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Abstract In this paper we analyse patterns in face shape variation due to
weight gain. We propose the use of persistent homology descriptors to get
geometric and topological information about the configuration of anthropo-
metric 3D face landmarks. In this way, evaluating face changes boils down
to comparing the descriptors computed on 3D face scans taken at different
times. By applying dimensionality reduction techniques to the dissimilarity
matrix of descriptors, we get a space in which each face is a point and face
shape variations are encoded as trajectories in that space. Our results show
that persistent homology is able to identify features which are well-related to
overweight, and may help assessing individual weight trends. The research was
carried out in the context of the European project SEMEOTICONS, which
developed a multisensory platform which detects and monitors over time facial
signs of cardio-metabolic risk.

Keywords Image processing · Feature Measurement · Feature representation,
size and shape

1 Introduction

Overweight and obesity represent a major risk factor for a large spectrum
of diseases, including cardiovascular; diabetes; musculoskeletal disorders; and
some cancers [2]. According to the World Health Organization (WHO) [3],
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in 2014 around 39% of adults aged 18 and over were overweight, and 13%
were obese. Moreover, overweight and obesity are increasing at a rapid rate
in most of the European member states and in the Americas. On the other
hand, individuals are increasingly motivated to play an active role in man-
aging their own health [35]. Thus, a key issue is the development of personal
health monitoring systems able to support people in estimating and tracking
over time their health status, and offering tailored guidance towards lifestyle
improvements [4,50]. These systems have to extract and analyse meaningful
features connected with health status and disease risk. In this paper, we focus
on weight gain as a risk factor for cardio-vascular disease, and study a method
to quantify patterns in face shape variation due to weight gain.

This research was carried out in the context of the European project SE-
MEOTICONS [1], which developed a multisensory platform in the form of
a mirror. The platform detects and monitors over time facial signs of cardio-
metabolic risk, cardio-vascular diseases being one of the leading causes of mor-
tality worldwide. The guiding principle behind the design of the mirror is that
it should easily fit into daily-life settings (the home, the gym, the pharmacy),
by maximizing non-invasive and unobtrusive interaction with the users. There-
fore, it requires contact-less data acquisition and non-invasive sign detection
and analysis. According to a semeiotic model of the face for cardio-metabolic
risk [14], the face signs include 3D morphological face descriptors of overweight
and obesity, to be computed on a 3D face model reconstructed from range data
acquired by a 3D scanner, possibly low-cost.

We propose to detect and track face changes connected with overweight and
obesity using Persistent Homology [20], a computational topology technique
for analysing shape, and shape changes in particular [7]. Given a 3D face
scan labelled with a set of landmarks, we compute persistence intervals, a
shape descriptor which gives information on the geometry and topology of the
face. Then, evaluating face changes over time boils down to comparing the
persistence intervals computed on 3D face scans taken at different times. Our
algorithm develops in three steps:

– Represent faces trough the simplicial complex given by the Delaunay tri-
angulation of 23 soft-tissue facial landmarks (Section 4.1);

– Filter the simplicial complexes by assigning to each edge the Euclidean or
geodesic distance between the corresponding landmarks (Section 4.2);

– Compute and compare the persistence intervals on the filtered complexes
to track face changes (Section 4.3).

Comparing the persistent intervals on a set of faces produces a dissimilarity
matrix. By applying dimensionality reduction techniques to the dissimilarity
matrix, we get a metric space in which each face is a point, and face shape
variations are trajectories in that space (Section 5). We experimented on a
dataset of synthetic 3D faces simulating weight changes, generated using a
parametric morphable model [40], with promising results. By analysing the
position of thin and fat people in this metric space, we show that persistent
homology is able to identify features which are well-related to overweight. Also,
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by analysing the shape patterns of single individuals as trajectories, we show
that our technique helps assessing trends in weight change on individuals.

In addition, we performed a preliminary study on a set of real data. A set
of proper methods for the automatic 3D reconstruction of 3D faces, registra-
tion and labelling of facial meshes were studied and implemented (Section 6.1
and 6.2). A key point is that the automation in the acquisition of the 3D scan
and in the processing, preliminary to the computation of persistent homology,
is a must for a system non-invasive and unobtrusive, able to trace over time
the features related to overweight. Nine volunteers were enrolled, and an ac-
quisition campaign was organized to collect for each volunteer the 3D scan
of the face, the body weight, and the BMI, so as to compare our descriptors
with standard physical parameters measuring overweight and obesity. The re-
sults demonstrate the feasibility of our approach in real settings, in terms of
effectiveness and computational cost (Section 6.3).

2 State of the art

Back in 1942, D’Arcy Wentworth Thompson expressed the importance of in-
vestigating biological form in a fully quantitative manner [47]. We may say that
D’Arcy Thompson’s vision has come true: in the last century, morphometrics

came of age, as the discipline dealing with the quantitative study of form [42].
This was mainly accomplished by applying univariate and multivariate statis-
tics to measures such as linear distances, angles and ratios. In the 1980’s, it
became clear that a more complex approach to the study of shape was needed,
which had to be able to capture the geometry of the morphological structures
under study and retain its information through the analysis. It was the birth of
Geometric Morphometrics [16], which quantifies the variation in the shape of
anatomical objects using the Cartesian coordinates of anatomical landmarks,
after the effects of non-shape variations (translation, rotation, scale) have been
factored out. A rich statistical theory for shape analysis supported the analysis
of shape variation [19,8].
Advances in statistics, computer vision and computer graphics provided large
body of tools for shape representation and quantification, including formalisa-
tion of the statistical shape analysis, shape descriptors and similarity measures
[54,44,7]. Among others, these include: deformable templates [51], geomet-
ric descriptors [52], geodesic representations [9], and level sets [55]. Due to
a simplicity of the representation and the explicit form in which objects are
measured, shapes are often represented by finite sets of points. For this type
of representation, by far the most popular way to describe shapes and model
shape variations is to use active shape models (ASM) [13]. Although the ASM
has well known limitations, the method is still frequently used in real appli-
cations. The Kendalls shape analysis (KSA) [30], alleviate some of the ASM
limitation, by constraining shapes to lie on a unit sphere rather than on a lin-
ear subspace. A different approach to shape representation is provided by the
elastic shape analysis (ESA) framework [53,43], where shapes are represented



4 D. Giorgi et al.

by functions rather than point sets. This approach removes a fundamental
weakness of the ASM and KSA, i.e. their dependence on the adopted shape
sampling scheme. Effective methods for applying ESA methodology for surface
representation have been proposed in [31,32,48].
In the literature, computer vision tools have been applied to body analysis to
estimate height, weight and other parameters enclosed in the body appear-
ance, and most of the methods proposed are based on computing body mea-
surements. Velardo and Dugelay proposed a model for the weight estimation
based on geometric body measurements extracted from the 2D silhouette of
the human body [49]. Giachetti and colleagues [24] used heterogeneous body
scans to automatically extract geometrical parameters related to body fat.
Their research was focused on parameters not depending on the precise loca-
tion of anatomical landmarks, and robust against pose and mesh quality, so as
to be used in healthcare applications. They found a high correlation between
several parameters with total body less head (TBLH) fat and trunk fat (ac-
quired by Dual-energy X-rays Absorptiometry).
Though it is well known that the face is involved in the process of fat accu-
mulation, there is no consensus in the literature about which are the facial
morphological correlates of body fat. An increase in some facial dimensions
was observed in a study about the face morphology of obese adolescents [22].
Moreover, there are interesting studies showing that some geometrical facial
features may be related to both attractiveness and Body Mass Index (BMI)
[11]. Also, Lee et al. [34] found that facial geometric features measured on 2D
images, include Euclidean distances, angles and face areas defined by selected
soft-tissue landmarks are related to both BMI and Waist Circumference. We
argue that shape changes cannot be attributed to single, local variations in
the position of individual landmarks. Also, shape changes involve shifts in the
position of landmarks relative to other landmarks. Therefore, we need tech-
niques that enable one to globally analyse the landmark configuration on a
face.

3 Basics in persistent homology

This section recalls the main mathematical concepts behind our method. Sec-
tion 3.1 defines simplicial complexes and their filtration, which serve as an
input to the computation of persistence intervals, summarized in Section 3.2.

3.1 Simplicial complexes and filtrations

A simplicial complex K is a collection of simplices (faces) such that:

– Any face of a simplex of K is in K;
– The intersection of any two simplices in K is either a face of both or empty.

One can think of K as a complex which grows from an initial state K0 to a
final state Kn = K: the complex growing is formally encoded in the definition
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of a filtration of K.
A filtration of a simplicial complex K is a nested sequence of simplicial com-
plexes

∅ ⊂ K0 ⊂ . . . ⊂ Ki ⊂ . . . ⊂ Kn = K. (1)

An example is the Rips filtration: if a spaceX is known through a finite number
of samples, for a real number ǫ > 0 the Rips complex Rǫ(X) is the complex
whose k-simplexes are the subsets {x0, x1, . . . , xk} of X such that d(xi, xj) ≤ ǫ

for all pairs xi, xj with 0 ≤ i, j ≤ k. Whenever ǫ < ǫ′, there is an inclusion
Rǫ(X) → Rǫ′(X) that reveals a growing complex.
We compute the Delaunay complex of the configuration of the anthropometric
landmarks on 3D faces, and filter the complex using the Rips filtration guided
by the Euclidean and geodesic distances among the landmarks (Section 4.2).

3.2 Persistent homology

Simplicial homology plays a central role in topological data analysis: it ac-
counts for the number of holes (of given dimension) of a topological space X

and it can be readily computed on any abstract simplicial complex K associ-
ated to X, depending only on X. For example, on a 3D manifold 0-homology
classes correspond to connected components, 1-homology classes to tunnels,
and 2-homology classes to voids. Persistent homology essentially looks at ho-
mology at different resolutions, analysing how topological attributes change
through the filtration: new connected components appear or connect to the
old ones, tunnels are created and closed off, voids are enclosed and filled in,
etc. For example, as for 0-homology, each homology class corresponds to a
connected component, and a homology class is born when a point is added,
forming a new connected component (a 0-cycle). A homology class dies when
two points belonging to different connected components are connected by a
1-chain, thus becoming a boundary. The lifespan of topological attributes is
encoded in a simple descriptor called persistence interval. The aim is to furnish
a scale to assess the relevance of topological attributes, under the assumption
that longevity is equivalent to significance [20]. Formally, the j-persistent ho-

mology group of Ki counts how many homology classes of Ki still survive
in Ki+j . Persistence represents the life-time of cycles in the growing filtra-
tion. Given a filtered simplicial complex {Ki}i=0,...,n, the j- persistent k-th

homology group of Ki is defined as a group isomorphic to the image of the
homomorphism

η
i,j
k : Hk(K

i) → Hk(K
i+j) (2)

induced by the inclusion of Ki into Ki+j .
In order to evaluate and visualize the persistent homology of a filtered complex,
persistence intervals are used: a persistence interval is a pair

(i, j), with i, j ∈ Z ∪ {+∞} and 0 ≤ i < j,
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such that there exists a cycle that is completed at level i of the filtration and
becomes a boundary at level j. Persistence intervals can be represented in a
barcode, a collection of horizontal line segments in a plane whose vertical axis
represents an (arbitrary) ordering of homology generators, and the horizontal
axis corresponds to the filtration parameter. The length of each segment is the
lifespan of the associated cycles in the growing filtration, that is, the length of
the interval (i, j): the start-point and end-point of each segment correspond
to the cycle birth and death, respectively. An equivalent representation is the
persistent diagram. A persistent diagram Dgmd(K) of the persistent homol-
ogy of the complex K in dimension d is given by a set of points in a plane:
each point (i, j) is a generator of the d-homology with birth at i and death
at j. Persistence intervals (diagrams) can be compared using the Bottleneck
distance.
We use persistence intervals as descriptors for 3D faces, and the distance be-
tween persistence intervals as a measure of the difference between different
faces (Section 4.3).

4 Face description and comparison

The proposed method for the representation and analysis of 3D faces develops
in three steps:

a. Representation of faces using the Delaunay complex of 23 landmarks {l1, . . . , l23},
li ∈ R3. The landmarks are a subset of Farkas’ landmarks, picked up ac-
cording to the findings in [34]. Figure 1 shows the set of landmarks on a
template face model [40] (Section 4.1).

b. Filtering of the simplicial complexes by assigning to each edge the Eu-
clidean or geodesic distance between the corresponding landmarks (Section
4.2).

c. Computation and comparison of persistence intervals (Section 4.3).

The algorithm for the computation of persistence intervals (with Euclidean
filtration) of each 3D face is summarized in Table 1.

Algorithm: PH computation on a 3D face, Euclidean filtration
1. Λ = {li, i = 1, .., 23} extract landmarks from face mesh
2. Dist = pdist(Λ) compute pairwise Euclidean distances on Λ

3. DTK =DelaunayTri(Λ,Dist) build simplicial complex
4. mSpace = expMSp(DTK,Dist) explicit the metric space
5. Kstream = createStream(mSpace) define the Vietoris Rips stream
6. I = computeIntervals(Kstream) compute persistence modules and intervals

Table 1 Short description of the computation of the persistence intervals of a face mesh,
using the Euclidean filtration.
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Fig. 1 The 23 landmarks used to represent faces.

4.1 The simplicial complex

A first choice for the representation of facial 3D data could be the flag complex
obtained from the landmarks restricted to three dimensions, in which every
pair of landmarks has an edge between them, and triangles and tetrahedra
are consequently included. As suggested in [26], the drawback is that the flag
complex would not generally have a geometric realization, whereas we do know
that our data are inherently three-dimensional, since the landmarks come from
human faces which live in the 3D Euclidean space. To preserve the Euclidean
nature of data, we preferred a geometrically realizable subcomplex of the flag
complex, namely the Delaunay triangulation of the 23 landmarks. We decided
to compute the Delaunay triangulation on a template face, namely the Basel
Face Model [40], rather than computing it on individual faces. We do this so
that the abstract complex is fixed across all possible subjects, since we want
to compare the absolute structure of the landmark configuration, common
to all faces. Indeed, if the Delaunay triangulation was calculated separately
for each face landmark configuration, the Delaunay triangulations could be
slightly different, due to differences in the distances between landmarks for
each subject.

4.2 The filtration

Once the complex is fixed, what varies on individual faces are the properties
used for filtering the complex. We experimented with different filtrations. The
first choice is a Rips filtration using the Euclidean distance between landmarks,
similar to what has been done in [26] to study the outcome of clinical orthodon-
tic procedures. All vertices enter at time t0; the edge between landmarks i and
j enters at time

ti,j = M − dE(li, lj) (3)
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(a) (b)

(c) (d)

Fig. 2 The growth of the filtered complex associated to a face mesh: (a) single vertices
associated with landmark points (superimposed on a template face model); (b) some edges
and the first face appear; (c) almost all the simplices appear; (d) the Delaunay complex of
the face mesh.

where dE(li, lj) is the Euclidean inter-landmark distance between landmarks
i and j and M = maxq,r dE(lq, lr); triangles and tetrahedra join the filtra-
tion when all of their faces have. Differently from [26], we change sign to the
Euclidean distances. This is done so that landmarks that are far apart will
have a smaller entry time. Figure 2 shows the process of growth of the com-
plex. Also, differently from [26], we do not consider any normalization of the
function across different individuals, as we are not interested in comparing
inter-landmark distances within an individual with those same inter-landmark
distances in other individuals, but rather on evaluating changes on the same
individual in the process of gaining weight.

Moreover, we experimented with another filtration, which is similar to the
one above but with geodesic distances instead of Euclidean ones:

ti,j = M − dG(li, lj) (4)

where dG(li, lj) is the geodesic distance (computed using the Dijkstra algo-
rithm, [15]) between landmarks i and j and M = maxq,r dG(lq, lr). Geodesic
distances take into account the intrinsic properties of faces, as they are bound
to walks on surfaces. Geodesic distances encode different shape features than
Euclidean distances: for example, the geodesic distance between the two land-
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Fig. 3 Euclidean (left) and geodesic (right) distance between two landmarks.

marks in Figure 3 measures the length of the path passing below the chin,
whereas the Euclidean distance measures the horizontal distance between the
points. When facial soft tissues change with weight variations, the geodesics
on the face can substantially change passing even through different parts of
the face. Such a sudden change of region for some paths is exactly why the
geodesic case is included in our study: this kind of phenomena produces a
different pattern in the associated barcode, hence it could represent an inter-
esting clue on the weight variation. We believe the filtered complexes above
are a sensible choice to study the structure of a landmark configuration. Fil-
trations are defined in order to have descriptors invariant under translation
and rotation, but purposely not invariant under scaling.

4.3 Computing and comparing persistence diagrams

We computed persistent homology for the complex of each face mesh, using
the filtrations described in Equation 3 and 4, with homology of dimension 0,
1, and 2. That is, we computed 0-, 1-, 2-dimensional persistence intervals for
each face. Figure 4 shows a face and its persistent intervals represented as
barcodes. Persistence intervals of dimension d were compared via the Bottle-
neck distance, [17]. The computations were performed in MATLAB, with code
adapted from the program JavaPlex [45].

Finally, the next Section describes how the shape dissimilarities are used
to build a metric space in which each point represents a 3D face. Trajectories
in this space are used to visualize patterns of 3D facial variations.

5 Analysis of patterns of shape variation

As a longitudinal study on real subjects to monitor weight and 3D face changes
was not available, a dataset of synthetic 3D faces simulating weight changes
was generated using a parametric morphable model [40] and used for the first
experiments.
The Basel Face Model (BFM) is a morphable face model computed by ap-
plying PCA techniques to a large set of scans (200 real faces, 100 female and
100 male). The BFM can be deformed controlling the regression coefficients
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Fig. 4 Example of a face with its three barcodes. The barcode in the 0-dim (top) provides
a visualization of persistence intervals representing connected components: all vertices enter
at time 0, and only one connected component survives (being the face complex topologically
equivalent to a ball in the 3D space). The barcode in the 1-dim (center) provides a visu-
alization of persistence intervals representing loops: some loops appear while the complex
growth, but all of them die before the face complex is completed. The barcode in the 2-
dim (bottom) provides a visualization of persistence intervals representing voids: two voids
appear while the complex growth, but both die soon after their birth.

extracted through PCA, accounting for face shape variations related to age,
gender, height, and weight. Of course, such a model cannot be deformed in any
real face, because it depends on the set of real faces used for its computation.
Also, faces are labelled with different sets of anatomical landmarks (Farkas
and MPEG4-FDP feature point coordinates and indices). These characteris-
tics make the Basel Face Model a natural and effective choice for producing
synthetic data to test the technique we developed.
We first generate 25 seeds from the mean face, varying randomly all the four
parameters, in order to produce a synthetic study population of 25 subjects.
Then, only the weight parameter of each seed is increased of a constant quan-
tity in ten steps. An example of the sequence of fattening faces produced is
given in Figure 5.
This gives a dataset of 250 faces, divided into 10 groups ordered according to
increasing fatness. Computing persistent homology on this dataset gives 250×3
persistent intervals, one for each dimension (0-, 1-, 2-degree homology).

5.1 Metric space from shape dissimilarities

In statistical shape analysis, the analysis of shape variation is usually carried
out in a feature space or in shape space (space of concatenated landmarks
coordinates with imposed scale, translation and rotation equivalence class, i.e.
similarity transformation invariance), i.e. a Kendall space [30]. Since persistent
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Fig. 5 A seed face deformed in ten steps, by increasing the weight parameter of a constant
quantity (20 units). The unit used in the BFM for the weight parameter cannot be related
to standard measurement units (e.g. in kg).

diagrams are not vectors, we took a different route and worked in the metric
space in which points are persistence diagrams, and the metric is given by the
Bottleneck distance among them, as done in [23]. This approach is general
and flexible, in that it can be adapted to arbitrary descriptors, other than
feature-based (e.g., graphs).
Hence, the dissimilarity space built on the dataset yielded three different dis-
similarity matrices, one for each homology dimension (0, 1, 2); each dissim-
ilarity matrix is of dimension 250 × 250. Then, a dimensionality reduction
technique was applied to these matrices. We experimented with classic Multi-
dimensional Scaling (MDS, also known as principal coordinates analysis [25])
to explore and visualize our set of data, and got three 250× p matrices, with
p < 250. In the analysis that follows, we set p = 2. Each row in the matrices
represents the coordinates of a face in the lower-dimensional embedding space.
Note that different embedding techniques could be used, possibly including
non-linear dimensionality reduction techniques such as isometric feature map-
ping [46] and Laplacian eigenmaps [38].
As expected, given the intrinsic characteristic of faces, we found that homol-
ogy of dimension 2 was not significant, whereas homology of degree 0 and 1
proved to be more informative. This can be seen from the observation of the
dissimilarity matrices in Figure 6. Therefore, in what follows we will only anal-
yse data pertaining to homology of degree 0 and 1. We first analyse visually
the results separately, that is, for 0- and 1-homology, and for Euclidean- and
geodesic-based filtration. This is done to study the different information they
provide (Section 5.2). Then, we analyse quantitatively the results of integrated
distances, given by the sums of matrices, in terms of classification rate (Section
5.3).

5.2 Qualitative analysis

The analysis of scatterplots in the embedding space seems to confirm that the
proposed technique is able to identify 3D features which are well-related to
overweight and obesity. Figure 7 (left) and 8 (left) show the first two embed-
ded MDS coordinates, labeled by fatness level, from 1 to 10, for the filtrations
based on Euclidean and geodesic distance, respectively, in dimension 0 and
1. It can be seen that in both cases the subjects are well distributed in the
space according to their fatness level. In other words, our technique seems to
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Fig. 6 Dissimilarity matrices between persistence intervals, for the Euclidean (top) and
geodesic filtration (bottom). Colour map, ranging from blue to red, indicates increasing
values of dissimilarity; e.g. the blue diagonal corresponding to entries (i, i) correctly indicates
that the dissimilarity between the persistence diagram associated to the i-th face with itself
is zero.

be able to separate faces of people in different groups. This can be better ap-
preciated in Figure 7 (right) and 8 (right), which show the first two embedded
MDS coordinates for a subset of faces, namely thinner people (red), medium
people (green) and fatter people (blue) in our dataset. Since our essential task
is the description of morphological change over time on a subject, we must
check whether our technique enables us to discover a trend in a longitudinal
study. A way to do this is visualizing the shape patterns of individuals as
trajectories [12] in the dissimilarity space. Each individual has a trajectory
which is made of ten consecutive points. For a given trajectory, we can anal-
yse four attributes, namely location (the starting and ending points); size (the
magnitude of the vector between the endpoints); orientation (the direction
of the vector between the endpoints); and shape. In our context, the location
depends on the specific, initial traits of each individual. The size is a measure
of the difference in shape between the thinnest and the fattest morphing of
the individual. The orientation is crucial: a consistent orientation would in-
dicate that our technique is able to detect and encode the process of getting
weight. Figure 9 shows the trajectories of three sample faces in our dataset
in the embedding space given by the first two coordinates. It is clear that the
orientation is consistent, from left to right in accordance with weight gain, but
the shape of trajectories do differ, especially for 0-homology. Figure 10 shows
the trajectories if only the first embedding coordinate is taken into account.
As the trajectories are more homogeneous, it seems that the first coordinate
alone is able to identify the trend in fat variation better than the first two
coordinates.
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Fig. 7 Scatterplot of the first two embedded MDS coordinates, labeled by fatness level,
from 1 to 10, for the Euclidean-based filtrations (left). The scatterplot with only a subset
of faces shown (right).

5.3 Quantitative analysis

We have seen that persistence intervals based on both the Euclidean distance
and the geodesic distance between landmarks are able to quantify shape vari-
ation, and that they take different properties into account. This suggests that
summing up their information could be beneficial. We can define the distance
between two faces as the sum of the Bottleneck distances between their per-
sistence intervals in different dimensions, or with different filtrations.
Let us denote d0E,G (d1E,G) the sum of distances in dimension 0 (dimension 1)

obtained with the Euclidean and the geodesic filtration, and d
0,1
E (d0,1G ) the

sum of distances with the Euclidean (geodesic) filtration in both dimensions
0 and 1.
The classification rate on our dataset for the integrated distances above de-
fined was assessed and reported in Table 2. We also evaluated two popular
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Fig. 8 Scatterplot of the first two embedded MDS coordinates, labeled by fatness level,
from 1 to 10, for the geodesics-based filtrations (left). The scatterplot with only a subset of
faces shown (right).

state-of-the-art shape descriptors, namely Shape Distributions (SD) [39] and
Spherical Harmonics (SH) [29].
The classification rate refers to the number of subjects correctly attributed
to their group, out of the 10 groups in the dataset, in a leave-one-out experi-
ment. Notice that the classification task is very challenging, since the variation
among consecutive groups, in terms of fat gain, is rather small. Therefore, we
considered three classification rates, for correct prediction within the first,
second and third choice. It can be seen that integrated distances perform bet-
ter than or comparably to Spherical Harmonics, and significantly better than
Shape Distributions.
The best performance seems to be provided by the filtration based on geodesic
distances, with distances summed over homology dimensions.
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(0-homology, Euclidean filtration) (1-homology, Euclidean filtration)

(0-homology, geodesic filtration) (1-homology, geodesic filtration)

Fig. 9 Trajectories of three sample faces in the space given by the first two embedding
coordinates.

1st 2nd 3rd

d0
E,G

42% 63% 88.4%

d1
E,G

41.2% 64% 83.2%

d
0,1

E
30.8% 54.4% 77.2%

d
0,1

G
42.4% 72.2% 83.6%

SD 22.4% 44.8% 65.6%
SH 38.4% 65.6% 88.0%

Table 2 Classification rates for integrated distances and competitors. The best rates are
marked as bold.

6 A preliminary study on real data

The method was applied on a small set of real data for extracting from the mor-
phological analysis of the subject’s face the information about body weight.
The sample used is made of 9 adult subjects: 3 women and 6 men. The char-
acteristics of the sample are listed in Table 3. The 3D facial data are acquired



16 D. Giorgi et al.

(0-homology, Euclidean filtration) (1-homology, Euclidean filtration)

(0-homology, geodesic filtration) (1-homology, geodesic filtration)

Fig. 10 Trajectories of three sample faces in the space given by the first embedding coor-
dinate.

with a low cost depth sensor; then the 3D faces are automatically reconstructed
and labelled, as described in Section 6.1 and Section 6.2. Finally, the results
obtained with real data are described in Section 6.3. Of course, the analysis
carried out for the large, synthetic dataset cannot be applied as it is to the set
of real data, due to the fact that powerful tools, such as the multidimensional
scaling, are no more appropriate with a so different sample size.

6.1 3D face reconstruction

This section describes a system for a 3D geometric face reconstruction based
on inexpensive, readily available depth sensors such as Kinect or Asus Xtion.
The requirement is to produce a 3D manifold mesh, representing face surface,
accurate enough to enable an extraction of informative facial features.
The 3D reconstruction method recovers points cloud from a sequence of depth
frames and merges them into a single consistent global object. This is achieved
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Id gender BMI weight (kg)

1 F 20.3 57.8
2 F 20.8 57.2
3 F 20.9 48.9
4 M 21.9 64.1
5 M 22.2 68.8
6 M 24 78.1
7 M 24.6 71.2
8 M 27.4 78.15
9 M 28.5 79.6

Table 3 Characteristics of the studied sample, subjects sorted by BMI ascending.

using a structure from motion algorithm [37]. The data fusion is performed by
tracking the global model using a coarse-to-fine iterative closest point (ICP)
algorithm with the reconstructed surface estimated using a truncated signed
distance function (TSDF) and a Poisson meshing algorithm [28].
The first, preprocessing, step before applying the reconstruction procedure is
the face segmentation. This step prevents background objects and body parts
from interfering in the reconstruction process. The segmentation technique
used to extract the person’s face from the depth image is based on a face
pose estimation method [21] and application of a bounding box segmentation
around the estimated head centre. The face pose estimation [21] calculates,
based on a random forest, the head position in a 3D space (x, y, z). The 3D
head centre is then projected into the 2D depth frame and used as the centre
of a rectangular bounding box of 180x180 pixels. All the depth points inside
the defined bounding box will remain in the segmented face, the rest will be
discarded as well as the pixels with bigger z values than zc + 15cm, where zc
is the estimated distance of the head centre from the sensor.
The segmentation process is applied to a depth frame sequence where the user
has rotated the head to the left and then to the right. Subsequently, the seg-
mented depth data is passed to the reconstruction system in order to obtain
the fused 3D model and the corresponding mesh.
The average area of the triangles forming the 3D face reconstruction meshes
is 2.8mm2. The volume which is captured with the depth sensor is a cube of
512 × 512 × 512 voxels which represents a volume of 1.5 × 1.5 × 1.5 metres
(3.375m3) on average. The reconstructed faces occupy 0.3 × 0.3 × 0.2 metres
volume, which corresponds to approximately 715, 827 voxels from the captured
volume, with each voxel representing around 25mm3 volume.

6.2 3D face labelling

Different landmark detection methods in depth or 3D data can be found in
the literature, such as [5],[18],[27] and [36]. Numerous approaches have been
used to tackle this problem, for example the work described in [5] proposed a
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heuristic method combined with a SIFT detector applied to local search win-
dows to locate 9 landmarks automatically. In the approach presented in [27],
11 fiducial points are automatically located on a pair of range and portrait
images using a search over an area centred at the average location of the fidu-
cial point location in the training data. The technique explained in[36] selects
3 feature points by determining the local shape index at each point within the
2.5D scan.
The landmarking problem presented in this paper requires the automatic lo-
cation of 23 landmarks (Farka’s model [33], Figure 11), and some of them are
very difficult to detect using the methods described above. In order to detect
this challenging landmarks arrangement a method similar to the one described
in [18] is needed. This approach enables detection of landmarks in the areas
with no significant facial features.
The method used in this work to produce the approximate positions of the
predefined 23 landmarks is based on a non-rigid registration of a deformable
model [41]. Such 3D facial representation can model wide variety of faces. The
3D faces are represented by a low dimensional shape space vector (SSV) of
the statistical shape model (SSM). As explained in [41], the SSM is trained
using different faces with 83 landmarks selected manually in each face of the
training dataset.
The process of labelling a 3D face reconstruction starts with the fitting of the
deformable model to the reconstructed point cloud. This algorithm involves
the estimation of the pose and shape parameters, which allow adapting the
model to a new personalised model. The shape and the pose are iteratively
estimated in turn. The iterative closest point algorithm is used to estimate
the pose, and the projections on the estimated SSM are used to estimate the
shape parameters encoded in the SSV.
Once the model has been matched to the 3D reconstruction, the previously
selected 23 landmarks of interest are transferred to their corresponding closest
point on the reconstructed 3D surface (see Figure 11). The results obtained
with the proposed labelling method were compared to a manually obtained
ground truth of 22 reconstructions. The manual labelling was only based on
shape data, no texture information was used in the process. The average from
three manual annotations performed by two observers was used as ground
truth. The average error of the landmark identification is 6 mm. This should
be compared with the corresponding calculated annotation error between the
two observers of 2 mm.
The face deformable model used for this work contains 5,832 points (See Figure
11 on the top left), covering a volume similar to the reconstructed faces. Varia-
tions in resolutions and number of points used for the deformable registration
could significantly influence landmarking accuracy. In previous works, it has
been shown that using a smaller number of landmarks located around eyes,
nose and mouth with a 3D deformable model representing only central part of
the face could provide better results for landmarks on the mouth. Additionally,
it has been also demonstrated that using 3D reconstruction with significantly
higher number of vertices, when compared with the number of the model
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Fig. 11 Labelling process. Inputs: Manually labelled deformable model (top left) and 3D
reconstruction (bottom left). The model registered to the reconstruction (centre). Outputs:
Deformed model (top right) and labels transferred from the model to the 3D reconstruction
(bottom right).

vertices, can lead to the model converging to a local minima resulting in an
incorrect labelling. This was solved by down-sampling the reconstructed sur-
faces. For the described problem, the resolution of the adopted low cost depth
sensor is suitable for the 3D reconstructions being labelled by the deformable
model from [41]. Although position accuracy of the landmarks around mouth,
cheeks and ears could be improved, they are the most challenging landmarks
for detection as the mouth is the part of the face with the biggest deformations
and the Farkas’ landmarks on the cheeks and close to the ears do not have
significant distinctive features to be robustly identified.

6.3 Results on real data

3D facial data acquired through low-cost sensors, such as in Figure 11, makes
clear that the aim claimed in the paper’s title is quite hard to reach. The very
low requirements about the acquiring conditions, the number of points used
for the shape description (only 23 landmarks), and the strong automation of
the whole system, desirable for a day-life implementation (e.g. at home, by
not skilled people) imply having data with low resolution and low accuracy,
thus any subsequent processing may be negatively affected by them.
Nevertheless, the persistent homology keeps carrying a certain amount of in-
formation about body weight. As in the synthetic dataset, we found that ho-
mology of dimension 2 was not significant, whereas homology of degree 0 and
1 proved to be more informative. Then, barcodes in dimension 0 and 1 of each
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Fig. 12 Barcodes: Subject 2 (first row) and 9 (second row); both Euclidean (first column)
and geodesic filtration (second column).

Fig. 13 Dissimilarity matrices computed on the set of real data. Colour map ranging from
blue to red, according to increasing dissimilarity.
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Stage Time (seconds)
Segmentation 12
Reconstruction 14
Meshing 3
Labelling 1
PH computation 1

Total 31

Table 4 Average processing time of the different stages of the proposed method when
it is run using a 3.6GHz i7 processor. 23 subjects from the dataset were used for these
measurements.

subject has been analysed; barcodes of two subjects, with quite different BMI
values, are shown in Figure 12).
A further analysis focused on the persistent intervals computed in dimension
0, both Euclidean and geodesic filtration, and on the persistent intervals com-
puted in both dimension 0 and 1, with the geodesic filtration; this choice is
motivated by the results obtained in the larger dataset of synthetic faces,
already presented in Table 2. Let us denote d0E,G the sum of distances in di-

mension 0 obtained with the Euclidean and the geodesic filtration, and d
0,1
E

the sum of distances with the Euclidean filtration in both dimensions 0 and 1.
Then the dissimilarity matrices between the persistent intervals correspond-
ing to d0E,G and to d

0,1
E are computed to assess if any discriminative value is

maintained in the case of real data.
The sample has been sorted with increasing BMI. Thus, we expect that a
dissimilarity matrix, able to encode differences among the subject in the set,
should be a matrix with a blue diagonal, with the two corners up-right and
down-left being red, and with the other cells in the middle going from blue
to red accordingly to the distance from the diagonal. And in Figure 13 we
discover dissimilarity matrices showing a colour pattern similar to the ideal
good one.
Table 4 shows average processing time for different stages of the algorithm,
including 3D reconstruction, labelling, and the persistent homology computa-
tions (reading the data, building the complex, computing persistence barcodes
in dim 0 and 1, for both Euclidean and geodesic filtration, computing the dis-
similarity matrix).

7 Conclusions

We described an ongoing work in the European project SEMEOTICONS,
which is developing a multisensory platform which detects and monitors over
time facial signs correlated with cardio-metabolic risk, and gives personalized
guidance to individuals to improve their habits. Our contribution to the project
is the automatic assessment of weight gain via 3D shape analysis, being obe-
sity and overweight one of the main factors of cardio-metabolic risk. We used
persistent homology, which offered a tunable framework for face description
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and comparison. We qualitatively and quantitatively described the behaviour
of our descriptors, and the results seem to be promising.
In literature, different choices of simplicial complex and filtration are possible,
such as the Clique, the Witness and Lazy Witness, the Rips-Vietoris, the De-
launay, the Tidy: each of them has specific features and an optimal setting of
application. A first direction of future research is the usage of a different filtra-
tion, defined on the whole face rather than on the landmark configuration, for
example using Morse filtrations based on curvature or distances from reference
points. A landmark-free approach would also give the advantage of not having
to pre-compute face landmarks. Although landmarks can be identified with
different strategies [10], locating landmarks with the desired accuracy could
be difficult on bad-quality face scans.
The future work also include the use of hybrid descriptors which analyse both
shape and texture, as for example the hybrid geodesic distance in [6]. Finally,
an advantage of our framework is that it is flexible, meaning that it can be
adapted to the study of face properties other than weight accumulation, by
defining a different, ad hoc filtered complex. Therefore, we plan to investigate
on the study of other signs, including facial asymmetry.
Concerning the application of the morphological analysis based on the persis-
tent homology in day-life settings, the experimentation described in Section
6 proves that the method implemented provides a valid tool to analyse very
peculiar 3D objects, such as human faces even in real settings. We plan to en-
large the sample size and to better manage the inaccuracy in the landmarks’
location, in order to take advantage of statistical tools for the analysis of the
results, and improve the discriminative power of the proposed method.
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