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Abstract: Short-term disability progression was predicted from a baseline evaluation in patients 

with multiple sclerosis (MS) using their three-dimensional T1-weighted (3DT1) magnetic resonance 

images (MRI). One-hundred-and-eighty-one subjects diagnosed with MS underwent 3T-MRI and 

were followed up for two to six years at two sites, with disability progression defined according to 

the expanded-disability-status-scale (EDSS) increment at the follow-up. The patients’ 3DT1 images 

were bias-corrected, brain-extracted, registered onto MNI space, and divided into slices along 

coronal, sagittal, and axial projections. Deep learning image classification models were applied on 

slices and devised as ResNet50 fine-tuned adaptations at first on a large independent dataset and 

secondly on the study sample. The final classifiers’ performance was evaluated via the area under 

the curve (AUC) of the false versus true positive diagram. Each model was also tested against its 

null model, obtained by reshuffling patients’ labels in the training set. Informative areas were found 

by intersecting slices corresponding to models fulfilling the disability progression prediction 

criteria. At follow-up, 34% of patients had disability progression. Five coronal and five sagittal slices 

had one classifier surviving the AUC evaluation and null test and predicted disability progression 

(AUC > 0.72 and AUC > 0.81, respectively). Likewise, fifteen combinations of classifiers and axial 

slices predicted disability progression in patients (AUC > 0.69). Informative areas were the frontal 

areas, mainly within the grey matter. Briefly, 3DT1 images may give hints on disability progression 

in MS patients, exploiting the information hidden in the MRI of specific areas of the brain. 
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1. Introduction 

Disability progression is highly heterogeneous in all forms of multiple sclerosis (MS) 

[1]. Various studies have evidenced that the autoimmune response towards the central 

nervous system leads to chronic inflammation, axonal degeneration, and remyelination 

phenomena and causes disease progression [2]. However, since it is not yet clear how 

these phenomena interact with each other over the course of the disease, clinical outcomes 

are highly variable and difficult to predict. 

A multiplicity of factors may influence the rate of disability progression, including 

genetic and environmental factors, treatment, age at onset, and disease duration, as well 

as the severity of tissue damage [3]. Further, measures that are significantly correlated 
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with the disease course, population-wise, do not necessarily predict the clinical outcome 

of individual subjects with absolute certainty. Therefore, although various prognostic 

markers are now available, and magnetic resonance imaging (MRI) has become an 

essential tool for diagnosis, treatment decisions, and disease monitoring, it remains often 

difficult to decide the best therapeutic strategy for a given patient due to the uncertainty 

related to his/her individual progression [4]. 

As the mechanisms underlying disability progression are complex, the identification 

of reliable predictors would require elaborated models, able to identify the relative weight 

of various factors, considered alone or in association. In the past few years, deep learning 

(DL) neural networks represented a breakthrough in the domain of image classification 

and prediction, proving their power in the analysis of large image datasets along with 

their ability to perform sophisticated visual recognition tasks [5]. So far, DL classifiers for 

MS have exhibited promising results in the image segmentation of brain structures and 

tissues [6–12]. Further, DL artificial neural networks have shown a good ability to 

correctly classify MS against several white matter disorders or other MS-mimics, 

exploiting T2-weighted (T2w) and T1-weighted (T1w) brain MRI scans [13]. Furthermore, 

when combining T1w with myelin maps in multimodal MR images, DL networks were 

shown to potentially improve the early-stage detection of MS disease [14]. 

On the basis of the promising results in image segmentation and classification, we 

tested the DL ability to predict disability progression in MS. Indeed, to predict clinical 

status and worsening in patients with MS, artificial intelligence algorithms were applied 

either on MRI [15–18] and/or clinical data [19,20]. In this pilot study, we hypothesized that 

the disability progression, as evaluated via the Expanded Disability Status Scale (EDSS) 

after 4 years from the baseline visit, may be predicted from structural MRI images 

acquired at baseline. Thus, we aimed at devising DL artificial neural networks to classify 

patients at baseline according to their 4-year follow-up status (progressed versus not 

progressed) on one side and to identify the brain areas that may be good indicators of the 

disability worsening on the other. 

2. Results 

2.1. EDSS-Discriminators 

We analyzed the statistics of the 100 AUC values, obtained by considering model 

predictions for any slice individually (see Figure 1, top panels). 

Considering the coronal and sagittal slices, generally, the medians of AUC 

distribution per slice were close to 0.5, the 25% and 75% percentiles were close to AUC = 

0.4 and AUC = 0.6, and every slab obtained from three to seven outliers, thus the best 

performing models, towards AUC = 1. On the contrary, slabs of axial slices obtained a 

larger number of outliers towards AUC = 1, i.e., more than six, even if keeping median 

AUC = 0.5 for the majority of the slices. 

We also performed the statistical analysis of the 100 AUC values, obtained by considering 

the predictions for all MRI slices in each of the four slabs per projection plane. The AUC 

distributions are shown in Figure 1 (bottom panels). They all exhibited a pronounced peak 

around ~0.5 and a closer inspection revealed that the mean values and medians coincided in 

all cases (0.01 was the maximum difference), standard deviations ranged from 0.034 to 0.064, 

and the 75th percentile was never larger than 0.54. The outliers of the coronal and sagittal 

models were 0 for all slabs, with the exception of coronal slab 2, which had two outlier models, 

and sagittal slab 1, which had one outlier model. The outliers of models built on axial slabs 

were one for all slabs, with the exception of slab 1, which had four outlier models. Given that 

half of the investigated slabs had zero outliers, thus showing no class separation capacity 

whatsoever, and whole structures of the brain would be missed by the following analysis, 

comparison with the null EDSS-Ds was not performed for slab-based predictions. 



Int. J. Mol. Sci. 2022, 23, 10651 3 of 20 
 

 

 

Figure 1. AUC statistics. First, second and third columns refer to coronal (Cor), sagittal (Sag) and 

axial (Ax) projections respectively. Top—Distribution functions of the EDSS-Ds’ AUCs in each slice. 

White circles represent the medians of the distributions per slice, blue thick lines define the 

distributions portions between the 25th and 75th percentiles, blue thin lines extend to the most 

extreme data points not considered outliers. Empty circles are the best-performing models (outliers). 

Red, yellow, purple, and green areas distinguish slabs 1 to 4. Bottom—AUC distribution functions 

displayed as histogram, derived from the predictions for folding all slices in each slab. Red, yellow, 

purple, and green lines correspond to slabs 1 to 4.  

2.2. Comparison with Null EDSS-Ds 

The null EDSS-D was used as a term of comparison to verify whether each classifier 

displayed some non-trivial features. However, an appropriate null model would behave 
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in accordance with the reasonable null hypothesis of having no discriminatory efficiency, 

i.e., AUC = 0.5. Hence, models with a null AUC  [0.5  0.0139] and corresponding 

statistically different real AUCs according to DeLong’s test were selected if the real AUC 

was towards 1. Figure 2 displays the slice-classifier analysis, thus the slices whose AUC 

fulfilled the above-mentioned criteria of null AUC  [0.5  0.0139] significantly different 

from the relative real AUC, which was close to 1. 

As displayed in Figure 2, five coronal slices had one classifier fulfilling the criteria 

and thus predicting disability progression. These slices were located in slab 4 and AUC 

ranges within [0.72–0.93]. Similarly, five sagittal slices had one fulfilling classifier, with 

AUC ranges within [0.81–0.90]. 

Lastly, 13 axial slices had at least one fulfilling classifier and were preferably located 

in slab 4. Specifically, 15 combinations of 12 unique classifiers and 13 unique axial slices 

resulted to fulfill the criteria, with the AUC ranging within [0.69–0.86]. 

In general, good-performing classifiers, i.e., models which met the aforementioned 

criteria of admissibility, were different in each slice, with the only exception of two cases. 

Two classifiers predicted disability progression on two axial slices covering either the 

thalamus, basal ganglia, ventricles, and more, or supplementary motor area (slab 2, z = 39; 

slab 4, z = 70, Figure 2). 

 

Figure 2. Slice-classifier analysis. Plot of AUC of the real models versus the relative location, thus 

the slice number, distinguishing coronal (Cor), sagittal (Sag), and axial (Ax) projections and slabs 1, 

2, 3, 4. Models satisfying the double criteria of having null AUC = 0.5 and Z > 1.96 are displayed as 

magenta diamonds. These selected classifiers also identify brain portions as precursors of diseases 

worsening. Diamonds circled in black are classifiers performing well in more than 1 slice. 

2.3. Three-dimensional Representation 

By the intersection of significant slices, we obtained 375 significant voxels, whose 

location was displayed as an area in the three-dimensional map in Figure 3. Inspecting the 

voxels’ location, we obtained an overview of the areas that may contain most of the 

information useful to predict disability progression. These areas were located on the 

frontal pole, mainly within the grey matter. 
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Figure 3. Three-dimensional map. To obtain a hint of the areas that are more informative in 

predicting disability progression, we intersected all those slices corresponding to at least one model 

fulfilling the criteria for predicting disability progression. The voxels corresponding to the 

intersections are superimposed onto the three-dimensional T1-weighted brain magnetic resonance 

image and displayed as red areas. Confluence of significant slices is denser in frontal areas, mainly 

within the grey matter. 

3. Discussion 

From the application of DL classifiers on slices derived by 3DT1 preprocessed 

images, we extracted and exploited features hidden in the MRI images to identify patients 

who would experience disability progression. We found that the majority of the 

information useful in predicting disability progression resides in specific brain areas. This 

conclusion prevented us from reaching an integration strategy of all the results; thus, to 

obtain a unique classification for each brain image, but unveiled that 3DT1 images may 

offer hints on the prediction of disability progression in MS. As well, it suggested that a 

slice-based approach may disclose many features that would be lost by using a 

convolutive approach to reduce image dimensionality. 

The prediction of disability progression in MS via machine learning tools is a topic 

under discussion and so far authors have found that features extracted from brain MRI 

have good discriminatory power (e.g., [16,21–23]). Indeed, even though disability 

progression may be predicted on clinical data alone [24], MRI data may be of use because 

MRI is sensitive in detecting pathological signs. With our approach, we aimed at 
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investigating, with DL algorithms, the information hidden within 3DT1 MRIs, which may 

be used in clinical practice, in order to predict disability progression avoiding any 

elaborate MRI processing and manipulation. 

3.1. Two-Step Training of Pre-Trained Deep Neural Network 

One of the DL fundamental requirements is the availability of a large number of la-

beled images in the training. Unfortunately, the ease of access to a large labeled medical 

images dataset is a problematic issue for a series of ethical and practical reasons: patient 

confidentiality concerns, a lack of standardized protocols, and the expensive nature of 

annotation, among others [7]. Several strategies have been crafted to overcome this draw-

back, including fine-tuning a pretrained network optimized on large data in a different 

domain (i.e., transfer learning [25–28]), using a pretrained network in the same domain 

[29] and data augmentation [30]. 

Our protocol has been to fine-tune the pre-trained ResNet50 model in subsequent 

steps, making the classifier progressively learn the brain features to achieve the binary 

discriminating performance which was required as a final goal. Since the pre-trained Res-

Net50 is a convolutional neural network trained on more than a million images not related 

to MRI, the first step was to adapt ResNet50 to MRI. The first training applied the neural 

network to more than a thousand unlabeled MRIs in order to allow it to recognize struc-

tures within MRI, thus, to correctly locate slices in slabs. 

After the first application onto MRI, the neural network model was suited for the 

second training on the labeled MRI aiming at correctly classifying patients with stable or 

progressed disability. 

3.2. Models Built on Either Single Slice or Slice Combination 

Since anatomic sections of the brain may be very different and do not include the 

same amount of morphological affine structures, convolution or other methods of data 

combination may cause information loss in the data pool. Hence, in order to keep as much 

information as possible, we avoided slices combination, which is the most common way 

to analyze three-dimensional data with DL (e.g., [23]). Indeed, in our study, classifiers 

built on entire slabs, thus entire brain sections, showed no average discriminative power. 

Although we built models based on both slabs and single slices, we hypothesized 

that some models might perform at best on a slice level as the information, if any, might 

be hidden in some specific area, smaller than the slab size. The single slice analysis showed 

that, at least in the case of coronal and axial projections, a number of classifiers showed 

good discriminative power. This might be interpreted as a potentially relevant statistical 

signal about the precursory information hidden in some slices. However, the extremely 

noisy AUC distribution profile could also imply that better performances were ascribable 

to statistical fluctuations due to the limited number of patients in the training set. To settle 

this issue, we separated the real signal from the inherent noise comparing each model 

AUC against its ground truth, given by the AUC of the null model. 

3.3. 3-DT1 Images to Predict Disability Progression in MS 

In this pilot study, we found only a few (two) classifiers able to predict disability 

progression in more than one slice. Such a small number of classifiers may be due to the 

small sample size or to the use of 3DT1 images alone. Indeed, DL classifiers extract fea-

tures directly by the image, building the identification on voxel values and not on ana-

tomical characteristics. A recent study has addressed the issue of decision-making on T2-

weighted images, finding that individual lesions, lesion location, and non-lesional white 

matter or gray matter areas are informative features [31]. As a matter of fact, white and 

grey matter atrophy and damage, e.g., black holes, may be clearly extracted by 3DT1 MRI 

images, while less destructive lesions are not as clearly visible as in T2-weighted MRI im-

ages: in 3DT1 images, the use of DL may uncover hidden features related to lesions that 
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would not be detected with other techniques. Hence, the use of 3DT1 images in predicting 

MS-related disability progression may be as relevant as T2-weighted images, which are 

universally recognized to offer the ground truth lesion maps [32], and are the most used 

in DL studies on MS (e.g., [10,11,23,31,33]). 

3.4. Anatomical Structures Relevant in Predicting Disability Progression 

Axial projection resulted in being the most informative in predicting disability pro-

gression, since the largest number of efficient classifiers were developed on forebrain axial 

slices. Indeed, these axial slices covered areas that are known to be affected in multiple 

sclerosis and whose damage is clinically relevant [34–36], including the third and lateral 

ventricles, whose enlargement is an indirect measure of brain tissue loss. Analogously, 

coronal and sagittal slices may include the right amount of information to build on them 

efficient classifiers, especially if spanning disease-affected areas, such as frontal and pari-

etal lobes, somatosensory cortex, and cerebellum [37–39]. We expect to overcome this fail-

ure by increasing the sample of tested patients. 

However, the three-dimensional analysis showed the confluence of crossing points 

of projection-wise, discriminative slices and reiterated the relevance of frontal areas, 

mainly within the grey matter, in predicting disability progression [36]. 

3.5. Model Generalization 

Patients recruited in the two sites had significantly different clinical characteristics 

and span a wide range of EDSS at baseline. Indeed, this EDSS range resembles the pa-

tients’ population, and disability progression was demonstrated to follow a two-stage 

process with a pivotal point at an EDSS equal to three [40]. These differences, added to 

the difference of the MRI tomographs, granted generalizability of the obtained results [41]. 

3.6. Limits 

This study was pilot research intended to test the feasibility of predicting disability 

progression from the preprocessed structural images of patients with MS, therefore the 

small sample size will be incremented in future development. Increasing the sample size 

will allow to build a larger validation set and to introduce a test set. EDSS was used to 

evaluate disability in patients, and, as it is assigned by clinicians, it may suffer from bias 

due to the operator and influence the performance of the models. However, EDSS is the 

most widely used clinical outcome measure for disability evaluation [42] and was evalu-

ated by neurologists with long-lasting experience. Additionally, as a development of the 

study, we will test the combination of 3DT1 with T2-weighted images, since the latter are 

considered the ground truth for lesion recognition. Further, the inclusion in the study of 

contrast-enhanced MRIs acquired within 4 years, thus at baseline and follow-up, would 

provide strong evidence to show the validity of the model in predicting progressed le-

sions. Finally, in order to allow the methodology to be appealing for clinical practice, a 

next step may be to skip the preprocessing step and classify the very raw images of pa-

tients with the models built with the presented two-step training algorithms. 

4. Methods and Materials 

4.1. Patients Selection and Disability Assessment 

One-hundred-and-eighty-one patients with MS were recruited by two centers: the 

Department of Human Neuroscience of Sapienza University (Site 1) and the MS Center of 

the Federico II University (Site 2). Study protocols were approved as appropriate by the 

ethical committees of both Policlinico Umberto I/Sapienza University (Rome, Italy, Site 1) 

and the Biomedical Activities “Carlo Romano” of Federico II University (Naples, Italy, 

Site 2). All subjects provided written informed consent. 

Patients with MS were retrospectively selected from the databases of the two sites, 

according to the following selection criteria: diagnosis of MS according to the McDonald’s 
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criteria [43,44]; age between 18 and 70 years; baseline clinical assessment and MRI exam-

ination not more than one month apart; absence of relapses and/or steroid treatment in 

the 30 days preceding the MRI; clinical follow-up available after 2 to 6 years from the MRI 

examination. 

At baseline and follow-up, patients were examined by neurologists with long-lasting 

expertise in MS care (10 to 30 years), who assessed their clinical disability status. Specifi-

cally, EDSS scoring was performed by certified neurologists (neurostatus.net). The EDSS 

score expresses the disability status of MS patients on a scale from 0 to 10 [45]. After the 

follow-up examination, disability progression was defined as a 1.5-point increase for pa-

tients with a baseline EDSS of 0, 1 point for scores from 1.0 to 5.0, and 0.5 points for scores 

equal to or higher than 5.5 [46]. 

4.2. Population 

The average and standard deviations of demographics and clinical data for both Site 

1 and Site 2 separately, as well as for the entire sample built from the two sites, are re-

ported in Table 1. In total, 163 over 181 (90%) patients participated in another study, and 

their structural characteristics are reported in Tommasin et al. 2021. At the follow-up ex-

amination, disease progression was observed in 62 patients (34% of the sample) whose 

EDSS medians and ranges at baseline and at follow-up were, respectively, 3.5 [0.0–7.0] 

and 4.5 [1.5–7.5], while in the remaining 119 patients, the EDSS remained stable at 3.0 [0.0–

7.5]. Disability progression was confirmed after 3 months. In the time interval between 

baseline and follow-up, 80 patients did not switch therapy, 32 patients changed therapy 

but not treatment line, and 69 patients changed treatment line. Moreover, 65 patients in 

Site 1 and 52 patients in Site 2 had no relapse, while 20 patients in Site 1 and 24 patients in 

Site 2 had 1 to 5 relapses. Clinical characteristics are described in Table 1. 

Table 1. Demographics and Clinical data of patients. 

 
All subjects 

(Site 1 + Site 2) 

Subjects at 

Site 1 

Subjects at 

Site 2 

Between Sites 

Comparison 

 Average (std) Average (std) Average (std) z-(p-Value) 

Number 181 105 76 - 

Age [years] 39.57 (10.46) 38.29 (9.75) 41.33 (11.20) −1.90(0.06) 

Sex (F/M) 112/69 80/25 32/44 21.71 (0.001) * 

Phenotype (RR/P) 136/45 85/20 51/25 4.53 (0.04) * 

Disease duration [years] 9.90 (8.06) 8.27 (7.97) 12.06 (7.36) −3.31 (0.001) 

EDSS at baseline 3.0 [0.0–7.5] ** 2.0 [0.0–7.5] ** 3.5 [2.0–7.5] ** −5.06 (0.001) 

Time to follow up [years] 3.94 (0.91) 4.2 (0.93) 3.53 (0.69) 5.87 (0.001) 

Therapy at baseline (1st line, 2nd line, none) 58, 75, 48 32, 31, 42 26, 44, 6 - 

Therapy switch 

(no switch, switch to same line treatment, none 

to 1st line, none to 2nd line, 1st to 2nd line, 2nd 

to 1st line, 1st line to none, 2nd line to none) 

80, 32, 15, 14, 

18, 13, 8, 1  

46, 10, 13, 13, 

9, 6, 7, 1 

34, 22, 2, 1, 9, 

7, 1, - 
- 

Relapse 0 [0–5] ** 0 [0–5] ** 0 [0–4] ** 0.82 (0.41) 

Disability progression (Yes/No) 62/119 36/69 26/50 0.0001 (0.99) * 

Progressed patients (%) 34 34 34 - 

z- and p-values are calculated via Mann–Whitney test if not stated otherwise. *: chi-square statistics; 

**: median [range]. Significant between-site differences are highlighted in bold font. EDSS: Ex-

panded disability status scale; RR: relapsing-remitting; P: progressive. 

4.3. Magnetic Resonance Imaging 

Baseline MRI acquisitions presented the following features: Site 1 hosted a 3T Verio 

Siemens scanner, equipped with a 12-channel coil for parallel imaging and performed a 
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high-resolution, three-dimensional, T1-weighted (3DT1) MPRAGE with 176 1-mm–thick 

sagittal sections (TR = 1900 ms, TE = 2.93 ms, TI = 900 ms, flip angle = 9°, matrix = 256 × 

256, FOV = 260 mm2); Site 2 hosted a Trio Siemens, equipped with an 8-channel head coil, 

and performed a 3DT1 MPRAGE with 176 1-mm–thick sagittal sections (TR = 2500 ms, TE 

= 2.80 ms, TI = 900 ms, flip angle = 9°, matrix = 256 × 256, FOV = 256 mm2). 

The 3DT1 images were corrected for field inhomogeneity, thus the spatial variations 

of image intensity, brain-extracted, and registered onto standard space via linear registra-

tion, as implemented in the FMRIB Software Library version 6.0 (Wellcome Centre for 

Integrative Neuroimaging, Analysis Group, University of Oxford, Oxford, UK, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, accessed on 1 December 2018). The 3DT1 images 

were registered onto the Montreal Neurological Institute (MNI) template [47], which is 

the most commonly used template in MRI research and has allowed comparisons among 

studies performed by several institutes in recent decades. After voxel intensity normali-

zation to 255 (the highest value of the RGB color coding), the 3DT1 images were cut in 

slices along the coronal, sagittal, and axial projections following the standard planes par-

allel to the floor of the IV ventricle, to the medial plane and to the bicommissural line, 

respectively. Slices were selected for the analysis if they included at least 10% of the non-

zero voxels. Each slice image was exported from the nifti format to jpg. Jpgs of slice images 

on each of the three projections, e.g., coronal, sagittal, and axial, were used to build DL 

classifiers. 

4.4. Slab Selection 

DL algorithms extract hidden features from images; therefore, to push towards the 

best performance, we built classifiers on groups of slices covering areas with similar his-

tological organization as much as possible, e.g., keeping the majority of the cerebellum or 

the basal ganglia disentangled by the majority of the cortex. Therefore, for each projection, 

the slices were grouped in four contiguous slabs accounting for definite anatomical struc-

tures, covering roughly the same number of slices. The sagittal and axial projection slabs 

were devisable with the same number of slices. On the contrary, a different number of 

slices were grouped in coronal slabs to account for the brain anatomy. 

Coronal projection included 79 slices ranging from y = 17 to y = 95 in standard MNI 

space. They were grouped into two posterior (1–2) and two anterior (3–4) slabs with re-

spect to the central sulcus, as displayed in Figure 4. 

Sixty-four slices were included on the sagittal projection ranging from x = 14 to x = 

77, two right and two left slabs with respect to the midline, as in Figure 5. 

Lastly, axial projection included 62 slices, ranging from z = 12 to z = 73, two below 

(1–2) and two above (3–4) slabs with respect to the posterior commissure, as in Figure 6. 
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Figure 4. Coronal slabs. Coronal projections of magnetic resonance images were divided into four 

slabs: slab 1 covered slices characterizable by the coordinates y = [17–36] as sampled in the red rec-

tangle, slab 2 by y = [37–51] as sampled in the yellow rectangle, slab 3 by y = [52–76] as sampled in 

the purple rectangle, slab 4 by y = [77–95] as sampled in the green rectangle. For display purposes, 

nine slices are shown as sampled from the limits and center of each slab range. 

 

Figure 5. Sagittal slabs. Sagittal projections of magnetic resonance images were divided into four 

slabs: slab 1 covered slices characterizable by the coordinates x = [14–29] as sampled in the red rec-

tangle, slab 2 by x = [30–45] as sampled in the yellow rectangle, slab 3 by x = [46–61] as sampled in 

the purple rectangle, slab 4 by x = [62–77] as sampled in the green rectangle. For display purposes, 

nine slices are shown as sampled from the limits and center of each slab range. 
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Figure 6. Axial slabs. Axial projections of magnetic resonance images were divided into four slabs: 

slab 1 covered slices characterizable by the coordinates z = [12–26] as sampled in the red rectangle, 

slab 2 by z = [27–41] as sampled in the yellow rectangle, slab 3 by z = [42–56] as sampled in the 

purple rectangle, slab 4 by z = [57–73]) as sampled in the green rectangle. For display purposes, nine 

slices are shown as sampled from the limits and center of each slab range. 

4.5. Modelling Strategy 

We have selected ResNet50 as the DL network backbone for the purposes of this 

study. This choice was motivated both by the excellent performance shown by ResNets50 

in numerous computer vision tasks, as well as because it could efficiently run on the avail-

able hardware resources. The overall approach was to adapt the original model via a two-

step training procedure (see Figure 7). 
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Figure 7. Two-step training workflow. Flowchart of the fine-tuning of the ResNet50 deep learning 

network including a two-step training performed on jpg-exported MRI images. Training step 1—Brain 

Scan Optimized Model (BSOM, top): on a sample of 1833 MRIs collected from public repositories, the 

network learned the brain basic structural concepts classifying generic brain three-dimensional T1-

weighted magnetic resonance coronal (C), sagittal (S) and axial (A) images by location, thus into four 

adjacent slabs. Each slab of a projection plane is identified by a different color that will be kept in the 

following figures: slab 1 in red, slab 2 in yellow, slab 3 in purple, and slab 4 in green. Slab positions for 

coronal, sagittal, and axial projections followed the standard planes parallel to the floor of the IV ven-

tricle, to the medial plane and to the bicommissural line, respectively. For display purposes, each slab 

position is shown as a rectangle covering brain portions approximately coped to the slices included in 

the slab itself. Training step 2—EDSS-Discriminators (EDSS-D, bottom): each BSOM was adapted to 

the EDSS classification problem (class 0 and class 1) of the investigated sample of patients with multi-

ple sclerosis recruited in sites 1 and 2. Each projection model was separately trained only on the slices 

belonging to each slab subdividing the A, C, and S planes (different color regions). As a result, 12 

independent EDSS-Discriminators were achieved. Blue and green layers schematically represent those 

convolutional and pooling layers that build the neural network. 

First training: Brain Scan Optimized Model. The first step consisted of fine-tuning 

the off-the-shelf ResNets50 network on a large set of non-labeled brain-extracted MRIs. 

The first step’s aim was to allow the network to learn the brain basic structural concepts 

in MRI and to classify images by location in the four predefined slabs in the three spatial 

projections. This training was independently performed on brain-preprocessed 3DT1 im-

ages of 1833 subjects obtained from public repositories and provided three different Brain 

Scan Optimized Models (BSOM), one for each of the three slice projections (coronal, sag-

ittal, and axial) (Figure 4, top). The preprocessing of the public repository images was 

performed following the same procedure as the study images, thus images were corrected 
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for field inhomogeneity, brain-extracted, and registered onto MNI space via linear regis-

tration. 

Second training: EDSS-Discriminator. The second training step was performed on 

the set of disability-progression (EDSS) labeled MRI scans (Figure 4, bottom). Each of the 

three intermediate BSOM models specific to a projection was fine-tuned to a specific slab 

in order to create a total of twelve possible types of binary discriminators tailored to the 

determination of EDSS progression. 

In order to assess the statistical significance of the results, we generated 100 distinct 

discriminative binary models due to the limited number of EDSS-labeled images in our 

database. Hence, a set of 100 distinct EDSS-Discriminators (EDSS-D) were trained in each 

of the three projection planes (coronal, axial, sagittal) divided into four slabs, resulting in 

a total of 1200 binary discriminators. 

EDSS-D performance and comparison with null model. The performance of the 

EDSS-D discriminatory power was assessed by calculating the area under curve (AUC) 

for each brain slice in the validation set. Moreover, a proper control was implemented by 

comparing the AUC value with the corresponding value arising from a null model, de-

fined as the ground truth. 

Each step is extensively described in the following paragraphs. 

4.5.1. 1st Training Step: BSOM 

We took unlabeled independent MRI 3DT1 images of 1833 subjects collected from 

public repositories, such as the Parkinson’s Progression Markers Initiative (938 images, 

PPMI, https://www.ppmi-info.org/, accessed on 1 April 2020) and Alzheimer’s Disease 

Neuroimaging Initiative (554 images, ADNI, https://adni.loni.usc.edu/, accessed on 1 

April 2020), and from 341 more 3DT1 images of both patients with MS and healthy sub-

jects obtained from Site 1 database. Patients with MS, whose 3DT1 image was included in 

the first training step, did not fulfill the inclusion criteria for this study and therefore could 

not be included in the study sample. We considered separately the coronal, axial, and 

sagittal projections. Slices belonging to each projection were classified into one of the four 

slabs via hierarchy topological feature extraction using ResNet50 architecture (see Figure 

4, Step 1), implemented via the open-source Keras library with a Tensorflow backend. 

Four-category classification was formed by replacing the built-in ResNet50 top layer with 

a custom one. All three models showed the best performance by adopting Adam as the 

optimizer; the learning rates were set as 10−3 (coronal projection) and 10−4 (sagittal and 

axial projections). In order to meet the dimension requirement of ResNet50, the slice im-

ages were upsampled to 224 × 224 pixels and preprocessed using a homemade code to 

maximize the contrast and cause the image details to be more recognizable (see Supple-

mentary Material Figure S1). Moreover, standard data augmentation was applied to the 

original batch images using Keras’ ImageDataGenerator class. Starting from pre-trained 

coefficients from the Imagenet dataset, the best classifiers performance was achieved by 

fine-tuning ResNet50 in two stages: at first, by freezing all layers but the top, and subse-

quently unfreezing all the layers but the first 133, corresponding to the first four convolu-

tional blocks of ResNet50. To evaluate the models’ confusion matrix, the images distin-

guished in the three planes, e.g., coronal, sagittal, and axial, were devised in training and 

validation sets as the 90% and the 10% for each plan. The classifiers validation accuracy 

was evaluated at 97% for the coronal and axial models and 85% for sagittal. The resulting 

three BSOMs, each specified for the classification of images belonging to the specific pro-

jection plane, were then optimized in the second training step. 

4.5.2. 2nd Training Step: EDSS-Discriminators 

Patients who displayed disability progression at the follow-up from the baseline visit 

were labeled with 1 (positive cases), and stable patients were labeled with 0 (negative 

cases). We created 100 training sets, different but not independent among each other, e.g., 

a patient could belong to more than one training set. This choice was decided upon to 
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build a statistical ensemble of distinct but not independent replicas, over which DL mod-

els were tested. Patients belonging to training and validation sets were randomly selected, 

leaving unaltered the proportion between negative and positive cases with respect to the 

entire original sample. Each training set included 90% of the total patients: 163 patients 

subdivided into 107 negatives and 56 positives. Validation sets were then composed of 18 

patients and stratified in order to be 12 negatives and 6 positives. The slices composing 

the 100 training (and validation) sets were additionally subdivided into four groups ac-

cording to the slabs partitioning (see Figure 8, left panel). 

 

Figure 8. Normal vs. null classifiers. Real models—100 models were fine-tuned to classify patients’ 

disability progression. In this schematic representation, any sheet represents an ideal model and 

stands for a single training and validation set. A single entry (small rectangles) of the sheet repre-

sents an MRI image (slice) and red, yellow, purple, and green lines correspond to slabs 1 to 4. Darker 

entries represent patients in class 0, while light elements stand for patients in class 1. Projection-

wise, an EDSS-D was trained only on scans of the same color. In total, the EDDS-Ds were 100 (num-

ber of training sets) × 4 (slabs per projection plane) × 3 (axial, coronal, or axial projections). A training 

set was composed of 163 patients, 107 negatives (dark rows) and 56 positives (light rows); validation 

consisted of 18 patients, 12 of which were negatives (dark rows) and 6 positives (light rows). Null 

models—Null models’ structure traced that of real models. Training sets were modified by the re-

shuffling of the labels characterizing the patients. Therefore, the numbers of negative (dark) and 

positive (light) patients, as well as the images, were the same as in the real model, only the infor-

mation furnished during the training phase was incorrect. Validation sets remained unchanged. 

Implementing binary classification required the modification of the previously 

trained BSOMs (i.e., built on slices parallel to the sagittal, coronal, or axial projection 

planes) by the substitution of a single unit in the last dense layer (Figure 7, Step 2). The 

three discriminators were fine-tuned separately on the ensemble of 100 training sets for 

each slab. In total, we scrutinized 100 × 3 × 4 different binary EDSS-Ds: 100 models per 
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brain slab (four slabs for each projection plane). We invariably chose Adam as the opti-

mizer. The best learning rate and number of epochs were preliminarily evaluated for each 

discriminator. As in the Step 1 training process, batch MRIs were expanded and subjected 

to data augmentation compatible with the Keras’ ImageDataGenerator class. 

4.5.3. AUC Statistical Analysis 

Since the labeled MRI datasets were biased towards negative cases, we preferred the 

area under curve (AUC) over the accuracy as the efficacy metric for binary classification. 

AUC is in fact often preferred over accuracy for binary classification on highly unbalanced 

problems. In our specific case, indeed, negative patients are on average 65% of the total 

both in the training and validation sets, yielding an accuracy of 0.7 for any model. There-

fore, models appeared to be representative but not discriminative, suggesting that we 

were overfitting to a single class, namely the negative class of patients. The AUC was 

calculated starting from the receiver operating characteristic (ROC) curve. The ROC curve 

was obtained by plotting the true positive rate (TPR), or sensitivity, against the false pos-

itive rate (FPR), or 1—specificity, at various threshold settings. We considered well-per-

forming models those with an AUC close to 1. 

The statistical analysis of the AUCs obtained from the different models could be cre-

ated per slab or single slice. Thus, we took two approaches: one classified labeled MRI per 

slice and the other classified the MRI images per slab, thus folding all slices within each slab. 

At first, slice-based AUC analysis aimed at evaluating the models’ binary selective 

performance at the single slice level. In this case, the models’ predictions were analyzed 

considering the slices individually. TPR consisted of the number of true positive patients 

that were correctly identified upon slice classification, divided by six, i.e., the number of 

positively labeled patients in the validation dataset. Slice FPR, instead, was the ratio be-

tween the number of false positive patients over the total number of negative patients in 

the validation set, i.e., 12. In this way, we obtained as many AUCs as many models per 

slice per projection. Considering the distribution of the hundred AUCs obtained for each 

slice, the median, 25th and 75th interquartile and outliers, defined as points at 1.5 times 

the interquartile range, were calculated. Outliers were considered best-performing mod-

els, if they reached an AUC significantly higher than the majority of the models built on 

the same slice. 

For the second approach, i.e., considering all the MRIs in a slab, the performance of 

each binary classification model was assessed by evaluating the predictions for all slices 

within that slab as a whole. Thus, to evaluate each slab’s performance, the training dataset 

was comprised of the number of subjects (12) times the number of slices included in that 

slab, and the validation dataset was comprised of the number of subjects (6) times the 

number of slices included in that slab. Thus, the TPR was the fraction between the total 

number of truly positive predicted slices and the number of positive slices within each 

slab, and FPR was the total number of false positive slice predictions in a slab, divided by 

all negative slices in the same slab. The statistical analysis was performed on the average 

properties of the AUC in each slab. In this way, we obtained four AUCs for each projection 

and each of the hundred models. 

4.5.4. Null EDSS-Discriminators 

A corresponding null model was assigned to each of the EDSS-Ds. A null model can 

be considered as the ground truth for its specific DL model and was defined as follows. 

The EDSS labels characterizing the images present in each training set were randomly 

shuffled, keeping the numbers of positive and negative patients unvaried. The validation 

sets and the other parameters of each DL classifier (learning rate, optimizer, number of 

epochs) remained unaltered (see Figure 8, right panel). 

The binary class separation power of any null model was determined by its AUC, in 

analogy to the real case. Only those null classifiers with no binary classification power 

were considered, i.e., with an AUC  [0.5  δ]. The systematic error δ in the AUC 
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calculation was determined by the ROC stepwise form. On the ROC, the x-axis (FPR) dis-

crete unit was 1/12, while in the y-axis, the sensitivity could be incremented (or decreased) 

by units of 1/6. Hence, the minimal AUC variation was equal to δ = 1/(6 × 12)=0.0139. Mod-

els whose null classifier had AUC > |0.5 ± δ| were excluded from the following analysis. 

Once a null model was selected, it had to be assessed whether the corresponding 

original model had a statistically different AUC from it. Three possible situations might 

occur (Figure 9): the real classifier AUC could be i. larger, ii. smaller, or iii. not significantly 

different from the AUC of the null classifier. We adopted DeLong’s test [48,49] to obtain 

a p-value to evaluate whether real and null models had significantly different AUCs. We 

used the pROC package in R [50] to calculate the Z score, namely the quantitative indica-

tor of the AUC difference between the two classifiers. Under the assumption that Z was 

distributed according to the standard normal distribution, if the value of Z was such that 

Z > 1.96, it was reasonable to consider the two models statistically distinct, within the 

significance level p < 0.05. Hence, we selected only those models satisfying this condition. 

 

Figure 9. Three possible outcomes of the real vs. null AUC comparison. From the comparison of the 

receiver operating characteristic curves (ROCs, 1-specificity vs. sensitivity diagram) of a (real) 

model and its null model, we might meet three different situations. (Ax) Axial projection, slice 40. 

Null AUC = 0.51 and real AUC = 0.80, in this case Z > 1.96. (Sag) Sagittal projection, slice 49. Null 

AUC = 0.51 and real AUC = 0.14, in this case Z < −1.96. (Cor) Coronal projection, slice 64). Null AUC 
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= 0.5 and real AUC = 0.4, in this case, no statistical difference between the two models could be 

assessed. The stepsize form of the ROC could be traced to the amplitude of the validation sets (12 

negatives and 6 positives). The minimum increment of the area is therefore 1/(6 × 12). 

4.5.5. Three-dimensional Representation 

To have a 3D topological view of the brain areas prone to the disability worsening, 

we built a map of significant voxels to superimpose to the brain volume in MNI space. 

Significant voxels were identified by the intersection of slices along the three projections, 

with at least a classifier satisfying the aforementioned conditions. Each slice was charac-

terized by its coordinate on the axis perpendicular to the projection plane (e.g., a coordi-

nate on the z-axis for each axial slice), therefore the intersection of three slices, each on a 

plane, resulted in a complete set of coordinates identifying a voxel. The total number of 

significant voxels was the product of the numbers of significant slices on the coronal, sag-

ittal, and axial planes. 

5. Conclusions 

The aim of this study was to develop an automated DL-based tool to predict disabil-

ity progression via the EDSS after 4 years from the baseline visit, from 3DT1 images ac-

quired at baseline. The results showed that not all of the slices building the 3DT1 images 

contain information useful to predict disability progression, at least with the relatively 

small size of the investigated sample, and therefore we could not develop a final integra-

tion strategy. Nonetheless, to investigate the whole information stored in 3DT1 images, 

avoiding convolutive steps to reduce image dimensionality may be the way to not to lose 

any relevant feature. Indeed, this study shows how even 3DT1 images may host hidden 

information about disability progression, especially due to the imaging representation of 

specific areas. Ultimately, this study may be a first step in the development of an auto-

mated tool for disability progression prediction. 
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