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éEstract,

Finding a maximum cut of an arbitrary graph is a problém contained in a
list of 21 NP~complete problems (Karprook list). It is unknown whether or
not any of these problems can be solved by a polynomial bounded algorithm.
Hadlock has found a polynomial bounded algorithm for finding a maximum cut
in planar graphs, In this paper it is shown that the maximum cut problem
can be solved in polynomial time when there éxista at least one node x in
the planar or non planar graph under consideration such that each odd
elementary cycle ofvthe graph contains two edges incident to x. The overall

computation of the proposed translation process is 0(n3) in lenght.



1. Introduction.

Let G=(N,Az) be an tndirected graph, where the edges are weighted with
positive integers. Let S¢€ N be a subset of nodes in the given graph and
denote by A(S) the set of edges that are incident to at least one node in S.
Let s and t be two distinct ncodes in N, with s £ 8, t €eN-8. Then the edges
in the subset A(S)/VA(N-S) are said to be a cut disconnecting s and t and
are denoted by S, N—S. The sum of the weights of the edges in 8§, N-S is
called the weight of the cut, and is denoted by w(S, NfS).

Hadlock [ HAD] has found a polynomial bounded algorithm for finding a
maximum cut, that is a cut $%, N-S% such that w(S$*, N-§%) is maximum, in
planar graphsq In this paper it is shown that the maximum cut problem can be
translated into the maximal flow problem between a pair of nodes [ FOR ] when
there exists at least one node x in the plénar or non planar graph under
consideration such that each odd elementary cyclé of the graph contains two
edges incident to X. Since the maximal flow problem has a polynomial bounded
algorithm [EDM 17, a maximum cut of any graph satisfying the property above
mentioned can be found in polynomial time.

Before describing the translation process, some properties of hypergraphs

need to be proved.



2, The hypergraphical matroid.

A matroid [ HAR] M*(Z,U) is a structure which consists of a finite set

Z of elements together with a familyg of subsets of Z called independent sets
such that:

19 aj;

2y if L ej and L'¢ L then L' é:j;

- 3) for every 2'€Z, if X, and X, are maximal indepéndent sets contained in Z°,
then lelnlle.
The elements of Z are said to be the cells of M.

Let Z'€ Z be a subset of cells. The rank r(Z') of Z' is defined as follows:

r(Z') = max |LnZ'[
Leﬂ

For example, let A; be the set of edges ofA a graph G and"j be the family
of all acyclic subgraphs of G, then’MG=(AG,j) is a matroid.

The following theorem gives another, equivalent, definition of matroid:

Theorem 1: [ WHI]. Let Z be a finite set of elements and let each subset

of Z be or not be a circuit. If:

1) no proper subset of a circuit is a circuit,

Z) let P1 and P2 be circuits and e ePlﬂ Py, then PIU Pz-*{e} containg a
circuit,

the resulting systém'is a matroid..

Let H=(N, A) be a we.ighted hypergraph. Let E& A be a subset of edges in
the given hypergraph and denote by N(E) the set of nodes that are connected
to at least one edge in E. Let x €N be a node in H and denoté by A(x) the
set of edges that are incident to x. Then a subset C& A such that lax)n ¢l

i3 even for each xeN(C) is said to be an h-cycle in H. Let C& A be an h-cycle,
if no proper subset of C is an h-cycle, then C is. said to be an elementary

i
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h-cycle. A subset of A that is not an h-cycle and dees not contain h-cycles
is said to be and h-forest in H. Note that, if H is an ordinary graph,
definition of elementary h-cycle in H is equivalent to definition of

elementary cycle in H.

Lemma 1. Let Cl’ CZ be h~cyc1és in H. Then C33(C_1UC2)—(C1A Cz), (shortly
C3=C1® €,) is also an h-cycle in H.

Proof. Consider a node xeN(C3). Observe that:

AGINCy = (AG) N (C1V Cy))=(AX) A (€ NC,y)) =

= AENACHV AN Cy) - (A(x) N (c,nc,)) ‘

Then A(x)N €C3 contains |A(x)N C1} +lA(x)nC2|-2lA(x)ﬂ (Clﬂ Cz)! edgés, that

is an even number of edges. It follows that C, is an h-cycle in H.

3

Theorem 2. Let H=(N, A) be an hypergraph'.Then'MHt (A,}.), where J.is the
family of all h—~forests of A, is a matroid.

_Proof. In order to prove this theorem it is sufficient to recall from
Whitney [ WHIJ that a subset of cells is independent if and only if it contains
no circuit and to observe that any elementary h-cycle satisfies conditions

stated by Theorem 1 for circuits. In fact:

1) no proper subset of an elementary h-cycle is an elementary h-cycle (it
igs immediate from the definition); ,
2) if ¢y and Cyare elementary h-cycles and eeCyN C, then clu Cz—{e} contains

an elementary h-cycle: it follows from Lemma 1 observing that:
- =2
cv e, {e} =22 C:L@Cz“

The theorem follows.

The matroid My = (A,'}) iz said to be the hypergraphica]';'matroid‘of M.

Any maximal independent set Fg e'} is called a sPanningth—’tree of H.



3. The cut=h-cycle hypergraph.

Let G=(N, AG) be a weighted graph. Let RG be a set of cycles of G such
that:

a) R, contains a cycle basis B = {C 3CpseensCy } of G, that is a set of
elementary cycles such that each other cycle can be wrltten as
i(l)@ Ci(2)@ "‘Q(:i(c) R where Ci(l)’ i(Z)""’ ie) are cycles of BG’
A cycle C is said to be an elementary cycle if no proper subset of C is

a cycleg

b) RG contains, also repeated if alréady contained in By, the elementary cycleg
of the set D=(C,® CZQ C® . . ® Cb)'

It is immediate from the definition that each edge of A is contained in at

least two cycles of RGI. The set R, will be called a representation set of

G. Note that if G contains at least one odd cycle, that is a cycle

containing an odd number of edges,then Ra contains in any case at least two
odd cycles. In fact, if G has only one odd cycle, then each cycle basis of
G must contain an odd cycle (let C1 and C, be even cycles,that is lC | and
[Czl be even: then lClﬁiczl is also even). On the other hand,if a cycle basis
of G contains one odd cycle, then }Dl is odd and must contains at least one

odd cycle.
Let us define an hypergraph I=(R, A ) as follows:

1) R is a set of nodes corresponding one-to-one to the elements of Re3

2) Ag is a set of edges corresponding one*to*one to the edges of AG,
3) let RéS&RG be a set of cycles, and denote by S(R J the correspondxng set
6f nodes in R. Let aE:A be an edge in G, and denote by t(a) the set of
the cycles in RG containing a. Then the edge of Ay corresponding to a is

connected to the nodes of s{t{a)):

4) each edge of AI has the weight of the corresponding one in AGm

'If there are cut—edges.in G, the whole procedure must be repeated for each
connected component yielded removing all cut-edges from G, thus each
maximum cut of G consists of maximum cuts of all connected components and
of all cut-edges in G.



The hypergraph I=(R, A ) will be called the cut-h~cyc1e hypergraph.of G.

Note that if G is a planar graph, then the geometric dual graph of G is
a cut~h-cycle hypergraph of G. In fact it follows from the definition of RG

that the set D coincides in this case with the contour of the infinite face
of G.

Theorem 3. Let G=(N, Ay) be a weighted graph, and I=(R, Ay) be a cut-
h-cycle hypergraph of G. Let TES sN=8q be a cut in G and denote by CT‘
the set of edges of I correspondlng to the edges of T. Then Cy is an h*cycle
in I,

Proof. If T contains an even number of edges of each cyclé disconnectéd by
T in G, it is immediate that CT is an h-cycle in I. Suppose that there
exists a cycle Co such that lC NT| is an odd number. It follows that,
beginning with & node in STg the sequence of points and llnes composing C
must end with a node in N- Sps because 1t must cross T !Coﬂ Tl times. This

contradicts the definition of cycle. The theorem follows.

Theorem 5 states that there exists a one-to—one corréspondence bétwéén
cuts in G and h-cycles in I. In order to prove this result, a rg}é for
finding spanning h-trees of Ineeds to be found. A spanning h-tree oﬁ I
could be found by means of the greedy algorithm[ EDM2], baséd on the property -
that any independent set of cells FC such that, for each element ach FC’
F:V {a} is not independent, is a maximal 1ndepgndent set of MI. In thls
case, the problem of verifying the independency of a set of edges through
the definition of h-cycle is very difficult. It'isindeed more convenient

consider the corresponding set of edges in A, as stated by the following

theorem:

Theoyem 4: Let G=(N, AG) be a weighted graph, and I=(R, AI) be a cut-
h-cycle hypergraph of G. Let M B(A ,i}) be the hypergraphical matroid of I.

Then the subset F;C A correspond ing to a cotree A of G is a spanning h-tree
of I.




Proof. In order to prove this theorem it is sufficient to verify that:

1)F e’}“

2) F U {a} ¢§‘, for each acA -—FS

In order to verify condition 1, consider an edge acA. From the definition of

cotree it follows that there exizts a subset A*ﬁAG-A such that C¥=a%y{a}

is an elementary cycle. Obviocusly C¥f) A={a}. Consider now a cycle basis

By {Cl’ gsCqsoeesCy }' contained in R.-
Let B—~{c1 cz,...,ci} be the subset of B, such that C#=C.& c2®c32,@ci,

Then at least one cycle of B must contain an odd number of edges of A, that

.18, A is not an h-cycle. In fact, if it is not true, then:

!(C1® Cz)ﬂ K] is even
lcc@c,e )N & is even
t(ClL@CZ@ C3...® Ci)ﬂ A] is even

thus contradicting the hypothésis that C¥nA={3}. As this result holds for
each edge of A, it follows that each subset F'& FS, corresponding to a subset

S
A'€ A does not contain h-cycles,

In order to verify condition 2, con31der an edge a'e (A -A). The set
AU{a"} must contain a cut. Then the correspond:mg set in AI must contain an

h-cycle. The theorem follows.

Theorem 5. Let G=(N, AG) be a weighted graph, and I=(R, AI) be a cut~
h-cycle hypergraph of G. Then there is a one-to-one correspondence between

cuts in G and h~cycles in I.

Proof. It is immediate from Theorem 4 that each spanning h-tree Fgq of I

is such that ]FS[z[AG[-INIH. Then, as FoV {a} ¢4 for each aeh ~Fg, there
exist a set of at least IA1!~]AG|+}N]~1m'Nl-1 indepéndent elementary h-cycles,
(the h-cycles in a set I‘H are said to be independent h-cycles if each

h-cycle Hi in IH cannot be written as HIO Hz@ @Hh where H,  H "‘“’?Hh

19
are h-cycles in IH-‘{Hi}),




On the other hand, let C be an eiementary h"cyclé of I and B&*{Cl,cz,...,ch}
a set of independent h-cycles, each one obtained by the union of a spanning
h—- tree FS with an edge of (AI-FS)ﬂC Then CmCl@C @cC ,.,@Ch In fact
the set Cl@ Cz@ o @Ch is the union of (AI Fs)ﬂ C with the unique subset
of edges contained in rs that complete the h-cycle C. (There is only one
subset in FS with such property. In fact,suppose that there are two subsets
Al and Ay in FS with such property; then Ale A2v is an h-cycle contained in
FS: this contradicts the definition of Spagning.h—tree). It follows that
any set By of IN|~1 independent h~cycles, each one obtained by the union of
a spanning h-tree FS with an edge of AI“FS is such that each other h-cycle
in I can be written as Cf@ Czéﬁ...ﬁbch, where Cl’CZ"°”Ch are h-cycles of

BHQBﬁ is said to be an h-cycle basis of I.

Let BC be a cut basis of G,that is a sét of cuts such that each othér cug
can be written as T @ TZ”"@T where T}_’TZ’“"T are cuts of Bo. Comsider the
family By of the h—-cycles corresponding to the cuts of By Obviously fB !ElB !n
m[NEn@ Morecver the h~cycles in B, are 1ndependent s 80 that B is an h~cycle
bagis of I.

As there is a one-to-one correspondence between cut bases of G and h~cycle
bases of I,it is possible to conclude that there is a one-to-one correspondence

between cuts in G and h-cycles in I.

The associated spanning h~tree corresponds in G to the cotree assoc:.ated to
the sPannlng tree of G defining the cut basis BC



4. Reduction of the maximum cut problem to a minimum cut problem for a

class of graphs.

The maximum cut problém 1s then reducible to the problem of finding a
maximum h-cycle in I, that is an h-cycle such that the sum of all weights
associated to its edges is a maximum in I.

Let CT be a maximum h-cycle in I. Then F§3A1~C§ is a minimum set of edges

such that AI-F¥ is an h-cycle. Note that 5A(x)/&F?[ is even or zero if x is

a node with even degree’

in I, is odd if x has odd degree in I. Remember
that if x is a node of I,then A(x) denotes the set of edges that are
incident to x.

Let I=(R, AIU{d}) be the weightéd hypergraph obtained by adding to A, an

I
edge d of weight l,connecting all nodes with odd degree in I. Then finding
a maximum h-cycle in I is reducible to finding in I' & minimum h~cycle
containing d. In fact it follows from the definition of d that Fﬁ&}{d} is
an h-cycle. On the other hand suppose that ¢ is 2 minimum h~cycle containing
d. Then ¢°~{d} ie a minimum weighted set of edges such that iA(x)f%(CO~{d})ﬁ
is even or zero if}:haseven-degree, is odd if x has odd degree. It follows
that AI*(CO~{d}) is a maximum weighted h-cycle in I.
Note that if a representation set of G contains only even cycles, the
maximum cut of G consists of all edges of AGo In fact a graph G is
bipartite if and only if G has a cycle basis containing only even cycles[ HAR].
The following theorem gives a property P such that, if a graph G satisfies
P, then I' is a cut-h-cycle hypergraph of a graph G' that can be easily
cbtained from G. Then finding in I' a minimum h-cycle containing d is finally
reducibtle to finding a minimum cut in G' discounecting the two nodes connected
by the edge corresponding to d. This problém is equivalent to evaluating the
maximal flow between such two nodes and can be solved in polynomial time
[EDML].

et H=(N, A) be an hypergraph and x be an arbitrary ndde in N. Then ﬁA(x}?
is said to be the degree of x in H.



Theorem 6, Let G=(N,A) be a weighted graph. Let P be the following property:

Py there existes a representation set ﬁG of G such that:

1) There exists a node x such that each odd cycle of §G contains two edges
incident to xg

2) it is possible to order each edge of A(x) so that the edges of A(X)N C,
where @e:ﬁg,have the same direction if |C| is odd, have opposite directions

if |C| is even.

If G satisfies P, then a graph G' can be obtained from G such that I' is a
cut~h-cycle hypergraph of G'.

Proof. Suppose that G satisfies P and order the edges of A(x) like stated
by the property P. Consider a graph G'=(N', Aé) defined as follows:

1N = (N={xD)V {xg,x,)
LI EATA Rl @
2) AG = AGki{d}ﬁ w?ere d (xl,xz)
3) Each edge of A(x) is connected:
a) to %1 if it ends in x
b) to %2 otherwise

4) All other connectionsg and weights are as in G.
Consider furthermore a set & of elementary cycles of G' defined as follows:

a) € contains each even cycle Eg obtained as follows: let ED be any odd cycle
of Ry; then there exists in G' an even cycle Cﬁ cqnsis;ing of all edges
of CD&f{é}, In fact the edges of EDf!A(;) have the same direction and so
in G' one of them is connected to §1 and the other to izg | A

b) € contains each even cycle C! obtained as follows: let EE be any even

E

cycle of ﬁG; then there exists in G' an even cycle Eﬁ consisting of all

edges of Cp. In fact the edges of EEiﬁA(§)9 if there are any, have opposite

direction and so in G' are both connected to %1 or to izo
¥ is a representation set of G'. In fact:

a) € contains a cycle basis %é of G'. In fact any cycle basis of G' can be

obtained considering the elementary cycles yielded by the union of a spanning tree

4



with each other edge in G'. Then, let T, be the spanning tree corresponding

G
to a cycle basis B &(Cl’c?;”“’c ) contalned in RG‘ Replacing the node x

with the pair (x}_, xz) connectad by the edge d transforms TG into a
spanning tree Té of G'. The union of T' with each edge of (A U{d})“Tg
yields a cycle basis Bén(cl’,(l 3,...., b) containing the cycles of BG
transformed as described in the definition of G'. These cycles have been
added to € .

b) € contains, also repeated if already contained in B!, the elementary
cycles of the set 5'*(6{@ 65@65@.“@6&): let 65, C‘g j#k,be cycles of
Bé such that 653 {d} and E;(¢ {d}; and Ej’ ék be the corresponding cycles

of BG’ Then it is easily seen that

(CJ,@ c{() = (cj@ C v {d}

If both C! and C' contain or not. d, then C!®C'=C.® C, . Let DG A be a
j k 0 G

set of edges defined as follows:
D = (Cl@ CZ&) C3®”°®Cb)
Then it follows that

D'=D or D'=Dv{d}

Moreover, as D' must be a set of élem&ntary cy’c:].és$ {d} eD' if an odd
elementary eycle C &:ﬁG of the set D contains two edges incident to X,

It follows from the definition of € that there exists in € a cycle
c'=cu{d}.

Consequently , whether D'=D or D'=DV {d}, it follows that € contains the
elementary cycles of the set D°.

It is easily seen that the cut-h~cycle hypergraph of G' defined ugingﬁ

as representation set of G' is exactly I'. The theorem follows.

Note that the graph G' contains only even cycless because the cut»~h-cyc1«e

~ hypergraph of ¢', obtained as previbusty degcribed, contains only nodes with

- 10 -




even degree. It follows that,if ¢ satisfies P,éli 6dd elementary cycles of
G contain two edges incidént to X.

On the other hand the following Theorem 7 states that if each odd
elementary cycle of G contains two edges incident to oné node ;, then it is
possible to order each edge of A(E) 80 thgt thé edges of A(E)i\C, for each
elementary cycle C of G containing two edges incident to x, have the same
direction if [Cf is odd, have opposite direction if !CI is even.

It follows that, if each odd elementary cycle of G contaxns two edges
incident to one node x, then G satisfies P and any representatlon set of G
can be used for obtaining a cut~h-cycle hypergraph of G'.

Then the reduction of the maximum cut problem to a minimum cut problem,
as described in this paragraph, holds for the class of all graphs containing
at least one node x such that each odd elementary cycle contains two edges

incident to x.

Theorem 7. Let G=(N, A;) be a graph. If each odd elementary cyclé of G
contains two edges incident to ome node x, then it is p0381ble to order each
edge of A(x} g0 that the edges of A(X)A C, for each elementary cycle € of
G containing two edges incident to x, have the same direction if |c| is odd,
have opposite divections if iCi is even; that is G satlsflgs P.

Proof. The proof is constructive. Let us define a graph PGW(X, CG) as

follows:

1) X is a set of nodes corresponding one-to-one to the édgés of A(X);

2) Cy 1s a set of edges corresponding one-to-one to all elementary cycléa
of G that contain two edges incident to x;

3) each edge g €Cy corresponding to a cycle C of G connects in P, the two

nodes corresponding to the edges of A(x)f\ C.

The nodes of X will be labeled '+' or '-' so that the corresponding edges
of A(x) will be directed away from or toward E,respectively.

Let us suppose, without loss of generality, P, be a connected graphl. Let

G

‘1f PG is not comnected, the proof must be repeated for each connected
component.,

- 11 -



ED be the set of all edges of CG corresponding to odd cycles in G and %?E
the set of all edges of CG corresponding to even cycles in G.

Cons1der the partial graph D,=(X, 8 ). Let

SpS

= X,y

(X s’ﬁD)s DGZ (XS{:’D)»“’°‘° 9 }

(

be the connected components of D, and consider at first Dls(x1 %Zé)u

G

Let T1 be a spanniag tree of Dé, Label the nodes of X w1th '+' or '-' so

that each adge of T connects a node labeled with '+' and a node labeled with

'-', Then each other edge of ﬁ? must connect a node labeled '+' and a node

labeled '-'. In fact, suppose that there exists an edge Cg connecting two
nodes with the same label. It follows that C%&JT; vields an odd cycle KD in

P corresponding in G to an odd number of odd cycles (€C15Cp5Cqse0.5C ). Then
c.® CZGE.,wéBCd) is a set of elementary cycles of G containing at least one
odd cycle C_, as ﬂCﬂ@ Czﬁag,wﬁﬁcdﬁ is odd. Moreover C fI A(X)=f as Ky is a
cycle in Pga Thie contradicts the hypoth651s that each odd cycle of G contains
two edges incident to x. On the other hand, let CE efy be an edge connecting
two nodes x% and X% of Xl, then x% and xé have the same label. In fact,
suppose that x% and x5 have different labels. Then Cé&JTg yields an even
cycle Kg in P, corresponding in G to a set containing an odd number of odd
cycles. This, as previously seen, contradicts the hypothesis that each odd
cycle of G contains two edges incident to x.

This result holds, obviously, for each connected component of EG°

Consider the subset %?I of all chains contained in E?E and connecting two
nodes of different connected components. If tf{ contains only cut-edges of
Pos the initial labeling of the nodes of each éonnectgd component subséquent
the first considered is assigned such that the nodes connected by each cut—
—edge have the same label. Otherwise, provided that a proper initial
labeling of each spanning tree Igw 1<i<s, is performed such that at least
one chain in %21 connecting Tg to one spanning tree already labeled connects

nodes with the same label, then each other chain inzfi connects two nodes

- 12 -




with the same label. In fact, let E§I<:t} be the set of chainsg in E?I connecting
nodes with the same label, and suppose that there exists a chain CIEZEI
connecting nodes with different labels. _
Then there exists a cycle Kl in Po consi§ting of CI’ wf some chains in E?I’
of some edges of some spanning trees of {Tg, 1:5i:§s}. It follows that, as Kp
corresponds in G to a set containing an odd number of odd cycles, the chain
€y cannot exists in € 1° Label the intermediate nodes of each chain as the end-
points. The theorem follows, as each edge corresponding to an even cycle has
the nodes labeled with the same label and each edge corresponding to an odd
cvcele has the nodes labeled with different labels.
The proof of Theorem 7 givesezpolyﬁomialboﬁnded procedure for verifying if
any graph G s&tisfiés propérty P. In fact, let RG be any arbitrary representation
set of G. If a node x' such that each odd cycle of Re contains two edges
incident te x' does not exist, G does not satisfy P. If there exists a set

{Xg} of nodes like x', let us define a set of graphs Pém(xl,cg} as follows:

D x is a set of nodes corréspanding one-to-one to the edges of A(x;);

) C; is a set of edges corresponding one—to—one to the cycles of RG that
contains two edges incident to xi;

3) each edge g €C§§ corresponding to a cycle C of RG’ connects in PG the two

nodes corresponding to the edges of A(xi)ﬂ(:

If G satisfies P (that is if there exists in G at least ome node X such that
each 0dd elementary cycle contains two edges incident to x), then it is possible

to label the nodes of at least one graph P; as described in the proof of

Theorem 7 for the graph PG@ On the other hand, if such a labeling is possible,
then ¢ satisfies P.

As a conclusion,the translation process consists of two cascaded phases:

1) Verifying if G satisfies P;

2} Construction of G'.

In order to execute phase 1, it is necessary to find all xi and, for each

i . . . .
Pr, to find a spanning tree in each connected component, to label its nodes

....13.._



and verifying the labels for each other edge in C.. Since the nodes in

@} as well as the associated graphs, the nodesRin Xi and the edges in Cé
are at most nmgNi the computation requlred for phase 1 is evaluated as O(n Yo

In order to execute phase 2, it is necessary to scan the e&ges of A(x! } R
where xl is the node selected in phase 1. As A(x )< n~-1, 1t ig concluded that

the overall computation for the translation procass is O(n )} in lenght.

- 1L -



ﬁﬁ Examgie@

Consider the weighted undirected graph G=(N, AG) in Fig. 1. Select the
spanning tree Tg consisting of the edges A, L, M, N, F, H, O. TG defines a

cycle basis

BG = {Clyﬁzgcgyﬁggcsscé} where

¢, = {a,B,0,L} c, = {c,o,m} Cy = {p,F,N,L}

¢, = {g,mM,L} c. = {¢,0,n,u} c, = {1,M,5} .
The set

D= (C,®C,@C,@C,@&C.OC.) = {I,M,N,0,G,H,F,D,L,A,B,C,E}

37 740 75 6’

contains the cycles

= {0,G,H,F,D,L} = {A,B,C,E}

Cs
Then the set of cycles
RGW"LC 2C55C4,C, 5Cq 5C¢ sCo5Cq 09}

is a representation set of G,

By inspection in G, it is easily seen that all cycles in RG; excepting ng
contain two edges incident to h. Then the graph ng(x, CR) is defined as
shown in Fig. 2Z,where Xm{KLaxmﬁxNon} are the nodes corresponding to A(h);

C, = {a

R }

o182 2 c3 Aesr Aot Aoer Ao Ao

are the edges ccrzespondamg to the cycles conﬁalnlng two edges incident to

h  and the nodes in X are labeled considering the spanning tree T w{ACz, CQ’ACG}

-~ 15 -



As each edge in C_ corresponding to an odd cycle of R, connects two nodes

R G

with different label and each edge in CR corresponding to an even cycle of

R, connects two nodes with the same label, the graph G satisfies the property
P and the graph G'=(N", Aé} can be defined as shown in Fig. 3.

The minimum weighted cut discomnecting the two nodes h1 and h, is
T, = {h by N'={h ), w({h ), N'~{n,}) =2

and consists of the edgés M and P.

It follows that the maximum wéighted cut of G is
Ty = (b,e.gl, N={b,c,g} , w(lb,c,g}, N-{b,c,g,}) = 64

and consists of the édgés of A -{M}.

Note that the graph of Fig. 1 is a non-planar graph, because, as shown in

Fig. 4, removing the nodes a, d, f yields a clique with 5 nodes that is a

non~planar graph.

Finally Fig. 5 shows the cut-h-cycle hypergraph I1'=(R, Al%f{&}} of G,
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