by the facé that, as
we will show next, among all the sections of S, the one having

the minimal area is obtained on setting « = 0.
4, THE MINIMAL SECTION

Let us consider in the plane u,v the straight line a, passing

trough point L(l/v/k,O), belonging to S, and with equation

(23) u+v =1/ /k
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Along a the area A of the cross section of the dam is constant
and equal to A* = H?/2/k
The arch LM of the boundary of R (see fig. 3) has equation

(24) I(u,v) = (1-uv)?2 - k(u+v)2 + kv (u+v) (1+uv)= 0.

From the system defined by (23) and (24) we obtain the equation
vIvd + v2(k-2)/Vk + v(1+1/Vk) + (k-2)/V/k] = 0

Since v 2 0, this can be solved, 1f k > 2, only when v = 0,
value to which the point L, alone, corresponds. Since L belongs
to S, in order to prove that it is the point of absolute minimum
we are searching for, it is sufficient to verify that R 1is
entirely contained in the semiplane to the right of the straight
line a, where A > A* . On the other hand, according to the

implicit function theorem

9I (u,v) ~0.

ov u=1//%
0

[

Therefore, in a neighbourhood of L the curve LM is the graph of

a function v=V(u), with

9T (u,v) |
av (u) _ o Ou_ __Zk
du u=1//% I (u,v) T 2+k !
av 1 o= 1/-/k
v =0

provided that k > 2. Thus, when k > 2, among all the dams whose
internal points are 1in a condition of pure compression, the

triangular dam with

B = arctg (1/vk) ,

has the cross section of minimal area. The minimum 18
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*

AT = H2/2v/k.In other words, if H 1s fixed and the material does
not support tension, pA* is the minimal weight per unit

thickness of a gravity dam with triangular cross section.
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