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ABSTRACT  

Biased and accelerated molecular simulations (BAMS) are widely used tools to observe relevant 

molecular phenomena occurring on time scales inaccessible to standard molecular dynamics, but 

evaluation of the physical time scales involved in the processes is not directly possible from them. For 

this reason, the problem of recovering dynamics from such kind of simulations is the object of very 

active research, due to the relevant theoretical and practical implications of dynamics on the properties 

of both natural and synthetic molecular systems. In a recent paper [A. Rapallo et al., J. Comput. Chem. 

42, 586-599 (2021)] it has been shown how the coupling of BAMS (which destroy the dynamics, but 

allow to calculate average properties), with Extended Diffusion Theory (EDT) (which requires in input 

appropriate equilibrium averages calculated over the BAMS trajectories), allowed to effectively use the 

Smoluchowski equation to calculate the orientational time correlation function of head-tail unit vector 

defined over a peptide in water solution. Orientational relaxation of this vector is the result of the 

coupling of internal molecular motions with overall molecular rotation, and it was very well described 

by correlation functions expressed in terms of weighted sums of suitable time-exponentially decaying 

functions, in agreement with a Brownian diffusive regime. However, situations occur where 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
89

51
8



2 

exponentially decaying functions are no longer appropriate to capture the actual dynamical behavior, 

which exhibits persistent correlations at long times, compatible with the so called subdiffusive regimes. 

In this paper a generalization of EDT will be given, exploiting a fractional Smoluchowski equation, 

(FEDT) to capture the non-exponential character observed in the relaxation of intramolecular distances 

and molecular radius of gyration, whose dynamics depend on internal molecular motions only. 

The calculation methods, proper to EDT, are adapted to implement the generalization of the theory, and 

the resulting algorithm confirms FEDT as a tool of practical value in recovering dynamics from 

BAMS, to be used in general situations, involving both regular and anomalous diffusion regimes. 

  

1. INTRODUCTION 

In a recent paper a revision of classical diffusion theory1,2 (DT), named EDT3, has been developed, and 

shown to be a powerful tool to recover dynamic properties from BAMS, a type of simulations aimed at 

obtaining fast and thorough exploration of the system conformational space, and necessary to observe 

relevant molecular processes when they occur on time scales unreachable by standard molecular 

dynamics (MD) simulations. In these theories, based upon the Smoluchowski equation, the molecule is 

described in terms of beads connected by bond vectors, and the surroundings in terms of a continuous 

medium providing hydrodynamic effects on the molecular motions. Within such approaches the 

Smoluchowski equation is transformed into a generalized eigenvalue problem, (GEP) by expressing the 

eigenfunctions of the Smoluchowski operator as linear combinations of suitable basis functions. Since 

the matrices involved in the GEP do not depend on dynamical properties of the system, but are 

functions of the beads’ friction coefficients and equilibrium averages (EAs) of appropriate dynamical 

variables, they can be built from the trajectories of any kind of molecular simulation that allows for the 

calculation of static properties, even if it violates the physical dynamics as it happens in BAMS. 

Through the EAs, such matrices contain all the information about the atomic interaction potentials as 
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provided by the simulation, and the theory transfers this detailed information to the predicted dynamics. 

Within DT and EDT the dynamics are obtained by projection of the target variables over the 

eigenfunctions of the Smoluchowski operator, and they are yielded in terms of time correlation 

functions, (TCFs) expressed in the form of weighted combination of time-exponentially decaying 

functions. For these reasons the coupling of BAMS4,5,6,7,8,9,10,11,12,13,14,15,16,17 with EDT approach3 can be 

thought as a possible standard ansatz to the problem of studying the dynamics of systems in diffusive 

regimes, not directly tractable by standard MD.  

DT has been developed over time18,19,20,21,22,23,24,25,26,27 and successfully applied to the study of 

molecular dynamics in terms of vector and second order tensor orientational TCFs,28,29,30 also for the 

interpretation of 13C- or 15N- NMR spin-lattice relaxation experiments.31,32,33,34,35  

In these cases of vectorial or tensorial target dynamical variables, the dynamics developed according to 

Brownian diffusion regime, and the theory could cope with them very well.  

However, in the present form, neither DT, nor EDT can treat cases involving anomalous diffusion, 

where relaxation shows slow and markedly nonexponential character at long times, at variance with 

regular Brownian diffusion regimes.  

These situations are very common in proteins and peptides, and they are observed in both 

experiments36,37,38,39 and simulations.40,41,42,43,44 Various studies indicated that subdiffusion is caused by 

either depth distribution of traps on the molecular energy landscape, or by the fractal topology of local 

minima on the landscape itself.44,45,46  

In the framework of DT, the first observation that Smoluchowski equation does not reproduce the 

nonexponential character of TCFs in cases of anomalous relaxation, was done by Tang et. al. in a study 

of relaxation to equilibrium of pentadecane from an all-trans conformation.47  

The authors studied the TCFs of the squared head-tail (HT) distance 𝑅𝑒𝑛𝑑
2 (𝑡), a scalar property whose 

dynamics depend solely on internal molecular motions, and stated that “[…] the nonexponential 
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behavior of < 𝑅𝑒𝑛𝑑
2 (𝑡) >𝑛𝑜𝑛𝑒𝑞 at long times may account for the difficulty in obtaining highly accurate 

calculation from the theory. Nevertheless, it is encouraging that the mode coupling theory gives 

reasonable estimates for < 𝑅𝑒𝑛𝑑
2 (𝑡) >𝑛𝑜𝑛𝑒𝑞, and, furthermore, correctly predicts that the relaxation at 

long times is nonexponential […]”. 

Since that work, no further attempt has been made to study the dynamics of molecular scalar properties 

by means of the same DT approach, maybe for the impossibility to obtain quantitative results by the 

usual form of Smoluchowski equation in these cases, often showing subdiffusive behavior. 

TCFs of scalar quantities play an important role, for instance, in the study of dynamic structure factor,48 

or in the calculation of transition rate matrices to describe interstate dynamics;49,50 intramolecular 

distances and their dynamics are studied by single-molecule Förster resonance energy transfer (FRET) 

experiments to enlighten peptides and proteins structure and dynamics,51 and relaxation kinetics of 

absorbance in complex systems are probed by time-resolved spectra at multiple wavelengths.52 It is, 

therefore, of both theoretical and practical relevance to develop methods aimed at the prediction of 

scalar variables’ dynamics by computational simulations. From a general viewpoint, the problem of 

recovering dynamics from BAMS is the object of very active research,53,54,55,56,57,58,59,60,61,62,63,64 due to 

the implications of dynamics on the properties of both natural and synthetic molecular systems, from 

one side, and the fact that no general and definitive solutions have been given yet, from the other. 

Theoretical and methodological developments over EDT proposed in this paper, belong to this 

framework of research, and aim to extend the present possibilities, to access dynamics in more general 

situations involving both regular and anomalous diffusion. 

In order to deal with anomalous diffusion, the concept of fractional derivative65,66,67 was called into 

play to generalize the formulation of the Fokker-Plank-Smoluchowski (FPS) 

equation.68,69,70,71,72,73,74,75,76 By this approach, consisting in the replacement of temporal integer order 
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derivative involved in the equation, by fractional derivative of certain non-integer order α, it was found 

that it is possible to modify the exponentially decaying dependence on time of the equation’s solutions, 

to make them able to describe more general dynamical regimes. 

Application of this theoretical tool to EDT allows to extend the method’s capability to extract dynamics 

from BAMS, also in cases of anomalous diffusion.  

In the development of such an EDT generalization into FEDT, both the form of the GEP, peculiar to 

EDT, and the formulation of its matrices for the calculations of the eigenfunctions of the Smoluchowski 

operator, remain unchanged, while the expressions of the TCFs for the target dynamical variables are 

no longer expressed as weighted combinations of time-decaying exponentials, but as weighted 

combinations of Mittag-Leffler functions77,78 (MLF) of order α > 0; the order of fractional time 

derivative applied to the Smoluchowski equation.  

MLF has a power series representation given by 𝐸𝛼(𝑧) = ∑ 𝑧𝑘 𝛤(𝛼 𝑘 + 1)⁄∞
𝑘=0 , where 𝛤(𝑧) is the 

Euler gamma function. This series can be easily recognized as a generalization of the exponential’s 

power series expansion, which can be recovered by letting 𝛼 = 1. MLF has useful stretched 

exponential limiting behavior for small values of the argument, and inverse power law for large values. 

These features make MLF perfectly suited to capture the character of the TCFs deviations from pure 

exponential at short times, and slow decay at long times, both peculiar to the subdiffusive regimes, 

described, in FEDT, by 0 < 𝛼 < 1. 

This paper presents the essentials of the theory to derive working FEDT equations and algorithms to be 

applied to the calculations of TCFs of scalar variables, by using BAMS trajectories for the calculations 

of the GEP matrices. The application of the method will be shown for the peptide studied in Ref. [3], 

namely a fragment of the protein Transthyretin, TTR(105-115), in water solution. This peptide is not a 

toy system, since it presents a rich conformational space on which dynamics take place, comprises both 
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random coil and β-sheets conformations, and shows variable local stiffness along the chain, but it is 

small enough to allow for the explicit calculation of the TCFs via standard MD, to be used as 

references against to which to compare FEDT outcomes. The target dynamical variables will be 

selected intramolecular distances, and the radius of gyration, as a collective order parameter ruled by 

the dynamics of the molecular shape. The nonexponential behavior of the TCFs studied in this work, 

required the MD trajectory to be extended by further 40 µs beyond the 30 µs collected and used for the 

study in Ref. [3], to obtain enough statistics to calculate the heavy tails of the TCFs. The MD 

simulation, extended in the same strict conditions employed and fully described in the paper above, 

imposed longer computational times with respect to (w.r.t.) those proper to typical production runs, but 

yielded reliable data. Indeed, to ensure minimum influence of numerical artifacts for maximum rigor of 

the sampling in the canonical ensemble, no constraints were imposed on molecular bond lengths or 

angles, and the fully flexible 4-centers model of water TIP4P/2005f79, together with carefully chosen 

settings of the thermostats for peptide and solvent, and a small integration timestep of 0.8 fs, were used. 

The accelerated trajectory to form the matrices necessary in FEDT was obtained by replica exchange 

molecular dynamics simulation6 (REMD), run in the same strict conditions of Ref. [3] to ensure high 

quality sampling of the canonical ensemble, and guarantee the equivalence of MD and REMD 

trajectories in terms of equilibrium properties, to legitimize the comparison of dynamics obtained by 

the outcomes of the two simulations. In order to improve statistics, the REMD run of Ref. [3] was 

extended from 250 ns to 600 ns. 

At variance with Ref. [3], instead of the atypical two bead representation of amino-acids, collecting the 

main chain atoms in one bead, and the side chains atoms in the other, the peptide coarse graining (CG) 

implemented to apply the Smoluchowski equation within FEDT, has been done according to the well-

established Martini CG prescription.80,81  

This shows how the proposed tool can be easily integrated with other tools, very common in theoretical 
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and computational molecular physics/chemistry researchers community. 

 

2. FRACTIONAL EXTENDED DIFFUSION THEORY 

In diffusion theory methods the molecule is represented as a collection of n beads connected by m bond 

vectors, embedded in a fluid of viscosity . In EDT the beads are followed in time by their coordinates 

𝒓 = 𝒓1(𝑡), 𝒓2(𝑡), … , 𝒓n(𝑡), and their orientation unit vectors 𝒅 = 𝒅1(𝑡), 𝒅2(𝑡), … , 𝒅n(𝑡). The equation 

for the Smoluchowski operator L, (the adjoint of the Smoluchowski diffusion operator D), is given 

by:1,2,21,22,24 

𝜕𝑓(𝑿,𝑡)

𝜕𝑡
= 𝑳 𝑓(𝑿, 𝑡),                                                                                                                                  (1) 

where X collects both r and d coordinates, and f(X,t) (f(t) from here onwards) is a dynamical variable. 

The operator L is described by a sum of terms operating on the beads’ translational (t) and rotational (r) 

coordinates:82,83,84,85 

𝑳 = 𝑳tt + 𝑳tr + 𝑳rt + 𝑳rr                                                                                                                        (2) 

where: 

 𝑳ab = ∑ [𝛁i
a ∙ 𝑫i,j

ab ∙ 𝛁j
b − 𝛽 𝛁i

a𝑈 ∙ 𝑫i,j
ab ∙ 𝛁j

b]n
i,j=1 ,                                                                                   (3)  

with a, b = t, r, 𝛽 = (𝑘bT)−1, 𝑘b the Boltzmann constant, and T the temperature.  

In Eq. (3) 𝛁i
t and 𝛁i

r are the gradient operators for the i-th particle in position and orientation space, 

respectively.82,83 L contains all intramolecular interactions through the potential energy U, and it 

models the interactions between the molecule and the surrounding fluid by the diffusion tensors  

𝑫i,j
tt = 𝑘𝑏𝑇𝝁i,j

tt , 𝑫i,j
tr = 𝑘𝑏𝑇𝝁i,j

tr, 𝑫i,j
rt = 𝑘𝑏𝑇𝝁i,j

rt, and 𝑫i,j
rr = 𝑘𝑏𝑇𝝁i,j

rr, expressed in terms of the mobility 

tensors 𝝁i,j
ab; a, b = t, r which are very conveniently evaluated in terms of the regularized Rotne-Prager 

(rRP) approximation.86,87 

A time correlation function 〈𝑓(𝑡)𝑔(0)〉 of two dynamical variables f(t) and g(t) can be expressed21,22,24 
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in terms of the eigenvalues and eigenvectors of the L operator:  

𝑳 𝜓i = −𝜆i 𝜓i,                                                                                                                                         (4) 

yielding orthogonal eigenvectors 𝜓i and real, nonnegative eigenvalues 𝜆i .  

By means of a projection procedure, the TCFs are given by:21,24 

〈𝑓(𝑡)𝑔(0)〉 = ∑ ⟨𝑓|𝜓i⟩⟨𝜓i|𝑔⟩e−λit
i .                                                                                                        (5) 

The exponential dependence on time 𝜏𝑖(𝑡) = e−λit in Eq. (5), is obtained from the application of the 

variables separation ansatz to solve the Smoluchowski equation, which leads to the eigenvalue problem 

Eq. (4) for the spatial variables, and the equation: 

𝑑𝜏𝑖

𝑑𝑡
= −𝜆i 𝜏𝑖                                                                                                                                              (6) 

for the temporal one. The exponential function solving Eq. (6) is appropriate for the description of 

dynamics in diffusive regime but is inappropriate to capture the nonexponential long-time tails of TCFs 

when dynamics develop in subdiffusive regimes. In order to cope with these situations, the concept of 

fractional derivative has been called into play to generalize the FPS equation.68,69,70,71,72,73,74,75,76 

Fractional derivatives65,66,67 are generalizations of the ordinary derivative operator relying upon a 

generalization of the standard integral operator to a fractional one.  

Starting from the Cauchy formula for n-times repeated integration: 

(𝐼𝑎
𝑛𝑓)(𝑥) = ∫ ∫ ⋯ ∫ 𝑓(𝑥𝑛) 𝑑𝑥𝑛 ⋯ 𝑑𝑥2

𝑥𝑛−1

𝑎

𝑥1

𝑎

𝑥

𝑎
 𝑑𝑥1 =

1

(𝑛−1)!
∫ (𝑥 − 𝑢)𝑛−1𝑓(𝑢) 𝑑𝑢

𝑥

𝑎
,                            (7) 

it is possible to generalize n in Eq. (7) to non-integer 𝛽 ≥ 0 by noting that the factorial function is the 

Euler gamma function for integer arguments. The fractional integral can thus be defined as: 

(𝐼𝑎
𝛽

𝑓)(𝑥) =
1

𝛤(𝛽)
∫ (𝑥 − 𝑢)𝛽−1𝑓(𝑢) 𝑑𝑢

𝑥

𝑎
,                                                                                                (8) 

complemented with the condition for 𝛽 = 0: (𝐼𝑎
0𝑓)(𝑥) = 𝑓(𝑥). 

Having defined a fractional integral, and recalling that integrals and derivatives are inverse operators of 
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each other, a fractional derivative of order 0 < 𝛼 < 1 can be defined either by applying an integer 

order derivative to a fractional integral (Riemann-Liouville fractional derivative88): 

(𝐷𝑎
𝛼𝑓)(𝑥) =

𝑑

𝑑𝑥
(𝐼𝑎

1−𝛼𝑓)(𝑥) =
𝑑

𝑑𝑥
[

1

𝛤(1−𝛼)
∫

𝑓(𝑢)

(𝑥−𝑢)𝛼  𝑑𝑢
𝑥

𝑎
],                                                                        (9) 

or by applying a fractional integral to an integer order derivative (Caputo fractional derivative89)   

(𝐷̃𝑎
𝛼𝑓)(𝑥) = 𝐼𝑎

1−𝛼 (
𝑑

𝑑𝑥
𝑓(𝑥)) =

1

𝛤(1−𝛼)
∫

𝑓′(𝑢)

(𝑥−𝑢)𝛼  𝑑𝑢
𝑥

𝑎
.                                                                            (10) 

Many different generalizations of fractional integrals and derivatives have been proposed, each one 

useful in its own specific context, but the two definitions given above have proven to be suitable for 

deriving a unique physical picture from application to FPS equation. In Ref. [68] the Riemann-

Liouville fractional derivative w.r.t. time has been employed to generalize the FPS equation as: 

𝜕𝑊(𝑥,𝑡)

𝜕𝑡
= (𝐷0

1−𝛼 𝑳𝑭𝑷𝑊(𝑥, 𝑡))(𝑡),                                                                                                          (11) 

and in Ref. [75] the FPS equation has been generalized by Caputo fractional derivative w.r.t. time as: 

(𝐷̃0
𝛼𝑊(𝑥, 𝑡))(𝑡) = 𝑳𝑭𝑷𝑊(𝑥, 𝑡),                                                                                                            (12) 

𝑳𝑭𝑷 being the Fokker-Plank operator. It was found that both formulations in Eqs. (11) and (12) provide 

the same solution, and so they are equivalent w.r.t. the resulting physical modeling. In both cases, 

application of the variables separation ansatz to solve Eqs. (11) and (12), leads to an eigenvalue 

equation for the spatial coordinate of the same form of Eq. (4), identical to that arising from the 

ordinary FPS equation, while the temporal equation (6) is replaced by a fractional differential equation 

in the time variable, whose solution is given, in both cases, by the MLF:77,78,90 

𝜏𝑖,𝛼(𝑡) = 𝐸𝛼(−λ𝑖,𝛼 𝑡𝛼),                                                                                                                         (13) 

where the subscript α indicates that the temporal dependence and dimensions of the eigenvalues λ𝑖, are 

now related to the fractional order of time derivative. 

Application of these developments to EDT turns the method into FEDT, whose operative equations are 
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the same as those in EDT for what concerns the spatial variables, while Eq. (5) for TCFs is replaced by: 

〈𝑓(𝑡)𝑔(0)〉𝛼 = ∑ ⟨𝑓|𝜓i⟩⟨𝜓i|𝑔⟩𝐸𝛼(−λ𝑖,𝛼 𝑡𝛼)i .                                                                                      (14) 

MLF has the power series representation given in the Introduction, which is a generalization of the 

exponential power series, and the following asymptotic behavior:90 

𝐸𝛼(−λ 𝑡𝛼) ~ {
1 − λ

𝑡𝛼

𝛤(1+𝛼)
 ~ 𝑒𝑥𝑝 (−

λ 𝑡𝛼

𝛤(1+𝛼)
) , 𝑡 → 0+,

1

λ 𝑡𝛼 𝛤(1−𝛼)
,                                        𝑡 → ∞ .

                                                                     (15) 

The stretched exponential at short times, and the slow decaying inverse power law at long times, are 

perfectly suited to capture the typical nonexponential character of TCFs, occurring when dynamics are 

subdiffusive. It is worthwhile to underline once more that FEDT exactly recovers EDT when α=1, so it 

can be considered as a generalization of EDT, valid for both diffusive and subdiffusive regimes. 

Since Eq. (4) involving beads’ positional and orientational coordinates, is unaffected by fractional 

derivation in time, in FEDT we can proceed as in EDT to find approximate solutions by expanding the 

eigenfunctions 𝜓i as linear combinations of suitable basis functions {𝜑k, k = 1,2, … , K}: 

 𝜓i = ∑ 𝐶k,i 𝜑k
K
k=1 .                                                                                                                                (16) 

This expansion leads to a generalized eigenvalue problem of the type: 

𝑭𝑪 = 𝑺𝑪𝜦.                                                                                                                                            (17) 

In Equation (17) F and S are the equilibrium force, and metric matrices, respectively: 

𝑆i,j = ⟨𝜑i|𝜑j⟩                                                                                                                                        (18a) 

𝐹i,j = −⟨𝜑i|𝑳 𝜑j⟩ = 〈∑ ∑ (𝛁p
a𝜑i) ∙ 𝑫p,q

ab ∙ (𝛁q
b𝜑j)a=t,r

b=t,r

n
p,q=1 〉,                                                               (18b) 

𝜦 the diagonal matrix containing the eigenvalues λi,α, and 𝑪 the matrix of the eigenvectors giving the 

coefficients in the expansion (16). 

The notation ⟨𝑢|𝑣⟩ stands for equilibrium average, defined as ⟨𝑢|𝑣⟩ = ∫ 𝑢(𝑿)𝑣(𝑿) 𝑃𝑒𝑞(𝑿) 𝑑𝑿, with 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
89

51
8



11 

𝑃𝑒𝑞(𝑿) the equilibrium distribution function, which coincides with the Boltzmann distribution, also for 

the time-fractional FPS equation.68  

The fact that FEDT, as DT or EDT, requires equilibrium averages in input, is the peculiar feature that 

allows to use this technique as a “translator” between static properties, which can be obtained from the 

available BAMS techniques, and dynamics. 

In approaches belonging to the orbit of diffusion theories, the basis functions 𝜑k necessary to 

approximate the eigenfunctions 𝜓i in Eq. (4), must reflect the same tensorial character of the target 

variables of which we want to calculate TCFs. In previous applications of DT or EDT, the target 

variables were either vectors, or second order tensors. Differently, in this study, we are interested in the 

relaxation of scalar properties, and this requires a basis set of scalar functions to be employed in the 

calculations. Using the inter-beads bond vectors l as reference quantities, an appropriate basis set can 

be formed by taking all scalar products between bond vectors, together with the unity:  

𝜎 = {1; 𝒍𝑝 ∙ 𝒍𝑞 , 𝑝 = 1,2, … , m, 𝑞 = 𝑝, … , m; 𝒍𝑟 ∙ 𝒍𝑠, 𝑟 = 1,2, … , m − 1, 𝑠 = 𝑟 + 1, … , m}.                 (19) 

In the set σ the unity is necessary to produce a non-decaying mode with a naught eigenvalue 𝜆1,𝛼 = 0 

and associated eigenvector (1,0,0, … ,0)𝑇, to account for non-zero values of TCFs at infinite time. The 

scalar products 𝒍𝑝 ∙ 𝒍𝑞 provide the basis for the bead position space r and include both self (𝑝 = 𝑞) and 

cross (𝑝 ≠ 𝑞) terms. The scalar products 𝒍𝑟 ∙ 𝒍𝑠 constitute the basis for the bead rotation space d and 

include only cross terms (𝑟 ≠ 𝑠), since the gradients in orientation space of self terms are identically 

zero. With this choice of the basis set, which we call first order set, we have K = m2 + 1 basis 

functions, producing matrices S and F of dimensions K × K. However, since m (m − 1)/2 scalar 

products of bonds with 𝑝 ≠ 𝑞 appear twice in the set, even if the rank of F is full, the rank of S is only 

H = 1 + m (m + 1)/2, so H is also the effective number of useful non-negative eigenvalues 0 <

𝜆2,𝛼  < 𝜆3,𝛼 < ⋯ < 𝜆H,𝛼 with associated K-elements eigenvectors produced by the GEP.  
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12 

By starting from the H first order eigenfunctions 𝜓i obtained in this way, an augmented basis set 𝛷 

can be built, containing all first order eigenfunctions and products of them, to obtain a higher order 

solution:  

𝛷 = {

𝜓𝑝 , 𝑝 = 1, … , H                                                              

𝜓𝑝 ∙ 𝜓𝑞, 𝑝 = 2, … , H, 𝑞 = 𝑝, … , H                               

𝜓𝑝 ∙ 𝜓𝑞 ∙ 𝜓𝑟 , 𝑝 = 2, … , H, 𝑞 = 𝑝, … , H, 𝑟 = 𝑞, … , H
 }.                                                             (20) 

In the set 𝛷 products up to three modes are shown, but higher powers can be included as well. 

It is worthwhile to notice that the formulation given here for the upper order basis set, differs from the 

prescripton given in Ref. [47]. There, vectorial first order modes were built, and products of scalar 

products of them were used to form scalar functions to be employed in the upper order calculations. 

Actually, building a first order vectorial set is unnecessary, and we take advantage of the fact that just 

scalar functions are needed to perform calculations, to build scalar upper order functions in terms of 

scalar first order modes, this being more practical, and implying easier indexes manipulation into the 

machinery for the calculation of upper order gradients. 

If products up to 𝑝 first order modes are required to form the upper order basis set, the total number 

of functions in the set 𝛷 is given by the following binomial coefficient:  

K̃ = (
m(m+1)

2
+ 𝑝

𝑝

).                                                                                                                                             (21)   

The number K̃ grows up very fast with increasing m and 𝑝, so it is necessary to select, among all 

possible products of two or more modes, a subset giving the maximum contributions to the dynamics. 

This can be done by applying the Long-Time Sorting Procedure (LTSP) criterion,21 according to which 

the maximum contribution to the long-time dynamics is given by the slowest decaying products in the 

basis set 𝛷. In DT, and EDT, first order modes 𝜓i decay exponentially according to their own 

eigenvalue 𝜆𝑖, and the products of modes also decay exponentially according to the sum of the 
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eigenvalues of all modes participating to the product. To select the slowest decaying terms, it is, 

therefore, sufficient to sort the products of modes in ascending order according to the sum of the 

pertaining eigenvalues, and retain the first products in the sorted list together with the first order modes 

𝜓𝑝 , 𝑝 = 1, … , H, to form a desired total number of functions, say M, for building upper order S and F 

through Eq.s (18a) and (18b). 

Differently from DT and EDT, in FEDT the long-time character of first order modes is no longer 

exponential, but it is given by the MLF. However, Eq. (15) shows that for short times the MLF is 

exponential in character, so the selective criterion implied in the LTSP procedure allows to choose 

products of first order modes with the initial slowest decay. Since for given 𝜇 > 0, 0 < 𝛼 ≤ 1, and 𝑡 >

0, the inequality 𝑒𝑥𝑝 (−
 𝜇 𝑡𝛼

𝛤(1+𝛼)
) ≤  𝐸𝛼(−𝜇 𝑡𝛼) holds, initially slowly decaying products of modes 

remain slowly decaying functions also at long times, so LTSP can be used without modifications in 

FEDT to select products of modes relevant to slow dynamics in subdiffusive regimes. 

Finally, solving the upper order GEP with M × M matrices S and F produces the upper order 

eigenvalues and eigenvectors necessary to apply Eq. (14) for the calculation of TCFs of the target 

variables, which are considered the dynamics predicted by the theory. 

Some considerations concerning the generalization of EDT to FEDT are now in order. While DT and 

EDT are parameter-free theories where all quantities necessary to their application are uniquely 

determined by the specific system under study, i.e. they are fully-predictive theories, FEDT loses this 

fully-predictive feature, because of the introduction of the fractional order time-derivative α, which is 

not determined a-priori by the system’s constituents. Though it has been suggested that relations for 

rigorous determination of α from Hamiltonian models might exist,91 and remarkable examples of 

space-fractional random walks can be found,92 involving both large displacements and self-similar 

clustering of the trajectory in space (Lévy flights), in studying complex molecular systems we must 
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consider this parameter as unknown. However, we are not in the dark, and reasonable values of α useful 

in practice, can be obtained, for instance, from experiments. Dynamics of peptides have been probed by 

FRET,93 or time-resolved IR spectroscopy,94,95,96,97,98 and fitting of TCFs by stretched exponentials 

revealed values of α mainly in the range 0.7 - 0.9.  

Estimation of α is also conceivable entirely within the computational modeling, for instance by 

choosing REMD as the accelerated simulation, and setting the exchange rate between the replicas at 

different temperatures to a lower, suboptimal value. In this way the sampling efficiency is penalized to 

some extent, but the data between two successive exchanges can be used to calculate the initial part of 

the TCFs by means of dynamic reweighting techniques,55 since these data are perfectly valid portions 

of MD trajectory. From these curves, then, a value of α can be extracted by fitting.  

In this work, the specific computational settings employed to ensure that the REMD simulation 

accurately sampled the canonical ensemble and was equivalent to the MD simulation in terms of 

equilibrium averages, did not allow to estimate α by the computational procedure described above, so 

its value was taken within the indicated experimental range, and fixed at α=0.8. The results of the 

analysis show that this value is perfectly appropriated to quantitatively capture the subdiffusive 

dynamics of the target peptide TTR(105-115) in water solution. 

 

3. EDT AND FEDT CALCULATIONS 

Diffusion theory methods allow to obtain information about the dynamics of a system, by starting from 

equilibrium averages of appropriate quantities, irrespective to how these averages are obtained. For this 

reason, they are ideal techniques to be coupled with BAMS, which destroy the systems’ dynamics, but 

provide good quality equilibrium averages, for they attain fast and thorough sampling of the systems’ 

configurational space. In production simulation protocols, an accelerated or biased simulation method 

is chosen, and a set of system’s configurations is obtained. From this set of configurations, the 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
89

51
8



15 

equilibrium averages required by the diffusion theory method (DT, EDT, or FEDT) are calculated, the 

eigenfunctions of the Smoluchowski operator are built, and the dynamics are obtained in the form of 

TCFs of the target variables. Standard MD simulations and dynamical information are not required 

prerequisites in this flowchart. However, if the theory has to be developed in some respect, the 

dynamics it provides must be checked against “true” dynamics, to evaluate the effects of the introduced 

theoretical and/or methodological developments. To this aim a system must be chosen, fulfilling the 

compromise that its complexity is representative of systems of practical interest, but has such 

dimensions to allow for the explicit calculation of the dynamics by standard MD simulations, to be 

used as reference dynamics. However, for the comparisons to be legitimate, BAMS and MD simulation 

must sample the same statistical ensemble, to be equivalent in terms of equilibrium properties. To 

achieve this equivalence in practice, the settings for running the simulations must be chosen carefully, 

to avoid that numerical artifacts bias the sampling. This may have the consequence to make the 

simulations more computationally demanding with respect to production ones with less strict 

requirements, but it is necessary to assess with certainty the potential, strength and weakness of the 

theory. The settings chosen for the REMD and MD simulations are fully detailed, motivated and 

commented in Ref. [3], and in this paper some details have been reported in the Introduction. 

The system studied is an aqueous solution of a fragment of the protein Transthyretin, TTR(105-115) 

whose sequence is Ace-Tyr-Thr-Ile-Ala-Ala-Leu-Leu-Ser-Pro-Tyr-Ser-Nme, Acetyl and Methylamine 

groups being added as terminal groups. TTR(105-115) is structured in β-sheets in the whole protein, 

which forms amyloid fibrils in vivo, and has been shown to form fibrils in vitro through extended β-

sheets conformations.99 The system consists of 181 peptide’s atoms, and 2819 water molecules. Since 

the water model adopted is the fully flexible TIP4P/2005f79, which has 4 centers of interaction for each 

water molecule, the total number of simulated atoms in the box has been 11457. Both MD and REMD 

trajectories used for this work has been obtained by extending the runs described in Ref. [3]: the MD 
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simulation in the canonical ensemble at 298K has been extended from 30 µs to 70 µs, to allow the 

calculation of the heavy-tailed TCFs of inter-bead distances, and the REMD simulation, run in NVT 

ensemble, with 36 channels spanning optimized temperatures in the interval 294.6K-512.0K, has been 

extended from 250 ns to 600 ns to further improve statistics. Both simulations were run with a timestep 

of 0.8 fs, and snapshots of the system were saved every 10 ps. 

To study the dynamics of the peptide by FEDT, the molecule has been coarse grained by grouping the 

atoms into beads according to the Martini CG prescription,80,81 Martini being a widely known and used 

CG forcefield for simulation of proteins and peptides. Here only its grouping strategy of atoms into 

beads has been adopted, the interaction potential used in the MD and REMD simulations being the full 

atomistic OPLS-AA/L forcefield100 as implemented in the GROMACS simulation software,101,102 

version 2016. At variance with Ref. [3], where the chosen two-bead per amino acid CG led to 23 beads, 

and 22 bond vectors, the Martini CG led to 26 beads and 25 inter-bead virtual bonds. Figure 1 shows 

the details of the adopted peptide CG. 
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Figure 1: Grouping of the amino acids atoms into beads according to the Martini CG prescription, and 

pattern of virtual bonds connecting the beads for application of diffusion theory methods. 

The positions of beads 𝒓𝑖 along the MD and REMD trajectories were obtained as weighted averages of 

the centers 𝒙𝑗 of the participating atoms 𝑗 ∈ 𝑖: 

𝒓𝑖 = ∑ 𝜌𝑗𝒙𝑗𝑗∈𝑖 ∑ 𝜌𝑗𝑗∈𝑖⁄  .                                                                                                                        (22) 

 

In Eq. (22) the weights for the atomic coordinates were defined as the radius 𝜌𝑗 of a sphere with a 

surface equivalent to the average exposed surface of j-th atom, computed from the trajectories by 

accessible surface area (ASA) methods103,104,105,106,107 with zero probe radius. 

In Ref. [3] the Stokes radius 𝑎𝑖 of a certain bead i was defined from the average sum 𝑆𝑖,𝑡𝑜𝑡 of ASAs of 

all atoms 𝑗 ∈ 𝑖 along the REMD trajectory, computed with zero probe radius, as 𝑎𝑖 = √𝑆𝑖,𝑡𝑜𝑡 (4𝜋)⁄ . 

The translational and rotational beads’ friction coefficients were then calculated by the Stokes relations  


𝑖
t = 6 𝑎𝑖, and 

𝑖
r = 8 𝑎𝑖

3, respectively,  being the shear viscosity of the continuous medium 

modeling the water solvent.  

In this work a more accurate treatment of the beads’ frictions has been adopted, considering that beads 

may eventually experience friction from both the solvent and neighboring parts of the molecule 

itself.108,109 While this type of modeling is mandatory in case of semi-rigid molecules where part of 

them are embedded into molecular grooves, and screened from the solvent, in our case the molecule is 

flexible, and each bead is statistically in contact with the solvent, so we expected just fine tuning 

effects on the results by application of the approach. Anyway, this improvement has been considered 

potentially important for the specific dynamics we are interested in, which depend entirely on internal 

molecular motions, and a modeling considering beads exclusively in contact with water was expected 

to yield less accurate predictions. 
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If we call 𝑆𝑖,𝑤 the bead’s average wettable surface, calculated along the trajectory by some ASA 

method with a probe radius equivalent to that of a water molecule (1.4Å), the difference 𝑆𝑖,𝑝 = 𝑆𝑖,𝑡𝑜𝑡 −

𝑆𝑖,𝑤 can be interpreted as the part of unwetted surface experiencing friction from the interior of the 

molecule itself, which increases the total friction on the bead. 

These quantities satisfy 0 ≤ 𝑆𝑖,𝑤 ≤ 𝑆𝑖,𝑡𝑜𝑡 and, correspondingly, 𝑆𝑖,𝑡𝑜𝑡 ≥ 𝑆𝑖,𝑝 ≥ 0.  

As in Ref. [108] we model the intra-molecular friction effects in terms of a continuous medium of shear 

viscosity 
𝑝

= 2. According to this reference, the definition of bead frictions to be adopted in the 

calculations, can be obtained by a plain generalization of the Stokes law as follows: 

̃
𝑖

t
= 6 ( √

𝑆𝑖,𝑤

4𝜋
+ 

𝑝
 √

𝑆𝑖,𝑝

4𝜋
),                                                                                                              (23) 

̃
𝑖

r
= 8 [ (√

𝑆𝑖,𝑤

4𝜋
)

3

+ 
𝑝

 (√
𝑆𝑖,𝑝

4𝜋
)

3

].                                                                                                 (24) 

However, since in terms of the variable 𝑢 = 𝑆𝑖,𝑤 𝑆𝑖,𝑡𝑜𝑡  ∈ (0,1)⁄  the ratios: 

 ̃
𝑖

t


𝑖
𝑡⁄ =  √𝑢 +

𝑝


 √1 − 𝑢 , and:                                                                                                          (25)  

̃
𝑖

r


𝑖
𝑟 =  (√𝑢)

3
+

𝑝


 (√1 − 𝑢)

3
⁄                                                                                                           (26) 

show undesirable maximum and minimum above 
𝑝
⁄ = 2, and below 1, respectively, we describe the 

friction on the beads in terms of an effective viscosity combining the water and the intra-molecular 

viscosities in proportion to the parts of bead surface exposed to either medium, according to the 

following definitions: 


𝑒𝑓𝑓

=  √
𝑆𝑖,𝑤

𝑆𝑖,𝑡𝑜𝑡
+ (

𝑝


)

2

(
𝑆𝑖,𝑝

𝑆𝑖,𝑡𝑜𝑡
) =  √𝑢 + (

𝑝


)

2
(1 − 𝑢),                                                                  (27) 

̃
𝑖

t
= 6 

𝑒𝑓𝑓
𝑎𝑖                                                                                                                                      (28) 

̃
𝑖

𝑟
= 8 

𝑒𝑓𝑓
𝑎𝑖

3.                                                                                                                                    (29) 
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The choice of the combination rule in Eq. (27) for the effective viscosity is somewhat arbitrary; other 

rules may have been employed as well, such as the Newtonian-like rule: 

 
𝑒𝑓𝑓

= (𝑢3 2⁄ +
𝑝


(1 − 𝑢)3 2⁄ )/(𝑢3 2⁄ + (1 − 𝑢)3 2⁄ ) ,                                                                       (30) 

for the effective viscosity as a volume-weighted average of the viscosities of the two media, or other 

relations aimed at modeling the viscosity of binary mixtures, given the viscosity of the pure 

components and the fraction of each one in the mixture.110 

All relations like these are equally reasonable within the approximate descriptions inherent to the 

modeling of the system within diffusion theories, for they show the qualitative expected behavior w.r.t. 

the exposition of the bead to the solvent, relative to the interior of the molecule.  

Eq. (27) has been elected for implementation in the computational FEDT code, due to its simplicity and 

its dependence on quantities as they are directly measured from the simulations. 

In Figure 2 the ratios ̃
𝑖


𝑖
⁄  are shown as a function of u for the bead friction definitions in Eq.s (23), 

(24), and Eq.s (28), (29). In the latter case the curves coincide. 

 

 

Figure 2: Ratios ̃
𝑖

t


𝑖
𝑡⁄  (red line) and ̃

𝑖

r


𝑖
𝑟⁄  (blue line) according to the bead friction definitions in Eq. 

(23), (24). Ratios ̃
𝑖

t


𝑖
𝑡⁄  and ̃

𝑖

r


𝑖
𝑟⁄  (coinciding in the pink line) following from the bead friction 
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definitions in Eq. (28), (29). Reference levels 1 (for 𝑆𝑖,𝑤 = 𝑆𝑖,𝑡𝑜𝑡), and 
𝑝
⁄ = 2 (for 𝑆𝑖,𝑝 = 𝑆𝑖,𝑡𝑜𝑡) are 

also shown (black lines). 

Within the adopted approach, together with a better modeling of the bead frictions, a better evaluation 

of the hydrodynamic interaction terms in the mobility tensor is also obtained, by ascribing this effect, 

which explains how beads influence one another’s motions trough the field of velocity they impress to 

the solvent, to only those parts of beads which are really exposed to water.108,109 

Beside beads’ positions, radii and frictions, the calculation of the matrix elements in Eq. (18b) requires 

the definition of beads’ orientations 𝒅 and the gradients of basis functions in the rotation space defined 

by those orientations. 

According to the CG modeling in Ref [3], each bead was connected to a maximum of two other beads, 

so that a linear chain represented the diffusive object. In that case the directions of the virtual bond 

vectors could be simply taken as orientations for the beads. 

Differently, the Martini CG defines a branched chain for the diffusive object (see Figure 1), and up to 

three bonds can connect to the same bead. For this reason, a definition of the bead orientation was 

formulated to keep into account the more complex chain topology, as a function of the directions of all 

the connecting bonds. To this aim, an inertia-tensor-like matrix was built up with the cartesian 

components of all the normalized bond vectors connecting to the bead, and the eigenvector associated 

to the maximum (minimum) eigenvalue was assumed as the bead orientation in case that more-than 

(only) one bond was involved. Denoting by 𝑥𝑙̂, 𝑦𝑙̂, 𝑧𝑙̂ the cartesian components of the l-th normalized 

bond vector connecting to a certain bead, the matrix to define the orientation is: 

(

∑ (𝑦𝑙̂
2 + 𝑧𝑙̂

2)𝑙 − ∑ 𝑥𝑙̂  𝑦𝑙̂𝑙 − ∑ 𝑥𝑙̂ 𝑧𝑙̂𝑙

− ∑ 𝑥𝑙̂  𝑦𝑙̂𝑙 ∑ (𝑥𝑙̂
2 + 𝑧𝑙̂

2)𝑙 − ∑ 𝑦𝑙̂ 𝑧𝑙̂𝑙

− ∑ 𝑥𝑙̂  𝑧𝑙̂𝑙 − ∑ 𝑦𝑙̂ 𝑧𝑙̂𝑙 ∑ (𝑥𝑙̂
2 + 𝑦𝑙̂

2)𝑙

).                                                                             (31) 

From the given functional definition, all derivatives (orientation w.r.t. bonds, and vice versa), necessary 
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to the calculation of rotational gradients, can be obtained. Interestingly, in the case of only one bond 

connecting to a bead, the bead orientation assigned by this method is the same direction of the bond 

vector, and the rotational gradients coincide with those defined in Ref. [3]. 

 

 

Figure 3: (a): bead (blue spheres) and orientation (red arrow) for the three situations arising in this 

work. These orientations are suitably chosen eigenvectors of the matrix in Eq. (31), built by the 

cartesian components of the normalized bond vectors (black sticks) connecting to the bead. (b), (c), and 

(d): peptide representations in terms of beads. Main chain beads (blue), side chain beads (ice blue), 
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together with Ace- (left) and -Nme (right) terminal group beads (grey), are assigned radii according to 

their 𝑆𝑖,𝑡𝑜𝑡, 𝑆𝑖,𝑤, and 𝑆𝑖,𝑝, respectively.  

In Figure 3 (a) the orientations assigned by the adopted criterion are shown for the three cases involved 

in this study. However, it is worthwhile to underline that the method is general, and a bead orientation 

can be defined for any number of connecting virtual bonds, by simply involving all the necessary bond 

versor cartesian components in the calculation of the matrix in Eq. (31). The following pictures in 

Figure 3 are molecular representations of the peptide in terms of beads. For easy visualization of the 

relative proportions between exposed and embedded parts of the beads’ surfaces, each bead is given a 

radius according to its 𝑆𝑖,𝑡𝑜𝑡 (b), 𝑆𝑖,𝑤 (c), and 𝑆𝑖,𝑝 (d). As stated before, owing to the molecular 

flexibility, most part of the beads are in contact with water, and the parts screened from the solvent are 

minority, and mainly concentrated in the more internal main chain beads. Side chain beads, and 

terminal groups are substantially exposed, and receive friction from water.  

The procedures and physical quantities described so far, for the calculation of the dynamic properties of 

scalar variables, required a specific program for FEDT to be written separately from the codes 

developed to calculate dynamics of vectors, and used in Ref. [3]. 

The new computational tool has been implemented in the CUDA-Fortran language, allowing to take 

advantage of GPU accelerators for the calculation of the diffusion tensor in the rRP approximation,86,87 

S and F matrices involved in the GEP Eq. (17), and for the calculation of TCFs by Eq. (14). 

CUDA-Fortran is an extension of the most modern versions of standard Fortran, provided by NVIDIA 

through the free NVIDIA HPC SDK suite of compilers. It defines supplementary syntax w.r.t. the pure 

language, to choose which parts of the calculations must be performed by the CPUs, and which ones by 

the GPUs, thus taking advantage of the high speed of CPUs in one case, and of the high level of GPU 

parallelism, in the other. The FEDT computational program has been developed as an add-on to the 
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well-known TINKER (ver. 8.10) suite of molecular modeling packages,111 also written in a modern 

version of Fortran, to take advantage of its capability of building topological information from input 

trajectory coordinates, suitably arranged in TINKER input “xyz” format. 

The calculation of MLF deserved special care, since evaluation by means of its power series expansion 

leads to catastrophic cancellation errors in correspondence to the negative arguments involved in the 

calculation of TCFs. A computation via a quadrature approximation of a contour integral representation 

in the complex plane, has been implemented according to the method given in Ref. [112], obtaining a 

numerical accuracy up to machine precision in the function values. 

Among the interatomic distances, three of them, defined between different parts of the molecule, has 

been selected as the target dynamic variables to be studied. In particular, the distance ℎ1 = 𝐵12𝐵22, the 

HT distance ℎ2 = 𝐵1𝐵26, and ℎ3 = 𝐵1𝐵19 has been considered (see Figure 1 to identify the mentioned 

segments in the peptide). Moreover, the dynamics of the radius of gyration ℎ4 = 𝑅𝑔:48 

𝑅𝑔 = {
1

2𝑛2
〈∑ |𝒓𝑗−𝒓𝑖|

2𝑛
𝑖,𝑗=1 〉}

1

2
,                                                                                                              (32) 

as a collective variable ruled by the shape of the molecule as a whole, has been investigated. Both 

normalized auto-correlation (ACF) 𝐶𝑖,𝑖(𝑡), and cross-correlation (CCF) 𝐶𝑖,𝑗(𝑡) functions have been 

calculated by FEDT and compared against to those obtained from the MD trajectory: 

 𝐶𝑖,𝑖(𝑡) =
〈ℎ𝑖(𝑡) ℎ𝑖(0)〉−〈ℎ𝑖〉2

⟨ℎ𝑖|ℎ𝑖⟩−〈ℎ𝑖〉2
,                                                                                                                    (33a) 

 𝐶𝑖,𝑗(𝑡) =
〈ℎ𝑖(𝑡) ℎ𝑗(0)〉−〈ℎ𝑖〉 〈ℎ𝑗〉

⟨ℎ𝑖|ℎ𝑗⟩−〈ℎ𝑖〉 〈ℎ𝑗〉
.                                                                                                               (33b) 

The subscript 𝛼, explicitly indicated in Eq. (14) on all quantities related to the fractional order of time 

derivative in the fractional Smoluchowski equation, is omitted for clarity of the formulae from here 

onwards, recalling that it has been fixed to 𝛼 = 0.8 throughout this work. With definitions in Eqs. (33a) 

and (33b), TCFs take the value 1 at time 𝑡 = 0, and decay to zero as 𝑡 → ∞.  
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The values of the static averages appearing in the formulae are given in Table I for the cases considered 

in the paper, as calculated from both MD and REMD trajectories by means of the Carlstein’s non-

overlapping block bootstrap procedure.113 Averages and confidence intervals (given at 95% confidence 

level) are the result of 100000 block bootstraps with block lengths of 550 ns for MD and 30 ns for 

REMD, sufficient to contain the correlations among the data. Worthwhile to notice that uncertainties in 

quantities derived from REMD trajectory are smaller than those related to the much longer MD 

trajectory, as a result of the enhanced sampling capabilities inherent to the former accelerated 

simulation. 

 MD REMD 

ACF 〈𝒉𝒊〉 (Å) ⟨𝒉𝒊|𝒉𝒊⟩ (Å
2) 〈𝒉𝒊〉 (Å) ⟨𝒉𝒊|𝒉𝒊⟩ (Å

2) 

i = 1 11.03 ± 0.18 129.5 ± 4.3 11.00 ± 0.18 128.6 ± 3.9 

i = 2 14.97 ± 0.54 259.8 ± 17.9 14.98 ± 0.40 262.4 ± 14.2 

i = 3 11.01 ± 0.52 147.2 ± 13.0 11.16 ± 0.41 151.7 ± 10.4 

i = 4 7.31 ± 0.12 55.0 ± 1.9 7.30 ± 0.094 55.0 ± 1.5 

CCF 〈𝒉𝒊〉 〈𝒉𝒋〉 (Å2) ⟨𝒉𝒊|𝒉𝒋⟩ (Å2) 〈𝒉𝒊〉 〈𝒉𝒋〉 (Å2) ⟨𝒉𝒊|𝒉𝒋⟩ (Å2) 

i,j = 1,4 80.7 ± 1.9 82.0 ± 2.4 80.3 ± 1.7 81.8 ± 2.0 

i,j = 2,3 164.7 ± 9.8 188.5 ± 14.8 167.1 ± 7.6 192.2 ± 11.7 

i,j = 2,4 109.5 ± 4.3 115.8 ± 6.1 109.4 ± 3.3 116.4 ± 4.8 

i,j = 3,4 80.5 ± 4.1 85.4 ± 5.5 81.5 ± 3.2 86.8 ± 4.3 

Table I: Static averages appearing in Eq.s (33a) and (33b) for the cases considered in the paper.  

Values from MD (70 µs) and REMD (600 ns) trajectories are equivalent within statistical uncertainties. 

 

In Ref. [3] a statistical analysis based on Kolmogorov-Smirnov and Kuiper tests114 of the time 

evolution of the empirical cumulative distribution function of the HT distance has been performed, 

showing that a 250 ns long REMD simulation successfully achieves exhaustive sampling of the 

TTR(105-115) conformational landscape. Since the quality of diffusion theory predictions depend on 

the quality of the provided equilibrium averages, it is important that the statistical averages are 
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calculated from sufficient sampling of all possible states. The extension to 600 ns of the REMD 

simulation w.r.t. the time window of 250 ns mentioned above, fulfils the need of exhaustive 

configurational sampling and allows for reliable EDT/FEDT predictions of the dynamics. 

    

 

Figure 4: ACFs of dynamical variables ℎ1 (red lines), ℎ2 (green lines), ℎ3 (blue lines), and 𝑅𝑔 (pink 

lines). Both sets of ACFs calculated from the MD trajectory at 298K (slowly decaying, smooth curves) 

and REMD channel at 298K (fast decaying, noisy curves) are shown.  

 

In Figure 4, ACFs of the selected dynamical variables ℎ1, ℎ2, ℎ3, and 𝑅𝑔, calculated from MD 

trajectory at 298K, are compared to the unphysical ACFs directly obtained from the configurations in 

the channel at 298K of the REMD simulation. Curves belonging to the MD set, which follow the true 

dynamics, are slowly decaying and smooth, while curves belonging to the REMD one, are fast 

decaying and noisy. It is manifest that REMD completely destroyed the system dynamics, indeed all 

curves in the REMD set appear quite immediately and equally fast relaxing.  

As clarified before in the paper, the loss of dynamics in REMD is not a problem for FEDT, since only 

equilibrium averages are needed by the theory. 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
89

51
8



26 

 

Figure 5: ACFs calculated from MD trajectories (red lines), and from FEDT (blue lines) with 8000 

basis functions involving products up to eight first order modes selected by LTSP, of dynamical 

variables ℎ1 (a), ℎ2 (b), ℎ3 (c), and 𝑅𝑔 (d). 

 

In Figure 5 the ACFs of the target dynamical variables ℎ1, ℎ2, ℎ3, and 𝑅𝑔, calculated directly from the 

298K MD trajectory, and by FEDT with 8000 basis functions involving products up to eight first order 

modes selected by LTSP, are compared. The maximum order of products of first order modes (eight) 

and the total number of functions to perform FEDT calculations (8000), are those ensuring convergence 

in the diffusion theory results, in the sense that using even higher order products of modes and/or 

bigger number of functions does not produce any observable change to the TCFs.  
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FEDT, using equilibrium averages obtained from the channel at 298K of the REMD trajectory, has 

been able to recover the dynamics from the accelerated simulation, and the formulation of TCFs in 

terms of combinations of MLF according to Eq. (14), is perfectly adequate to describe these dynamics 

developing in subdiffusive regime. Beside ACFs, in some applications such as the calculation of 

transition rate matrices to describe interstate dynamics,50 also CCFs are required quantities, so a 

selection of CCFs among the target dynamical variables has been studied under the same conditions 

used for ACFs: 298K MD and REMD channel, and 8000 basis functions involving products up to eight 

first order modes selected by LTSP, for FEDT calculations. 
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Figure 6: Selected CCFs between couples of target dynamical variables: 𝐶1,4(𝑡) (a), 𝐶2,3(𝑡) (b), 𝐶2,4(𝑡) 

(c), 𝐶3,4(𝑡) (d). Curves calculated from MD simulation are shown for both 𝐶𝑖,𝑗(𝑡) (red lines) and 𝐶𝑗,𝑖(𝑡) 

(green lines), together with FEDT results (blue lines) with 8000 basis functions involving products up 

to eight first order modes selected by LTSP.  

 

In Figure 6, four CCFs selected among the six originating from the target dynamical variables are 

shown:  𝐶1,4(𝑡) (involving distance 𝐵12𝐵22 and 𝑅𝑔),  𝐶2,3(𝑡) (involving distances 𝐵1𝐵26 and 𝐵1𝐵19),  

𝐶2,4(𝑡) (involving distance 𝐵1𝐵26 and 𝑅𝑔), and 𝐶3,4(𝑡) (involving distance 𝐵1𝐵19 and 𝑅𝑔).  

Even in these cases the dynamics have been quantitatively recovered by FEDT from the accelerated 

trajectory. The two CCFs 𝐶1,2(𝑡) (involving distances 𝐵12𝐵22 and 𝐵1𝐵26), and 𝐶1,3(𝑡) (involving 

distances 𝐵12𝐵22 and 𝐵1𝐵19) are not shown, for their MD curves are still affected by high statistical 

uncertainties, despite the 70 µs of collected trajectory, that do not allow comparison with FEDT results. 

This fact, together with the observation that in Figure 6, CCFs 𝐶𝑖,𝑗(𝑡) and 𝐶𝑗,𝑖(𝑡) from MD are not yet 

coincident as they should be in the absence of statistical uncertainties, shows that the study of dynamics 

developing on time scales of hundredth of ns, as those we are facing with in this work, requires MD 

simulations exploring the system for hundredth of µs or more. These findings, well known and 

thoroughly investigated in the Literature,115 state that study of dynamics developing on even longer 

times, proper to the biological world, is hopeless by means of standard MD alone. On the contrary, 

FEDT yielded more accurate CCFs from a two order of magnitude shorter REMD simulation of 600 ns. 

It is now of interest to evaluate how far the predicted EDT dynamics, which imply pure multi-

exponential decay of TCFs, are from FEDT ones. 

 

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
89

51
8



29 

 

Figure 7: EDT (fast decaying curves) and FEDT ACFs (slow decaying curves) of the dynamical 

variables ℎ1 (red lines), ℎ2 (green lines), ℎ3 (blue lines), and 𝑅𝑔 (pink lines). Both sets of curves, 

shown on a logarithmic scale, are calculated with 8000 basis functions involving products up to eight 

first order modes selected by LTSP.  

 

In Figure 7 EDT and FEDT ACFs of the target variables ℎ1, ℎ2, ℎ3, and 𝑅𝑔, calculated with 8000 basis 

functions involving products up to eight first order modes selected by LTSP, are plotted on a 

logarithmic scale. The EDT set of curves is by far too fast decaying to describe the dynamics of the 

target variables, because those dynamics develop in subdiffusive regime, and have marked 

nonexponential behavior. 

On the contrary, FEDT set of curves agrees well with the dynamics, as shown in Figures 5 and 6. 

It is worthwhile to recall that EDT and FEDT eigensystems of Eq. (17) are the same, so also the 

projections of the variables over the eigenvectors, involved in Eq.s (5) and (14), are identical in the two 

cases. The only, but decisive, difference resides in the time dependence, which is exponential in Eq. (5) 

for EDT, and Mittag-Leffler in Eq. (14) for FEDT, because of the partial order of time differentiation in 

the fractional Smoluchowski equation, in the latter case. 

It is also interesting to notice that subdiffusive relaxation of the HT distance is much slower than 
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diffusive orientational relaxation of HT unit vector. In Ref. [3] it was found that HT orientational 

relaxation completes within 12 ns, while ACF of HT distance is still significantly above zero at 160 ns, 

as can be seen in Figure 5 (b). Orientational relaxation depends on both internal molecular motions and 

molecular thumbling, while relaxation of intramolecular distances depends on internal molecular 

motions only. It is plausible, then, that due to the molecular size, the major contribution to the 

orientational relaxation of HT unit vector comes from a fast diffusive molecular rotation, and that 

internal, slow and subdiffusive molecular motions, just act with minor effects on that relaxation. 

Calculations of dynamics of scalar variables by diffusion theory methods are computationally more 

demanding than calculations of dynamics of vector variables. Indeed, in the former case, we need a 

number of scalar products of bonds in the order of m2, to build a first order scalar basis set for a 

molecule containing m bonds, while in the latter case, by adopting the Hybrid Basis Approach,3,26,27 

only 2m elements are necessary to form the first order vectorial basis set, which defines a much better 

scaling of the calculation loads w.r.t. the growth of the molecular size. 

Since the complete set of first order modes must be included in the basis set for upper order 

calculations, together with products of first order modes selected by LTSP, it is of interest to investigate 

whether it is possible to reduce the size of first order basis set, by reducing the number of scalar 

products of bond vectors to include in the first order calculations.  

To reduce the first order basis set, only the scalar products of bonds that are expected to give maximum 

contributions to the dynamics are to be considered. This can be done in the spirit of the Maximum 

Correlation Approximation,22 (MCA) according to which the dynamics of a bond variable is maximally 

influenced by bonds within a certain δ-neighbor around it, δ  being the physically important range of 

motions cooperativity. According to this line of thinking, products of bonds beyond this δ-neighbor 

capture only minor effects of the dynamics and can be discarded from the first order basis set. 
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Figure 8: Upper order FEDT eigenvalues 𝜆̃ calculated by starting from first order basis sets including 

scalar products of bonds within MCA neighbors δ=5 (red line), δ=10 (green line), δ=15 (pink line), and 

δ=25 (blue line). Products up to eight first order modes, selected by LTSP, are included in upper order 

calculations together with all first order modes. 

 

In Figure 8 the upper order FEDT eigenvalues 𝜆̃ are plotted on a logarithmic scale. The upper order 

basis set is formed by all first order modes and products of up to eight first order modes, selected by 

LTSP. The first order modes are built from reduced basis sets according to the MCA approach. Results 

from different MCA δ-neighbors are shown: δ=5, δ=10, δ=15, including 115, 205, and 271 scalar 

products of bond vectors, respectively. For comparison, also the result from δ=25, i.e. the complete set 

of 325 scalar products, is plotted. While the first two cases show remarkable difference w.r.t. the 

calculation with all possible products of bonds, from δ>15 to δ=25, the calculated TCFs are graphically 

indistinguishable from those shown in Figure 5 and 6 (not shown). 

MCA approach, then, allows for reduction of the first order basis set, and can be invoked each time a 

calculation with complete set of scalar products of bonds requires excessive computational resources. 
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4. CONCLUSIONS 

By building upon a recently introduced method named Extended Diffusion Theory - EDT, for the 

extraction of dynamics from biased/accelerated molecular simulations, suited to recover dynamics 

developing in regular, Brownian diffusion regimes, in this paper a diffusion theory method, named 

Fractional Extended Diffusion Theory - FEDT, is proposed to recover dynamics from enhanced 

sampling molecular simulations also in cases when dynamics occur in subdiffusive regimes. 

To this aim, a fractional Smoluchowski equation has been considered, where first derivative in time has 

been replaced by a fractional order derivative with respect to the temporal variable. 

This has the effect of changing the temporal dependence in the expression of the time correlation 

functions, in terms of which the theory expresses the dynamics, by transforming the exponential 

dependence, appropriate to describe regular diffusion regimes, into a Mittag-Leffler dependence, 

capable of capturing the stretched exponential, and inverse power law characters typical of time 

correlation functions of systems in subdiffusive regimes.  

Mittag-Leffler function is a generalization of the exponential function defined by the time fractional 

order of differentiation in the Smoluchowski equation, and it becomes exactly exponential when the 

fractional order of differentiation in the time variable is one. For this reason, FEDT can be considered 

as a generalization of EDT useful in both regular and anomalous diffusion cases. 

The fractional order of differentiation introduces a parameter in the theory, so, while diffusion theories 

developed so far are fully predictive, in the sense that all quantities on which they depend are fully 

determined by the specific system under study, FEDT is a one-parameter theory, and loses the fully 

predictive feature. However, the method conserves its practical value, for useful values of the extra-

parameter can be either estimated from the wide literature devoted to the interpretation of experiments 

on molecular dynamics in terms of stretched exponentials, or by adopting suitable simulation methods 

and settings to estimate the parameter without leaving the framework of the computational modeling. 
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The method requires in input no dynamic information, but only equilibrium averages of suitable 

dynamical variables, so any molecular simulation protocol allowing to calculate the static properties of 

the system can be coupled with FEDT for the purpose of obtaining dynamical information, even when 

the chosen protocol destroys the dynamics by itself. Indeed, FEDT exploits the enhanced 

configurational sampling that biased/accelerated simulations are capable of, through the high-quality 

equilibrium averages they are able to provide, and acts as a “translator” between these static properties 

and dynamics, yielding them in the form of time correlation functions. 

At variance with EDT, developed and used in previous studies to recover dynamics in regular diffusion 

regime of vectorial quantities, FEDT has been developed and applied to the study of the dynamics of 

scalar variables; specifically, intramolecular distances and molecular radius of gyration. Indeed, both 

experiments and simulations show that dynamics of scalar variables entirely depending on internal 

molecular motions, easily develop in subdiffusive regimes. 

A computational program in the CUDA-Fortran language has been implemented ex-novo as an add-on 

to the well-known TINKER suite of molecular modeling packages, exploiting the high level of 

parallelism of GPU hardware to accelerate the calculation of the matrices of the generalized eigenvalue 

problem in terms of which the theory gives approximate solutions to the Smoluchowski equation, and 

the calculation of the time correlation functions.  

Ease of integration of the proposed method with well-established frameworks of computational 

modeling, has also been shown by applying FEDT to the molecule modeled according to Martini 

coarse grained prescription, which is now a standard way to model peptides and proteins. 

The method, applied to a peptide fragment of the protein Transthyretin, TTR(105-115), in water 

solution, allowed for quantitative recovery of dynamics of the above mentioned scalar variables, both 

in terms of self- and cross-correlation functions, from a replica exchange molecular dynamics 

simulation, 600 ns long. The dynamics obtained from the theory favorably compared against those 
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obtained by a standard molecular dynamics simulation of the same system, 70 µs long. 

The comparisons also evidenced how the theory can accurately access dynamics occurring on time 

scales much longer than the time window employed for the accelerated simulation, while MD time 

window must be orders of magnitude wider than the time scale proper to the dynamics we are 

interested in, to yield them with an accuracy comparable to the theory. Such long MD simulations are 

not yet feasible for most of the systems of practical interest, whence the great impetus, within the 

scientific community, in the search of techniques capable of recovering dynamics from 

biased/accelerated simulation. Within this framework of research, the coupling of enhanced sampling 

techniques with the proposed FEDT method is a viable way to study molecular dynamics occurring in 

both regular diffusive and subdiffusive regimes, of systems of practical interest, otherwise 

computationally intractable. 
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