A Peer-to-Peer Information Service for the Grid

Diego Puppin, Stefano Moncelli, Ranieri Baraglia, Nicola Tonellotto, Fabrizio Silvestri
Institute for Information Science and Technologies
ISTI - CNR, Pisa, Italy
via Moruzzi, 56100 Pisa, Italy
{Diego.Puppin, Ranieri. Baraglia, Nicola. Tonellotto, Fabrizio.Silvestri} @isti.cnr.it
stefano7625@libero.it

Abstract

Information Services are fundamental blocks of the
Grid infrastructure. They are responsible for collecting
and distributing information about resource availability
and status to users: the quality of these data can have a
strong impact on scheduling algorithms and application
performance.

Many popular information services have a centralized
structure. This clearly introduces problems related to in-
formation updating and tolerance to faults. Also, in very
large configurations, scalability can be an issue.

In this work, we present a Grid Information Service
(GIS) based on the peer-to-peer (P2P) technology. Our
system offers a fast propagation of information and has
high scalability and reliability. We implemented our sys-
tem complying to the OGSA standard using the Globus
Toolkit 3. Our system can run on Linux and Windows
systems, with different configurations, so to trade off be-
tween redundancy (reliability) and cost.

Key Words: Grid information service, Grid middle-
ware, Peer-to-peer.

1. Introduction

The Grid is an emerging computing framework
where resources are shared and inter-operate across in-
dependent organizations. In such an environment,
it is very important to be able to discover effi-
ciently which resources are available, what their status
and cost are. A system where this information is out-
dated, approximate or difficult to access and browse
can negatively affect the performance of scheduling al-
gorithms and final-user code.

The Grid Information Service (GIS) is the infras-
tructure component responsible for collecting and dis-
tributing information about the Grid. It offers some

tools to register resources, to query the data base, to
remove lost nodes.

The first implementations of a GIS, used tech-
niques based on directories, which are still used by
Globus MDS-GT2 (LDAP). Directory-based systems
suffer from a series of problems [7], including the fact
that updated information does not propagate very
quickly and that centralized servers can become bottle-
necks or points of failure. Also, the underlying formal-
ism limits the type of queries that can be submitted to
the system. More modern approaches are based, for in-
stance, on Relational Databases, on techniques for In-
ternet Knowledge Discovery and on Agents.

In this work, we introduce a Grid Information
Service (GIS) based on peer-to-peer (P2P) tech-
nologies and Routing Indices (RI) [3]. There is a
growing interest to the interaction of the Grid com-
puting paradigm and the peer-to-peer technology:
both work within a very dynamic and heteroge-
neous environment, where the role and availability
of resources can quickly change; both create a vir-
tual working environment by collecting the resources
available from a series of distributed, individual enti-
ties.

Even if nowadays some Grid-related tasks are per-
formed by central servers, we believe that in the fu-
ture all of them could be implemented as P2P ser-
vices, to improve scalability, performance and fault-
tolerance. The Peer-to-Peer Community Grids project,
among others, is working in this direction.

Talia and Trunfio [10] suggested that a new version
of OGSA could integrate the concept of Grid and P2P,
as did for Grid and Web Services. A P2P Grid middle-
ware could be used to develop Grid applications based
on this technology. In particular, they believe that the
Globus Toolkit MDS and the Replica Management Ser-
vice could benefit from being redesigned as P2P appli-
cations.

This paper is structured as follows. In Section 2, we
give an overview of some existing information services,
which represent the background of our work. Our in-
frastructure is presented in Section 3. In Section 4, we
show the results of our preliminary tests. Finally, we
conclude and we give an overview of future work.

2. Related Work

Due to the importance of Information Service within
the Grid infrastructure, a variety of approaches has
been presented in literature.

The Globus Monitoring and Discovery Service
(MDS) [4] in GT2 uses LDAP as a back-end to
store and manage data. It has a hierarchical struc-
ture, based on three main components.

e The Grid Index Information Service (GIIS) stores
the information about a set of GRIS (see below),
so to offer a complete picture of the status of an
entire virtual organization. GIIS can be used to
build up a hierarchical structure. GIIS can work
as a cache for the monitored data.

e The Grid Resource Information Service (GRIS) is
a distributed information service able to answer
users’ query about the status of a resource. Each
machine can host a local GRIS, connected to one
or more GIIS. It forwards each query to some lo-
cal Information Providers, and then assemble the
results. It can have a caching system to speed the
query up.

e The Information Providers (IP) are local services,
responsible for collecting information about the
status of a given resource. Users can easily cre-
ate new IPs as needed.

MDS-GT?2 is usually described as a hierarchical ser-
vice. Nonetheless, the nodes on the top levels of the
structure act as central servers for nodes in the lower
levels, as they hold a cached copy of a part of the
data published (this can be configured from 100% to
no cache). They can become bottle-necks in the struc-
ture, if the number of nodes they serve and the caching
level are high.

Another problem is given by the fact that they use
a procedural language for queries, and users need to
know the directory structure in advance. LDAP is fast
when it knows the query structure, so it can build its
own internal database accordingly, but performance is
lower for general queries.

Some of these limitations are overcome by more
modern distributed directory services, which are also
gaining attention in the commercial world.

A system based on relational databases is Relational
GIS (RGIS) [5], developed as a part of the Unified Re-
lational Grid Information Services (URGIS) project.
This system uses a SQL-like declarative language for
queries. Thus, users can ask, for instance, for a set of
hosts totaling a given memory size. Like any relational
database, RGIS creates independent indices for each
attribute, in order to speed up query response time.
Furthermore, very complex queries are elaborated non-
deterministically, or approximately. This reduces the
quality of searches, but can result in a much shorter
response time. Clearly, this introduces an important
trade-off problem in the design of this system.

Grid Monitor [1] is a tool developed as a part of the
UK e-science project and it is used to monitor infor-
mation servers within the UK Grid. It is an extension
of Globus MDS aimed to a more natural user inter-
face. The software is a three-tiered Web system:

e Web Clients allow user to inspect the status of
each resource;

e Web Servers and Servlets are used to connect to
the data-base;

e an underlying relational data-base stores the his-
torical data and keeps a list of each organization
registered.

Each new resource is required to register to the UK
Grid Support Centre, submitting all the meta-data
needed to complete its description. A central server
stores this information. After registering, the MDS
server, i.e. the highest-level GIIS, is connected to the
Web server. Servlets connect to this server and read
the data into a local cache. Local Java applets are used
to interface with it: they can show a map which high-
lights the available MDS servers. They can be browsed
in order to get more information about some resources.

The A4 Agent System, presented in [6], integrates
MDS-GT2 with a system of agents. As in MDS-GT?2,
each resource is associated with a GRIS, which commu-
nicates to GIIS via a Local Resource Manager (LRM).
When a user wants to run a given application on the
Grid, they communicate with the agent. The agent
communicates then with its GIIS or with other agents
in the hierarchy. If the GIIS cannot answer, it com-
municates with the LRM, which holds a cached copy
of the information available from the GRIS. This sys-
tem is able to speed up the response time of a MDS
query. Furthermore, the agents are able to predict the
performance of a given application on the chosen re-
sources.

With the introduction of the Globus Toolkit 3, the
Globus architecture of the information service has dra-
matically changed [11]. Now, each entity is represented

EDE]... SHEx emory

_ SDE ... 8DEy
i SDE, ... SDE;

Memory
ELE. . BEE,

SREL... SDEs
SDE;:: EDE

SDE, .. SDE |-~ 25

Legend:
> Query — Subscrphion to an SDE
> (Jueryresponse = -----= > SDE change notfication

Figure 1. Index Service Hierarchy for MDS-GT3.

by a Grid Service, which is an extended Web Service
following the new conventions introduced with GT3
and OGSI. These Grid Services expose their status as
a collection of Service Data (SD), composed of Ser-
vice Data Elements (SDE). Service Data replace the
mechanisms offered by GRIS in MDS-GT2: they re-
place the GSI-enabled mechanisms present in LDAP
with the OGSA mechanisms for binding.

Also, the Service Data sources are tailored to comply
with the WSDL standard: each information provider
publishes its data as an XML file, following a precise
Service Type WSDL. This replaces the MDS schema
written with the LDAP schema format.

The Index Service, within MDS-GT3, offers func-
tions to index, query and browse the gathered SDEs. It
replaces GT2 GIIS. A simple example (Figure 1) will il-
lustrate the new architecture of this system. Machines
M1 and M2 host a set of Grid Services (GS) expos-
ing some Service Data. The Index Service for the Vir-
tual Organization ACME (VO-ACME), IS-ACME, is
sitting on M3 and subscribes to the SDEs in order to
be notified of changes, using the OGSI mechanisms. M3
will also keep a cached copy of the data. Similarly, in

the Virtual Organization ASAP (VO-ASAP), M4 will
work as an Index Service for the machines in the group
(not shown). A machine Mx, higher in the hierarchy,
will subscribe to each SDE present on IS-ACME and
IS-ASAP. Each change on M1 and M2, for instance,
will be propagated to IS-ACME and IS-MX. The list
of SDEs has to be known to the Information Service,
as a configuration file or through user input.
The Index Service is composed of two main parts:

e the Providers are responsible for generating SDEs;

e the Aggregator is responsible for aggregating and
indexing the SDEs coming from the hosts in the
VO.

In our opinion, the main limitations come from this
hierarchical structure:

e when a new SDE becomes available, the new infor-
mation does not propagate automatically up the
hierarchy;

e at the top levels, each IS is required to store a very
large number of SDE.

We believe that centralized, hierarchical systems are
not suitable to Grids and highly distributed systems.
Due to their being highly heterogeneous and dynamic,
more flexible and self-adapting solutions are needed.

3. P2P GIS: Description of the Archi-
tecture

In this section, we present our implementation of a
Grid Information Service (GIS) based on the peer-to-
peer technology. Its main features are:

e peer-to-peer technologies for propagating data and
elaborating queries;

e routing indices to reduce network flooding and to
optimize message forwarding;

e node clustering and use of super-peers;

e redundant configurations, when high reliability is
needed.

The system is made up of two main entities (see Fig-
ure 2):

e the Agent is responsible for publishing information
about a node to the super-peer;

e the Aggregator runs on the super-peer; it collects
data, replies to queries and forwards them to the
other super-peers; it also keeps an index about the
information stored in each neighbor super-peer.

g ety ‘ Agoragator
— :
Tsap Service Data Index
Notify \Nonfy
=== [RS R
| 7 Agent \\\ bt /' Agent Tn.

| Service Data :I i

A 2= &

1 Schedule /T L iEchedule /T [
! 5o :
®» @ ® &

(&)

Figure 3. Example of super-peer networks: (a)
with no redundancy, (b) with 2-redundancy.
Black nodes represent super-peers. White nodes
are clients. Clusters are limited by circular lines
(from [12]).

Super-peer and redundant networks are described
in the next section. Then, we outline the structure
of Agents and Aggregators. Routing indices and our
search technique are discussed in Sections 3.3 and 3.4.
Finally, we explain how the system is bootstrapped.

3.1. Super-peer Redundant Networks

It is well known that pure P2P networks spend use-
ful bandwidth in functions that can be performed by
local caches [8, 9]. This is why super-peer networks
emerged as a trade-off between totally distributed sys-
tems and cache-based services [12].

Our system is set up as a super-peer network: some
nodes, called super-peers, work as servers for a cluster

of nodes — which usually corresponds to a virtual or-
ganization or a subset thereof — but they work as peers
in a network of super-peers. Moreover, this network can
be built as a redundant network, where super-peers are
replicated within each cluster (see Figure 3). This so-
lution introduces two main benefits.

e Replicas hold a copy of the same data. In case
of failure of one replica, the system will not stop
working.

e The work-load can be shared among repli-
cas. Queries can be alternately sent (or for-
warded) to each of them in turn. Also, the ag-
gregate bandwidth for forwarded queries is much
higher.

On the other side, communication costs can increase,
for two reasons. First, when a new node joins a clus-
ter or its data are updated, it has to send a message
to K super-peers in a K-redundant network. Second,
there are O(K?) connections between two K-replicated
super-peers. The choice of K is a trade-off between re-
liability and cost.

3.2. Agents, Aggregators and Information
Providers

The Agent works as a Grid Service available on each
machine in the network. It publishes all relevant infor-
mation, as is made available by Information Provider
tools (IP).

The Information Providers, scheduled by the Agent,
periodically query the resources and store the informa-
tion gathered as Service Data Elements (SDE), accord-
ing to the OGSA standard. Each SDE is tagged with
a list of keywords, used for subsequent queries. In our
system, there is an Information Provider for each re-
source. When a user chooses to publish information
about some resources, they will describe the type of
information using our taxonomy [2], in particular they
will specify a Refresh Rate, which describes how often
the information is to be refreshed. Static data have a
Refresh Rate equal to 0.

When a resource is published, the name of its Ser-
vice Data is broadcast to all the Aggregators in the
cluster,! so that they can subscribe to it. Aggregators
work as servers within their cluster, and as peers in
the network created by all the Aggregators. In partic-
ular, they are responsible for forwarding queries com-
ing from other Aggregators to the most likely destina-
tion.

1 There can be more than one Aggregator in a redundant net-
work.

memory available main memory
processor processor type and model
processorLoad average load in thelast 1, 5 and 15 min.
operatingSystem | operating system name and version
diskSpace disk space on each available volume

(a)

<?xml version="1.0" encoding="UTF-8"7>

<Resource name="Processor">
<Property name="Vendor" value="GenuineIntel"/>
<Property name="Model" value="Pentium"/>
<Property name="Speed" value="751" units="MHz"/>
<Property name="Cache" value="256" units="KB"/>
<Property name="key" value="processor"/>
<Property name="key" value="CPU"/>

</Resource>

(b)

Table 1. Available information providers (a). An
example of resource description (b).

To prevent Aggregators from polling Agents at the
end of each refresh interval, our implementation uses
a push approach: the Agents periodically send the up-
dated information to the subscribed Aggregators. A list
of currently available Information Providers is shown in
Table 1, along with an example of resource description.
A configuration file will list a set of SDEs to be pub-
lished by the Agent at launch time, but resources can
be published or removed at any time by users.

A client can explicitly choose to remove its data
from the super-peer data-base. Also, the Aggregators
will scan the stored information and remove all the re-
sources that failed to send updated information before
the expiration of its validity.2 This way, the super-peer
will always have timely information about the clients
connected to it.

3.3. Routing Index

The Routing Index (RI) is used to improve the per-
formance of our peer-to-peer routing, and to prevent
the network from being flooded. The Routing Index is
a technique to choose the destination where a query
should be forwarded: the RI represents the availabil-
ity of data of a specific type at the neighbors, which
is related to the probability each neighbor has to sat-
isfy a given query. We implemented a version of RI
called Hop Count Routing Index (HRI), which consid-

2 The super-peer actually waits three times longer than the re-
fresh time, in order to tolerate possible unexpected delays in
the network.

1 hop 2 hop

Memory Processor
o
i 0 0

E routing table

Memory Processar

Figure 4. HRI table for node B.

ers the number of hops needed to reach a datum. The
HRI counts the number of data within a given num-
ber of hops. Data are then divided in classes by their
keyword.

We used HRI as described in [3]: in each super-peer,
the HRI is represented as a M x N table, where M is
the number of neighbors and N is the horizon (maxi-
mum number of hops) of our Index: the n-th position
in m-th row is the number of data that can be reached
passing from neighbor m within n hops.

Suppose that, from node B, we are looking for
data about memory (see Figure 4). Our goodness func-
tion(see [3]), will give a higher value to A, because
within short distance (2 hops) we can reach 6 resources.
On the contrary, D could give us back information
about only 3 of them.

When a new super-peer joins the network, it sends
information about the data it controls to all its neigh-
bors. They will update their table, adding the new data
to those available within distance 1. Then, they will
send the aggregate counts (excluding the new node)
back to the new node itself. We use the techniques
shown in [3] to deal with cycles in the network.

3.4. Search Techniques

In literature, three techniques are commonly used
for searches in P2P networks.

1. Search is performed by flooding in systems such as
Gnutella. Each search is forwarded to all the neigh-
bors, until a matching datum is found. This is a
very simple solution, but clearly introduces band-
width problems.

2. Other systems use centralized servers to answer
the query. These servers build an index of avail-
able data by crawling the network, or by asking
each node to send a list of its data. Problems of
scalability and fault-tolerance are typical of this

Figure 5. A query (Q) is forwarded from A to the
best neighbors (B, C, and D).

approach. On the other side, the response time is
generally very low.

3. A third way is followed by systems based on dis-
tributed indices. In these configurations, each node
holds a part of the index. A query is forwarded to a
neighbor chosen using a Routing Index. The index
optimizes the probability of finding quickly the re-
quested information, by keeping track of the avail-
ability of data to each neighbor.

The third approach is followed in our system. Each
query is submitted, by each node, only to its cluster’s
super-peer, which will pass it to other super-peers if
needed. To this purpose, the super-peer keeps informa-
tion about all the nodes in its cluster, and creates an
index for it.

Each query is tagged with an expiration time. At
each step, the expiration is checked. If the query is
still valid, it is forwarded to the best neighbor (using
our Routing Index). Then, the local SDEs are matched
against the query. This way, communication and com-
putation are partially overlapped. The matching SDEs
are sent back directly to the original requester as XML
data.

If there are no available neighbors, as for C in Fig-
ure 5, the query is returned to the sender (B), which
will choose the second best neighbor (D). An alterna-
tive approach could be to send the query to two or more
neighbors, in parallel. This has better response time,
but can flood the network. We are planning to experi-
ment with this trade-off on a large network in the next
future.

3.5. Bootstrapping the System

To start up the system, each Aggregator has to know
the name of another one. Communicating with each
other, the Aggregators will explore the topology of the
system. Each Agent broadcast information about its
presence at its launch time: all the Aggregators in the
cluster will list it among their clients, and will update
their Routing Index counting the SDEs published by
the Agent.

In other words, each new Agent will connect to its
super-peer just by broadcasting a message across its or-
ganization. From that moment on, its information will
be available to any user through its super-peer. New
Aggregators will connect to a running Aggregator, and
through it they will learn about the network configu-
ration: all data will be available to them too.

There is no need, for Aggregators and users, to know
position and type of resources available, or to know the
network topology. As seen, this can be not true for hi-
erarchical services.

4. Experimental Results

Our system was developed using Globus Toolkit
3.0.2 and Java 1.4.1. The system runs under Linux
Red Hat 8 and 9, Linux Debian, and Microsoft Win-
dows 2000. It is compliant to the OGSA standard, and
uses libraries and tools from the Globus Toolkit 3.

Our tests were performed on a Grid involving five
organizations: ISTI-CNR, located in Pisa; University
of Pisa; IIT-CNR, in Pisa; IMATI-CNR, located in
Genoa; and the University of California at San Diego.
The test configuration is shown in Figure 6. We arti-
ficially split ISTI-CNR into two virtual organizations
by using different broadcast masks for the two subsets.
This way, the Agents will connect to exactly one Ag-
gregator.

In our first tests, we verified the performance when
working within the organization’s borders. Queries
were sent from Rubentino about the status of resources
monitored by Novello. On Novello, matching SDEs are
sent back to Rubentino very fast: the first result is gen-
erated within 10 ms. The results arrive regularly, within
few hundred milliseconds (see Table 2(a)).

When we cross the institutions’ borders, delays re-
lated to the network are more evident. We launched
several queries from Orione about the status of re-
sources within the ISTI-CNR and the IIT-CNR orga-
nizations. Queries were elaborated by Rubentino, Nov-
ello and Morip. Again, we measured that less than 10
ms are needed to generate the first matching SDE, but
results can take much longer to cross institutions and

Barbera N .
Orione

ISTI (Pisa) ==~~~

Novello e% Morip e[MartineHif]
Barolo g
ST (Pisa)

Cavit

ER)

ICycletron04 " 3
Cycletron01 } Cluster15 ™
ICycletron06 / 3
AC Sen Diego | IMATI (Genog)
ICycletron1l !

Figure 6. Our test configuration. An Agent is run-
ning on each machine (boxes). An Aggregator is
running on thicker boxes. Arrows represent con-
nections. The dashed line are the borders among
participating institutions.

return to Orione. We believe that the firewall configu-
ration, and other network effects can contribute to this
large delay (see Table 2(b-c)).

For queries from farther institutions (IMATI in
Genoa and UCSD), response time grows slowly with
distance, and can be greater than 1 second (see Ta-
ble 2(d-e)). This is a result to be expected, if we con-
sider that the ping time can be 1000 times greater than
among institutions in Pisa.

4.1. Redundant Configuration

Our system can be used with a redundant configu-
ration for improved reliability, as in Figure 7. We run
some initial tests, which showed the effectiveness of
this solution: when one of the replica failed, the sys-
tem continued running seamlessly. Response time did
not change significantly. We expect that, in a very large
configuration, redundant peers can offer a lower re-
sponse time, when they are queried alternately. We are
testing this hypothesis, and results will be available in
the next future.

(a) Queries from Rubentino about Novello

Server side 9.1 31.9 40.0 48.3
Client side 212.2 2292 3454 436.4

(b) Queries from Orione about Novello

Server side 7 34.6 49.8 65.8
Client side 767.4 826.4 935.3 981.3

(¢) Queries from Orione about Morip

Server side 9.6 57.8 72.6 874
Client side 788.0 850.9 946 999

(d) Queries from Clusterl5 about Orione

Server side 10.1 40.3 52.3 64.5
Client side 890.1 905.3 958.1 1001

(e) Queries from Cycletron01 about Orione

342 2608 300.2 310.1
1104.8 1187.7 1211.7

Server side
Client side 950.4

Table 2. Average time (in milliseconds) to gen-
erate (server-side) and receive (client-side) sub-
sequent results of a given query.

Barbera AN Orione
— - =~
— 7 ~ N

. Univ. Pisa

/ Rubentino

Novello

N / ’ .
/ AR : Morip
- 1

ISTI (Pis3) T (Pisa)

Figure 7. Our redundant configuration. The
nodes within the ellipse behave as a replicated
redundant super-peer.

Barbera | Cavit H Novello | Rubentino Orione

Figure 8. Configuration for our comparison with
Globus MDS. Clients are not shown.

P2P GIS Globus
Hop # | 1st 2nd
1 743.5 801.4 | 3612
2 737.4 820.2 | 3588
3 775.5 831 3601
4 806.1 861.6 | 3640

Table 3. Comparison between our system
(P2P) and Globus-MDS. Average response time
(client-side) for subsequent results, about re-
sources located at increasing distances (in mil-
liseconds).

4.2. Comparison with Globus MDS-GT3

We compared our system with Globus MDS-GTS3.
The results shown in Table 3 come from our prelim-
inary tests. All the data are taken at the client side,
by measuring the time passed from the beginning of
the query, to the arrival of results. Time was measured
within the code, using the Java time API, for both
Globus MDS and our system.

Due to problems with firewalls and Globus connec-
tion ports, we could not involve all the institutions
in this test. Our system configuration was changed as
follows: we created a linear chain of five Aggregators
(see Figure 8), and, starting from Orione, we launched
queries about data down the chain. Clients connected
to each Aggregator are not shown. This is the worst
case for our system, because clients connected to Bar-
bera are separated by many hops from Orione.

We configured Globus Index Service (IS) with the
same linear hierarchy: Cavit is subscribed to Barbera’s
SDEs, Novello to Cavit’s and so on. In any case, all
SDEs are cached by the Index Service, so the topology
of ISs should not affect the results.

We can see some interesting results. As said, our
system forwards incoming queries to the best neigh-
bors before elaborating them. This way, a query can
reach the Aggregator holding the desired data very fast.
Then, results are sent back directly to the requester.
This is the reason of the slow growth of response time
with distance in our system.

For Globus, the response time is irrespective of the
distance of the resources relevant to the query, as ex-
pected (all data are cached in our experiments).

Our system, under these experimental conditions,
outperforms Globus. We have to consider that, at the
moment, our system is extremely light-weight, while
the Globus infrastructure can support a variety of
tasks. Nonetheless, we can say that our system seems to
scale effectively and respond very quickly, even if data
are not cached: our queries read the datum — freshly
updated — available to the Aggregator closest to the
resources, not a potentially stale copy.

For the queries in this test, Globus returned only
one result. We should emphasize that our system sends
partial results as they are available, differently from
Globus that waits for the complete answer. This could
be exploited when a very quick result is needed.

Another importation consideration is that for this
test we used a geographically limited configuration. For
very large, world-wide configurations, the caching ap-
proach of Globus could hide certain network delays
that could slow our system down. We are working to
solve our firewall problems, and we will have extended
results very shortly. Nonetheless, as showed before, our
system responds very quickly on geographically wide
networks too.

5. Conclusion

The Grid is a vast, dynamic, heterogeneous environ-
ments, where information about the status, configura-
tion and cost of resources is extremely valuable: if users
are able to find the best match to their needs, their ap-
plications will reach the best performance within the
desired cost and time.

To monitor a Grid, a versatile system is needed,
able to update very quickly, to satisfy a potentially
very large number of users and queries, to tolerate de-
lays and faults. Peer-to-peer systems, born out of the
first file-sharing applications, evolved into very flexible
frameworks, which are now gaining interest within the
scientific community. The interaction between Grids
and peer-to-peer systems is growing stronger, because
P2P seems to be a very promising approach to some
problems related to the Grid.

In this work, we presented a P2P Information Sys-
tem for the Grid. It is built as a network of super-peers,
which aggregate the data about resources within a vir-
tual organization. Queries performed by any client are
passed among the super-peers, using optimization algo-
rithms such as the Hop Counting Routing Index. Our
system is based on Globus Toolkit 3 and complies to
the OGSA standard: it can be easily integrated with

any Globus-based Grid. In this first round of experi-
ments, we used it for resource monitoring and discov-
ery, but the same infrastructure could be used for file-
sharing or other distributed applications, this way of-
fering a P2P layer to Grid applications.

So far, the system was tested using a small network,
split across five different institutions. In these prelimi-
nary tests, the system scales effectively. We could not
measure big delays in queries for remote resources,
which are constantly monitored by their Aggregators.
This way, we always have updated information avail-
able to queries. Our system outperformed Globus MDS
in our simple configuration.

We are currently testing a larger configuration, in-
cluding more machines in the United States and Ger-
many. Results should be available shortly.

6. Acknowledgements

We want to thank Antonio Manglaviti, who con-
tributed to develop the first experimental prototype.
Also, we thank IIT-CNR, IMATI-CNR, University of
Pisa, and University of California at San Diego, which
let us use their resources for our experiments.

This work has been partially supported by the Ital-
ian National Research Council (CNR) FIRB project
GRID.it “Enabling platforms for high-performance
computational grids oriented to scalable virtual orga-
nizations.”

References

[1] M. A. Baker and G. Smith. A prototype grid-site moni-
toring system. Technical Report 2002.01, DSG, 2002.

[2] R.Baraglia, S. Moncelli, A. Manglaviti, F. Silvestri, and
N. Tonellotto. Una tassonomia per la descrizione delle
risorse in ambiente grid. Technical Report ISTI TR,
ISTI-CNR, Appearing in 2004. (In Italian).

[3] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems
(ICDCS-02), July 2002.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed resource
sharing. In Proceedings of HPDC-10, 2001.

[5] P. Dinda and B. Plale. A unified relational ap-
proach to grid information services, 2001. Available at
http://www.gridforum.org/1_GIS/RDIS.htm.

[6] H. N. L. C. Keung, J. Cao, D. P. Spooner, S. A. Jarvis,
and G. R. Nudd. Grid information services using soft-
ware agents. In Proceedings of the 18th Annual UK
Performance Engineering Workshop (UKPEW 2002),
pages 187-188, University of Glasgow, UK, July 2002.

[7] B.Plale,C. Jacobs,S. Jensen,Y.Liu, C. Moad, R. Parab,
and P. Vaidya. Understanding grid resource informa-
tion management through a synthetic database bench-
mark/workload. In Proceedings of the 4th IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid2004), Chicago, IL, USA, April 2004.

[8] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. Technical Report TR-2001-26, Uni-
versity of Chicago, Department of Computer Science,
2001.

[9] J. Ritter. Why gnutella can’t scale. no, really, 2001.
Available at http://www.eecs.harvard.edu/ “jonathan/
papers/ 2001/ ritter01gnutella-cant-scale.pdf.

[10] D. Talia and P. Trunfio. Toward a synergy between
p2p and grids. IEEFE Internet Computing, July /August
2002.

[11] The Globus Alliance. Globus toolkit 3, globus infor-
mation services documentation, 2004. Available at
http://www.globus.org/mds/.

[12] B. Yang and H. Garcia-Molina. Designing a super-peer
network. In Proceedings of the IEEE International Con-
ference on Data Engineering, March 2003.

