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A B S T R A C T

The potential of GNSS reflectometry (GNSS-R) for the monitoring of soil and vegetation parameters as soil
moisture (SM) and forest aboveground biomass (AGB) has been largely investigated in recent years.
In view of the ESA’s HydroGNSS mission, planned to be launched in 2024, this study has explored the pos-

sibility to map SM at global scale and relatively high resolution of about 0.05◦ (corresponding approximately to
5 Km) using GNSS-R observations, by implementing and comparing two retrieval algorithms based on machine
learning techniques, namely Artificial Neural Networks (ANN) and Random Forest Regressors (RF). Waiting for
HydroGNSS commissioning and operation, the NASA’s Cyclone GNSS (CyGNSS) land observations have been
considered for this scope. Taking advantage of the versatility of both machine learning techniques, several
combinations of input data, including CyGNSS observables and auxiliary information, have been exploited and
the role of GNSS-R and auxiliary data has been assessed. Given the lack of global SM data at 0.05◦ resolution, the
following novel strategy has been implemented to establish the training set: as first, training has been carried out
at lower resolution by considering as target the SMAP SM on EASE-Grid 36 km. Then the trained algorithms have
been applied to CyGNSS data at 0.05◦ to obtain global SM maps at this resolution. Finally, the SM at 0.05◦ has
been validated against ISMN, to keep training and validation as much independent as possible. The two retrieval
techniques exhibited similar accuracies and computational cost, with correlation coefficient R ≃ 0.9 between
estimated and target SM computed globally, and RMSE ≃ 0.05 (m3/m3). Moreover, the SM maps at 0.05◦

revealed some finer details and small-scale patterns that are not shown by the original SMAP SM data at 36 km.
Regardless of the ML technique applied, this study confirmed the promising potential of GNSS-R for the global
monitoring of SM at improved resolution with respect to SM products available from microwave satellite
radiometers.

1. Introduction

The use of Global Navigation Satellite System Reflectometry (GNSS-
R) for land applications is gaining a growing interest in recent years. The
sensitivity of L-band, which is the GNSS operating frequency, to the
water content of the observed targets has been largely proved: this
suggests a potential of GNSS-R techniques for land applications. Many
studies have been carried out by using ground based, airborne and sat-
ellite instruments for exploiting the GNSS-R ability for the retrieval of
soil and vegetation parameters, such as the soil moisture (SM) and the

aboveground biomass (AGB) (see e.g., Camps et al., 2016; Camps et al.,
2020; Chew and Small, 2018; Clarizia et al., 2019; Carreno-Luengo
et al., 2020; Guerriero et al., 2020; Santi et al., 2020). A comprehensive
evaluation of the GNSS-R capabilities for land application is shown in
Pierdicca et al., (2022), while the theoretical aspects are addressed in
several other studies (see e.g. Dente et al., 2020). With respect to the
microwave radiometers operating in the same frequency band, namely
the SMAP and SMOS L-band radiometers that are routinely adopted for
estimating SM and vegetation optical depth (VOD), GNSS-R has the
further advantages of a relative independence of the variation in thermal
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background, which conversely affects the radiometric measurements.
Thanks to the bistatic configuration, GNSS-R has also some advantages
with respect to SAR: previous studies have shown GNSS-R signal satu-
ration for AGB values of about 250–300 t/ha (Egido et al., 2014; Zribi
et al., 2019), which is significantly higher than the 150 t/ha found for
the L-band SAR (Dobson et al., 1992). On the other side, GNSS-R near
specular reflections might exhibit low signal-to-noise (SNR) ratio in
certain conditions (e.g., very dense vegetation and rough topography).

Focusing on soil moisture, Chew and Small (2018) proposed an al-
gorithm based on multivariate regression to estimate SM from NASA’s
Cyclone GNSS (CyGNSS) (Ruf et al., 2015) data. Other implementations
based on empirical models can be found in the literature: for instance,
Yan et al. (2020) adopted a trilinear regression to address the effect of
surface roughness in SM retrievals by using CyGNSS data, and Chew and
Small (2018, 2020) related the SM variability to CyGNSS observables by
using a linear regression. It is worth mentioning that the official CyGNSS
SM product hosted by UCAR is based on such approach (Chew and
Small, 2020). A different approach was proposed in Azemati et al.
(2022), which used a bistatic forward model to retrieve SM from
CyGNSS observations under various vegetation conditions, from bare
soils to dense vegetation. Finally, Zribi et al. (2020) proposed a change
detection algorithm which assumes incoherent return from the land
surface.

Machine learning (ML) techniques have also been widely exploited
to address the retrieval problem: despite the need of large datasets for
training, these approaches showed very promising capabilities in
obtaining accurate retrievals. Among others, the possibility of esti-
mating SM by combining CyGNSS and ANN was exploited in (Eroglu
et al., 2019), while Senyurek et al. (2020) based the SM retrieval on
Random Forests (RF), and Nabi et al. (2022) exploited the full infor-
mation contained in the DDM by using deep learning. Among the recent
studies, Santi et al. (2022) attempted to map SM at global scale with a
spatial resolution of 0.05◦ (≃5 km) by using CyGNSS data and ANN,
while Hodges et al. (2024) proposed a blended soil moisture product
obtained by combining five different CYGNSS soil moisture products
based on a minimum variance estimator (MVE).

This growing interest on GNSS-R promoted the development of the
HydroGNSS satellite mission, (Unwin et al., 2022), which has been
selected as the second ESA Scout small satellite science mission,
currently planned for launch in late 2024. HydroGNSS aims at opera-
tional mappings of SM, inundation or wetlands, freeze/thaw state and
AGB, by also leveraging on the presence of a coherent channel, and on
the capability of collecting reflections at both circular polarizations and
from both GPS and Galileo constellations.

This study is devoted at assessing feasibility and limits of the ML
based techniques for retrieving SM from GNSS-R, with the final aim of
defining the base concepts for the HydroGNSS SM retrieval algorithm. In
detail, two Machine Learning (ML) algorithms, namely ANN and RF,
have been implemented, and their performances intercompared in terms
of accuracy and computational cost.

In advance of HydroGNSS commissioning and operation, the analysis
has been based on the NASA’s CyGNSS observations, although the lack
of double frequency and double polarization acquisitions, which will be
available in HydroGNSS, do not allow quantifying the impact of this
information on the retrieval accuracy.

Depending on the CyGNSS coverage, the target resolution for the SM
product has been set to 0.05◦ (≃5 Km), which has been found as the
upper limit of the trade-off with the revisit frequency. The resolution
needs of course to be adapted to the different mission characteristics of
HydroGNSS, which will be composed of two satellites operating in near
polar orbit.

The main novelty of this study with respect to the existing literature
is in the peculiar strategy that allows mapping SM at 0.05◦ resolution
which, at the best of our knoweledge, is the highest resolution achieved
for a CyGNSS derived SM product. The proposed approach assumes that
the mechanism driving the scattering from vegetated soils is scale

invariant, i.e. it does not change if moving from lower to higher reso-
lution. This assumption allowed training the ML algorithms using as
target the SMAP Level 3 SM daily global products (O’Neill et al., 2018)
at 36 km resolution, and then applying the trained ML to CyGNSS data
gridded at 0.05◦ to generate the SM output at this resolution. The latter
has been finally validated against in-situ measurements from the Inter-
national Soil Moisture Network (ISMN - Dorigo et al., 2011). The
advantage of this approach is in the large availability of SM products at
low resolution from several satellites (e.g. SMAP, SMOS, AMSR-2/3,
ASCAT) that can be used as reference for training in case of unavail-
ability of one or another sensor, while the SM availability at higher
resolution is so far limited to the combined SMAP/Sentinel products
(Das et al., 2020).

Moreover, the proposed implementation is independent of SMAP
VOD/VWC and Roughness parameters that have been used as auxiliary
inputs in most of the other studies involving CyGNSS and SMAP (e.g. Liu
et al., 2023): this characteristic not only unlink the retrievals from SMAP
data availability, coverage and spatial resolution, but especially avoids
the conceptual weakness of using auxiliary input information (SMAP
VOD and VWC) which is intrinsically correlated to the target SMAP SM.

Several combinations of CyGNSS observables and auxiliary data have
been evaluated, including topography information, land use and vege-
tation biomass. This approach also allowed assessing the contribution of
the CyGNSS observables other than the well assessed equivalent
reflectivity (Clarizia et al., 2019) to the retrievals and quantifying the
role of auxiliary information in improving the accuracy.

This study also analyses the accuracy dependence on land cover type,
assess the predictor importance of each CyGNSS observable and auxil-
iary datum, and quantifies the relationship between training data
amount and accuracy.

The paper is structured as follows: the description of test areas and
datasets is provided in section II, the generation of the lower resolution
(LR) and higher resolution (HR) datasets required by the method, is
described in section III. The ML algorithm implementation is described
in section IV. Sensitivity analysis and retrieval results at local and global
scale are presented in section V and discussed in section VI.

2. Test areas and datasets

This study involved CyGNSS global data over land collected from
August 2018 to July 2019, auxiliary information about topography, AGB
and land use from various sources, and reference SM from SMAP L3
global daily products and ISMN.

A. Test areas and in-situ data (ISMN)

Data derived from ISMN within the same latitude range (±38◦) and
for the same time span of CyGNSS data have been considered with the
twofold scope of analysing the CyGNSS sensitivity to SM and of vali-
dating the retrievals through comparison with in-situ measurements.
The geographical distribution of the stations involved in the analysis is
shown in Fig. 1. The hourly data from each station have been screened
for quality (Dorigo et al., 2013) and then daily averaged and gridded on
the same coordinates of CyGNSS and auxiliary data, to be comparable
with the SMAP L3 SM and CyGNSS data.

A further validation at local scale has been also carried out by
focusing on three networks in the ISMN database, namely SCAN in
Walnut Gulch, Naqu, and OZNET, that have been also included in the
SMAP core validation activities (Colliander et al., 2017).

Four stations of the SCAN network are available in ISMN for the
Walnut Gulch watershed, in southeastern Arizona, U.S. The area is
characterized by semi-arid conditions with brush and grass rangeland
(Tolsdorf et al., 2021) and was already considered for cal/val activities
of other satellite missions since the launch of AMSR-E.

The Naqu network is located in the Tibetan plateau (Su et al., 2011,
2013), which is characterized by cold climate, and it is mainly covered
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by grasslands. Seven stations from this network are available in ISMN.
The OZNET sites, in southeastern Australia (Panciera et al., 2014;

Smith et al., 2012), are characterized by a climate between semiarid and
temperate, with vegetation cover mainly composed by croplands and
grasslands. Data from 18 OZNET stations from ISMN have been
considered.

B. CyGNSS data

CyGNSS is a constellation of eight microsatellites operated by NASA
and the University of Michigan (UM), that has been launched in
December 2016. CYGNSS is observing the Earth surface in a latitude
range between − 38◦ and +38◦ with a sampling rate of 1 Hz (2 Hz since
July 2019), by using a bi-static scatterometry technique based on Global
Navigation Satellite Systems (GNSS) signals, thus making quasi-random
the temporal and spatial resolution, since the first depends on the GNSS
satellites in view and the second on the characteristics of the observed
target (Zavorotny et al., 2014). The global dataset of CyGNSS Level 1b
version v3.1 (the most recent available when this study was carried out)
acquisitions over land collected between August 2018 and July 2019 has
been downloaded from the dedicated data portal at Physical Oceanog-
raphy Distributed Active Archive Center (PODAAC). Beside the reflec-
tivity Γ, which has been computed according to Clarizia et al. (2019),
the CyGNSS observables involved in the analysis are the SNR, the
Effective Isotropic Radiated Power (EIRP), the normalized radar cross
section (NRCS), the Kurtosis of the Delay Doppler Map (DDM) - as proxy
of the dominant coherent/incoherent contribution - the peak power of
the DDM (DDM PA), and the Trailing Edge width (TE) (Carreno-Luengo
et al., 2020). In addition, the elevation angle served to filter out the
acquisitions collected at low elevation (<45◦) and as auxiliary input, to
account for the dependence of received signals on observation geometry.

C. SMAP EASE-Grid SM

The SMAP L3 radiometer global daily 36 km EASE-Grid soil moisture
V5 data have been downloaded from the National Snow and Ice Data
Center (NSIDC) data portal for the same temporal period of the CyGNSS
dataset.

Along with the globally gridded values of SM, provided as m3/m3,

the vegetation water content (VWC – kg/m2), and surface roughness (h -
cm) products have been considered for understanding their effects on
the GNSS-R observables. Data from ascending and descending over-
passes in the same day have been averaged.

D. AGB pantropical map

The improved pan-tropical biomass map proposed by Avitabile et al.
(2016) is used as auxiliary information to allow the algorithm ac-
counting for the vegetation biomass effects in SM retrievals. The map
contains AGB values in tons per hectare (t/ha), at 1 km resolution, in a
latitude range between ±45◦.

E. CCI Land Cover

The auxiliary information on land cover is derived from the ESA CCI
Land Cover classification (LCC) in the latest version 2.0.7. The CCI LCC
map is provided at 300 m spatial resolution as a classification of the
Earth surface in 37 different classes, identified by a progressive number
from 0 to 220 (https://www.esa-landcover-cci.org/?q=node/164).

F. GTOPO30 DEM

GTOPO30 is a global digital elevation model (DEM) provided with
uniform 30 arc seconds grid spacing (approximately 1 km). The model is
hosted by the U.S. Geological Survey (https://www.usgs.gov/media/f
iles/gtopo30-readme.). Two parameters, namely the local elevation
(DEM) and the local slope of the Earth surface (SLOPE), are considered
here.

3. Dataset generation

The two LR and HR datasets required by the method have been
generated by spatially and temporally co-registering all the available
data and gridding them onto two common grids at 36 km (EASE-Grid 36)
and 0.05◦ (≃ 5 km) spacing, respectively. Table 1 summarizes the
CyGNSS and auxiliary data included in both datasets, the LR dataset has
been further divided in training and test sets as described in section III.

Fig. 1. Location of the ISMN stations involved in the validation. The position of all the stations is shown by green dots, except SCAN in Walnut Gulch, Naqu and
OZNET networks that are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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A.LR dataset

The first dataset was obtained by coregistering all the data in the 36
km EASE-Grid reference system of the SMAP L3 product, with the scope
of evaluating the CyGNSS sensitivity to SM, VWC, AGB and roughness
parameter (h), as well as for training and testing the algorithms. The
CyGNSS data have been preprocessed by filtering out low elevation
(<45◦) and two thresholds at 0.5 and 2 dB have been evaluated for SNR.
Although SMAP retrievals in densely vegetated areas are not recom-
mended (Entekhabi et al., 2014), SMAP data on dense forests like the
Amazon and Congo rainforests have been maintained to extend the
variability of observed conditions, which is a pivotal aspect for training
the ML algorithms. The ISMN SM was also included by averaging the
in-situ measurements from the stations within each EASE-Grid cell.

B. HR dataset

The second dataset was obtained by aggregating CyGNSS and
auxiliary data on a grid at 0.05◦ (≃ 5 km) fixed spacing, with the scope of
generating the output SM maps and validating them against ISMN. The
same preprocessing of the EASE-Grid dataset has been applied to
CyGNSS data, conversely, the HR dataset did not include the SMAP
derived parameters that are not available at this resolution.

4. Retrieval algorithms

The SM mapping at 0.05◦ resolution using CyGNSS data has been
based on the scale invariant assumption that the physical mechanism
driving the scattering from vegetated soils does not change moving from
lower to higher resolution. Given this assumption, the training, test and
validation of the ML algorithms proposed in this study have been ob-
tained through the following steps.

1) Training of the ML algorithms by using a subset of the LR dataset (36
km resolution).

2) Testing of the ML algorithms at 36 km on the remaining of the LR
dataset not involved in training.

3) Applying the trained algorithms to the CyGNSS and auxiliary inputs
from HR dataset to generate the SM output at 0.05◦ resolution.

4) Validating the SM at 0.05◦ resolution against ISMN.

Two popular ML techniques, namely ANN and RF, have been selected
to implement the retrieval, and their results intercompared in terms of
accuracy and computational cost with the aim of understanding which
technique is more suitable for an operational application.

The ANNs have been largely applied to solve remote sensing prob-
lems (e.g., Dai et al., 2011; Del Frate et al., 2003; Elshorbagy and Par-
asuraman, 2008), thanks to their ability in approximating almost any
kind of non-linear relationships (Hornik, 1989; Linden and Kinderman,
1989). The ANN implementation proposed in this study is based on the
feed-forward multi-layer perceptron neural networks (MLP-ANN), with
iterative optimization of hyperparameters based on Santi et al. (2016).

Like the ANNs, RF are gaining increasing popularity for solving

remote sensing problems (e.g., Pal, 2005; Yu et al., 2018; Camargo et al.,
2019; Marrs and Ni-Meister, 2019). RF belong to the ensemble learning
methods (Breiman, 2001), which average the results coming from
several weak predictors, also called decision trees, to establish the
input/output relationship (Quinlan, 1993). An iterative optimization of
the main hyperparameters, like the one adopted for ANN, has been
carried out.

Both ANN and RF have been trained by considering CyGNSS ob-
servables and auxiliary data as inputs and SM as target. Ten different
combinations of inputs have been implemented, with the aim of inves-
tigating the role of each CyGNSS observable and auxiliary parameter
and assessing the contribution of observables other than Γ : the iterative
process including hyperparameters definition and training has been
repeated for each combination. In detail, five input combinations
included only Γ and SNR among the CyGNSS observables, and five
included all the CyGNSS observables. To keep training and validation as
much independent as possible, the algorithms have been tested at 36 km
resolution against SMAP SM using the LR dataset and validated at 0.05◦
resolution against ISMN SM using the HR dataset.

Training and test sets have been obtained by systematically sampling
the LR dataset: such sampling has been repeated three times by
decreasing the amount of data for training from 20% of the total data
(about 1.6 million data), to 10% (800.000 data), and to 1% (80.000
data). The algorithms have been trained over these data and tested on
the remaining 6.4 million, 7.2 million and 7.9 million data, respectively.
In terms of temporal coverage, with the 1% training - 99% test split, the
algorithms have been trained over the equivalent of 4 days out of a year
and tested on the remaining. An attempt to further decrease the training
data amount down to 0.1% of the total dataset has been also carried out,
but the poor results obtained suggested to consider 1% as the lower limit
for the trade-off between accuracy and amount of training data.

The ANN “optimal” number of neurons and hidden layers and the
transfer function type, between linear, tangent sigmoid (tansig) and
logarithmic sigmoid (logsig), are defined according to the iterative
search proposed by (Santi, 2016), which aims at preventing both over-
fitting and underfitting. Training of each configuration is repeated 20
times. The stop of each training run is ruled by the so-called Early
Stopping (Prechelt, 1998) which also has the scope of preventing
overfitting. Output of the optimization process were ANNs (one for each
input configuration) composed by two hidden layers with the number of
neurons increasing from a minimum of 6 neurons to a maximum of 24
neurons for each layer and a transfer function of type “logsig” or “tan-
sig”, depending on the configuration. Expectably, the greater the num-
ber of inputs and the training data amount, the greater the number of
neurons in the “optimal” configuration.

The training of RF was conducted in parallel to the one of ANN for
each input configuration and using the same strategy. In this case, the
hyperparameters that have been iteratively configured were the number
of decision trees and the minimum number of leaf node observations
(Marrs and Ni-Meister, 2019): the number of trees resulting from the
optimization was 50, since lower values negatively affected the re-
trievals and higher values slowed down noticeably the training process
without improving significantly the retrievals, and the minimum num-
ber of leaf node observations was 5. Among the other configurable
hyperparameters in the Matlab ® implementation, the sampling with
replacement has been enabled and the number of predictor variables for
each decision split has been set to 4. The workflow of the hyper-
parameters definition and training for both ANN and RF is shown in
Fig. 2.

After training and testing on the LR dataset, ANN and RF have been
applied to the CyGNSS and auxiliary inputs from the HR dataset for
generating the global SM maps at 0.05◦ resolution which have been
validated against ISMN data. The top-level scheme of the overall
implementation is shown in Fig. 3.

Table 1
List of the CyGNSS and auxiliary data included in both datasets.

CyGNSS
Observables:

Auxiliary data:

•EIRP
•Elevation Angle
(EA)
•NRCS
•Kurtosis
•Γ
•SNR
•Trailing Edge width

•Land Cover Classes (LCC) from ESA CCI
•AGB from Pantropical map
•Surface elevation and slope (DEM + SLOPE)
•SM measurements from ISMN
•SMAP L3 Radiometer global SM, VWC, h (not in the 0.05◦

dataset)
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5. Results

A. Sensitivity Analysis

To better understand the relationship between CyGNSS observables
and surface parameters, two sensitivity analyses have been carried out at
36 km and 0.05◦, by comparing the CyGNSS observables to the surface
parameters derived from SMAP and with the in-situ ISMN acquisitions,
respectively. The analysis included the other parameters affecting the
scattering mechanism, namely VWC, h and AGB.

5.1. Sensitivity analysis on EASE grid: CyGNSS vs. SMAP

The absolute values of correlation coefficients (R) between each of
the CyGNSS observables and each of the target parameters are reported

in Fig. 4: the tables are colour coded according to the R value from blue
(lower R) to red (higher R).

The analysis has been carried out using the entire EASE-Grid dataset
and the target parameters in the figures also include the roughness and
VWC derived from SMAP, although these parameters have not been used
as input for the retrieval algorithm since they are not available at a
resolution suitable for being aggregated on the 0.05◦ grid. Fig. 4 a) refers
to dataset filtered for SNR >0.5, while Fig. 4 b) refers to data filtered for
SNR >2 dB, which is the most applied threshold value in literature (e.g.
Clarizia et al., 2019).

Overall, the correlation between each CyGNSS observables and SM is
insufficient for implementing a retrieval based on a single observable
and linear relationships, thus supporting the use of ML techniques,
which can exploit the synergy between multiple observables and
leverage the nonlinear relationships between inputs and target for

Fig. 2. The iterative hyperparameters definition and training of both ANN and RF.

Fig. 3. The SM retrieval algorithm flowchart, describing the training, test, and validation steps.
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improving the retrievals.
Among the CyGNSS observables, Γ and NBRCS show the highest

correlation to biomass (either expressed by VWC or AGB), while some
correlation to SM was pointed out by other observables as the Kurtosis
and the DDM PA. However, test and validation of both ANN and RF
implementations confirmed Γ as the most suitable parameter for the SM
retrieval, while the other observables provided only negligible
improvements.

The comparison between R values in Fig. 4 a) and 4 b) confirms that
the higher the SNR threshold, the higher the sensitivity to SM. However,
discarding the data with SNR ≤ 2 dB removed almost all data at higher
AGB corresponding to forested areas.

Therefore, further effort has been spent in assessing the optimal
values for SNR threshold, looking at the opposite needs of discarding
data too much affected by noise and of keeping revisiting sufficient for
operational retrievals.

5.2. Sensitivity analysis at 0.05◦: CyGNSS vs ISMN

The sensitivity of CyGNSS observables has been assessed at global
scale and 0.05◦ resolution against ISMN, with the twofold aim of con-
firming the findings at 36 km and of pointing out saturation effects (if
any) that could set an upper limit to the retrievable SM.

The Γ sensitivity to SM is shown in Fig. 5: the scatterplot has been

obtained by temporally averaging the hourly ISMN measurements
collected within each day and by spatially averaging the network sta-
tions within each pixel at 0.05◦, as specified in section III. To further
assess the SNR thresholding criterion, the scatterplot is shown for two
different threshold values: the blue dots in Fig. 5 represent the data with
SNR >0.5 dB, while the red dots represent the subset of data with SNR
>2 dB.

Correlation and sensitivity slightly improved with respect to those
derived from the comparison with SMAP (Fig. 4). The scatterplot also
points out a smaller data dispersion and an improved correlation to SM
of the data with the higher SNR threshold (R = 0.4 vs. R = 0.31).
However, the result has been obtained at the expense of coverage since
the data amount decreased from about 22000 data points if using the
0.5 dB threshold down to about 16000 if using the 2 dB threshold.
Finally, the analysis did not evidence any significant saturation effect in
the relationship between Γ and SM, thus supporting the hypothesis that
the SM retrieval can be achieved with similar accuracy on the entire
range of SM, from 0 to ≃0.5 (m3/m3).

B. Algorithm test on EASE Grid

5.3. SM algorithm test at global scale

The R and RMSE values obtained when testing the ANN and RF on
the subsets of EASE-grid dataset not used for training are summarized in
Table 2 for the ten input combinations considered. Results refer to the
algorithms trained using 1% of the total dataset and tested on the
remaining 99%. The first five combinations only use Γ and SNR as
CyGNSS inputs, the last five use all the CyGNSS observables derived
from the DDM. The full list of inputs associated to each combination is
provided in the first column of Table 2. These results have been obtained
by setting the SNR threshold to 0.5 dB and including SNR in the inputs
(Santi et al., 2022). This strategy did not cause any worsening of the
retrieval accuracy with respect to the 2.0 dB threshold, with the
advantage of significantly improving the coverage, especially in densely
vegetated areas.

The obtained results demonstrate that the more auxiliary informa-
tion is provided, the better is the result. On the other hand, the two
different ML techniques are substantially equivalent since the ANN
slightly outperforms RF in the configurations with less inputs and vice-
versa RF outperforms ANN in the others.

Bias - not shown in Table 2 - was also very small, ranging between
10− 4 m3/m3 at best and 10− 3 m3/m3 at worst, with no clear prevalence
of ANN or RF. This caused RMSE being practically overlapped to unbi-
ased RMSE (ubRMSE), which is the other metric widely used for SM
retrievals (Entekhabi et al., 2010), since the two quantities are related by
the relationship: ubRMSE2 = RMSE2-Bias2. For this reason, ubRMSE is
not reported here.

Fig. 4. Correlation between each of the CyGNSS observables, the SMAP derived SM, VWC, and Roughness, and the AGB from pantropical map: a) by thresholding
data for SNR = 0.5 dB, b) by thresholding data for SNR = 2 dB.

Fig. 5. CyGNSS Γ as a function of in-situ SM for the available dataset.
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Conversely, the inclusion of CyGNSS observables other than Γ and
SNR did not significantly improve the results, especially if the auxiliary
information is fully exploited. In particular, the results obtained by the
RF algorithm using the configuration with Γ + SNR+ all auxiliary inputs
and the one with all CyGNSS observables + all auxiliary inputs config-
urations are practically overlapped, with R= 0.88 vs. R= 0.89, RMSE=

0.068 (m3/m3) and Bias = 0.00071 (m3/m3) for both.
As operational note, the different number of inputs has negligible

effects on the computational cost in operational applications (i.e.,
application of the pre-trained algorithms to the datasets), while it affects
the computational cost for training, since the configuration including all
CyGNSS + all auxiliary data as inputs took about 75% more time for
training than the corresponding configuration including only Γ and SNR
among the CyGNSS observables + all auxiliary inputs.

If considering the other two combinations, 10% training and 90%

test, and 20% training and 80% test, the accuracy improvement is small,
as pointed out by the density plots of Fig. 6 a) and b) that show the
results for the 20%–80% combination obtained by ANN and RF algo-
rithms in the configuration with all CyGNSS + all auxiliary inputs.

In comparison with Table 2, R increases from 0.88 to 0.89 for ANN
and from 0.89 to 0.91 for RF, while RMSE decreases from 0.068 m3/m3

to 0.066 m3/m3 for ANN and from 0.068 m3/m3 to 0.061 m3/m3 for RF.
This suggests that the one percent of total dataset (≃80.000 input vec-
tors which roughly correspond to 4 days over one year) is enough for the
algorithms to learn the input/output relationship, while additional data
do not bring information useful at improving the retrievals.

5.4. R, RMSE and relative error global maps

Statistics have been also computed for each grid cell in the EASE Grid
dataset by comparing the timeseries of SM estimated by the ANN and RF
algorithms with the SMAP reference. The results are shown in the maps
of Fig. 7 for RF and Fig. 8 for ANN. Beside the already considered R and
RMSE, the maps also show the mean of relative error (RE in %),
computed as:

RE=
SMCyGNSS − SMSMAP

SMSMAP
(1)

Which has been introduced to further characterize the retrieval accuracy
with respect to the SM dynamics.

The qualitative comparison of the results in Figs. 7 and 8 points out
some better performance of RF in terms of R, that is less evident from the
statistics in Table 2. Conversely, no outperforming retrieval method
emerged if considering RMSE and RE.

To quantify the different performances, Fig. 9 a) shows the difference
between RF and ANN RMSE maps of Figs. 7 b) and Fig. 8 b), while Fig. 9
b) shows the difference between the corresponding RE maps. The areas
in which RF obtained lower RMSE than ANN are shown in blue, while
the areas in which the ANN performed better than RF are shown in
green.

Overall, ANN has lower RMSE in about 40% of the pixels, mainly
located in desert areas (e.g., northern, and southern Africa, central
Australia) and equatorial forests (e.g., Central Africa, Amazon River
basin), while RF obtains lower RMSE in the remaining. This result is
reversed when looking at RE: by using this metric, ANN performs better
than RF in 55% of the pixels, with no clear dependence on land cover:
this also confirms how difficult is to establish a universal metric for
evaluating the SM retrievals.

Table 2
R and RMSE obtained by testing the ANN and RF algorithms against SMAP SM
with the input combinations listed in the first column. Results refer to the al-
gorithms trained on 1% of the total dataset and tested on the remaining 99%.
The 5 upper lines of the table show the results obtained by using as CyGNSS
input observables Γ and SNR only, the 5 lower lines show those obtained by
using as inputs all the CyGNSS observables.

ANN RF

R RMSE
(m3/m3)

R RMSE
(m3/m3)

Γ + SNR + EA 0.44 0.130 0.42 0.135
Γ+SNR + EA + AGB 0.78 0.090 0.77 0.092
Γ+SNR + EA + AGB + Land cover 0.79 0.087 0.79 0.088
Γ+SNR + EA + AGB + Land cover +
DEM + SLOPE

0.82 0.083 0.83 0.079

Γ+ SNR + EA + AGB + Land cover +
DEM + SLOPE + lat + lon

0.86 0.073 0.88 0.068

Γ + SNR + Trailing Edge + Kurtosis +
DDM PA + EA

0.54 0.120 0.53 0.122

Γ+SNR + Trailing Edge + Kurtosis +
DDM PA + EA + AGB

0.80 0.087 0.79 0.087

Γ+SNR + Trailing Edge + Kurtosis +
DDM PA + EA + AGB + Land cover

0.81 0.085 0.81 0.085

Γ+SNR + Trailing Edge + Kurtosis +
DDM PA + EA + AGB + Land cover +
DEM + SLOPE

0.83 0.081 0.84 0.078

Γ+SNR + Trailing Edge + Kurtosis +
DDM PA + EA + AGB + Land cover +
DEM + SLOPE + lat + lon

0.88 0.068 0.89 0.068

Fig. 6. Test result obtained with the 20%–80% split for a) ANN and all CyGNSS + all auxiliary, b) RF and all CyGNSS + all auxiliary input configurations.
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Fig. 7. a) map of R computed over the entire timeseries between RF SM and SMAP SM at each grid cell of the EASE Grid dataset, b) the same for RMSE, c) the same
for RE.
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Fig. 8. a) map of R computed over the entire timeseries between ANN SM and SMAP SM at each grid cell of the EASE Grid dataset, b) the same for RMSE, c) the same
for RE.
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Figs. 7 and 8 also point out the accuracy dependence on the
geographical area and land cover. The highest R and lowest RMSE are
obtained for the areas characterized by scarce to low vegetation (apart
from deserts), while the disagreement between CyGNSS derived and
SMAP derived SM is more pronounced in the equatorial forests of south
America and Africa. The accuracy also decreases when getting close to
the ±38◦ latitude that represents the limit of the CyGNSS coverage,
because of the decrease of valid acquisitions due to SNR and elevation
thresholding.

5.5. Dependence on land cover

The results shown in Figs. 7 and 8 suggested to further characterize
the retrieval accuracy as a function of land cover. For this analysis, the
dataset has been divided based on the CCI land cover map.

The original 37 classes in the CCI map have been aggregated in 6
classes, including deciduous and evergreen forests, bare and scarcely
vegetated surfaces, cultivated fields, natural short vegetation, andmixed
forest/short vegetation, plus a class including the remaining. The results
obtained by ANN and RF for each of the 6 classes are summarized as R
and RMSE values in Table 3.

Bias was between 10− 4 and 10− 3 m3/m3 for all the classes. These
results have been obtained by using the input configuration including all
CYGNSS observables + all auxiliary data.

As expected, the lowest RMSE is obtained for the bare/scarcely
vegetated soils. Natural vegetation and cultivated fields obtain the
highest R and quite low RMSE, while the accuracy worsened on both
evergreen and deciduous forests, for which L-band is evidently not

Fig. 9. Comparison between RF and ANN results a) in terms of RMSE and b) RE.

Table 3
Test results for ANN and RF grouped by different land cover classes.

ANN results

R RMSE (m3/m3) RE (%) data #

Cultivated 0.8 0.073 17.7 1199237
Mixed forest/short vegetation 0.81 0.086 19.3 318431
Forest evergreen 0.67 0.100 9.1 862619
Forest deciduous 0.71 0.080 16.9 488609
Natural short vegetation 0.83 0.058 16.3 1678834
Bare soils/scarce vegetation 0.71 0.037 20.7 2261229

RF results

R RMSE (m3/m3) RE (%) data #

Cultivated 0.79 0.075 24.4 1199237
Mixed forest/short vegetation 0.80 0.088 24.2 318431
Forest evergreen 0.67 0.101 8.3 862619
Forest deciduous 0.68 0.084 22.2 488609
Natural short vegetation 0.83 0.060 21.2 1678834
Bare soils/scarce vegetation 0.75 0.036 19.8 2261229
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sufficient and lower frequencies would be necessary. Notably, the forest
evergreen class, which was characterized by the highest RMSE, also
showed the lowest RE, because of the high SM range (SM mean ≃ 0.35
m3/m3). For the other classes, which are all characterized by a mean SM
below 0.2 m3/m3, the behaviour of RE roughly agrees with the one of
RMSE.

5.6. Dependence on forest biomass

The analysis by land cover pointed out some accuracy decrease in
forested areas. This can be attributed to the “disturbing” effect of
vegetation biomass on the measured signals that is not completely
compensated by the use as auxiliary input of the information from AGB
map. This aspect has been further analysed for better understanding the
GNSS-R limits in mapping SM in forested areas. To this aim, the rela-
tionship between R and RMSE from Figs. 7 and 8 and the AGB data has
been studied, finding some decreasing behaviour of R and increasing of
RMSE when AGB increases. As an example, the RMSE obtained by the
ANN algorithm (see Fig. 8) is plotted as a function of AGB in Fig. 10: the
RMSE increase with AGB is evident from the plot, although the data are
quite dispersed (R = 0.35). RF obtained similar behaviours and corre-
lations (not shown).

In evaluating these results, it should be however noticed that the
SMAP SM product considered as target for computing the RMSE could be
similarly affected by vegetation, since also SMAP operates in the same
frequency band, thus biasing the results.

5.7. Contribution of CyGNSS and auxiliary data

The relative contribution of CyGNSS observables and auxiliary in-
puts to the overall result has been quantified for both ML implementa-
tions by focusing on the “CyGNSS + all auxiliary” configuration
(Table 2). The impact of each predictor on the results has been computed
for RF according to Breiman (2001), by verifying the retrieval accuracy
with algorithm reruns using only subsets of inputs randomly combined.
For ANN, the predictor importance has been obtained by deriving the
total weight applied to each of the input parameters from the combi-
nation of weights applied during its propagation in the ANN.

Fig. 11 shows the relative (%) contribution of CyGNSS observables
and auxiliary data to the SM estimation for RF (Fig. 11a) and ANN
(Fig. 11 b).

The results in Fig. 11 demonstrate that in both ANN and RF imple-
mentations, the SM retrieval is driven by CyGNSS observables. The
scope of including the auxiliary data is in constraining the inversion, by

helping the ML algorithms in discriminating between different targets
having the same electromagnetic response. The small differences (a few
%) in the weight of the auxiliary data between the two regressors can be
attributed to the peculiar ANN and RF architectures and training rules
which are based on different statistical concepts that consequently
explore the space of solutions in different ways.

C. Algorithm validation at 0.05◦

The validation of both ANN and RF has been carried out at 0.05◦
against ISMN data at global scale, by considering the entire ISMN
dataset available, and at local scale, by focusing on the three sites
described in section II that have been already considered as core vali-
dation sites for other satellite missions.

5.8. SM at 0.05◦ against ISMN: global

The SM algorithm validation has been carried out by comparing the
SM estimated by the ANN and RF algorithms with the in-situ SM ob-
tained by averaging the ISMN measurements available within each grid
cell at 0.05◦ resolution. The results in terms of R, RMSE and Bias are
summarized in Table 4. As a term of comparison, the statistics obtained
by comparing the SMAP SM with the ISMN data aggregated on EASE
Grid are also reported in Table 4.

Although in line with the sensitivity shown in Fig. 5, the results listed
in Table 4 seem pointing out some poor retrieval performances. How-
ever, also SMAP results are far from the official statistics for L3 product,
especially for RMSE. This suggests the presence in the dataset of ISMN
networks of stations with anomalies not identified in the pre-screening,
or simply not representative for the given pixel size. A one-by-one
control of the 6100 datasets contained in the ISMN (Dorigo et al.,
2013) is not feasible, suggesting to focus on selected test sites that have
already been considered for validation of other satellite products, as
those described in section II. Anyway, the slightly better results obtained
by ANN and RF at 0.05◦ with respect to SMAP at 36 km seem suggesting
some potential of the proposed retrieval technique.

5.9. SM at 0.05◦ against ISMN: local

The validation results for the selected ISMN networks of Walnut
Gulch, NAQU and OZNET are summarized in Table 5 and shown in
Fig. 12. These results have been obtained by comparing the SM output of
ANN and RF with the target SM obtained by aggregating the ISMN
stations within each pixel at 0.05◦. The results obtained by comparing
SMAP SM with ISMN aggregated on EASE Grid are also reported for
comparison. Validation only included the dates in which both CyGNSS
and SMAP acquisitions were available.

The different spatial resolution prevents the direct comparison be-
tween ANN/RF and SMAP. Anyway, the statistics of Table 5 show some
improvement when moving from 36 km to 0.05◦. This is also evident
from the scatterplots of Fig. 12, which show the retrieved SM as a
function of the target SM. The results obtained at 0.05◦ by ANN are
displayed in the first column, those obtained by RF in the second col-
umn, while SMAP is shown the third column. In Walnut Gulch, RF
outperforms both ANN and SMAP, although some overestimation of low
and underestimation of high SM, appears, causing the regression line to
be farther from the 1:1. Notably, RMSE is in all cases within the 0.04 m3/
m3 target accuracy for satellite products.

In MAQU, SMAP is very well correlated to ISMN (R= 0.91), although
the RMSE is also very high (>0.11 m3/m3), because of evident over-
estimation of the high SM. Such overestimation is not shown by ANN
and RF that exhibit an appreciable decrease of RMSE. Both methods
show however an anomalous behaviour for the low SM values. In detail,
RF shows some saturation and ANN a large dispersion of the data that
could be attributed to residual presence of frozen soil which was not
completely filtered out during the data preprocessing. In this case,Fig. 10. RMSE global values from the map in Fig. 8 as a function of AGB.
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neither ANN nor RF clearly outperforms each other.
In OZNET, RF obtains a slightly better correlation than SMAP (R =

0.7 vs. R = 0.67) while RMSE is substantially equivalent. Worse results
are obtained by ANN (R = 0.6 and RMSE = 0.07). Both RF and ANN
regressions are closer to the 1:1 line, while SMAP tends to overestimate
the higher SM and exhibits higher data dispersion than RF.

D. SM maps: CyGNSS 0.05◦ vs. SMAP 36 km

After test and validation, the ANN and RF algorithms have been
applied to generate daily global SM maps at 0.05◦ resolution from the
available data. Given the quasi-random coverage, the maps have been
generated by considering the most recent CyGNSS acquisitions in a 3-
day temporal window for each pixel in the grid. This approach has
been preferred to the spatial interpolation (e.g. by Chew, 2021) to better
understand the revisiting. Besides the already mentioned validation
against in-situ SM, a quantitative validation of the maps is difficult, since
reference SM data are almost impossible to find at this resolution and
global scale, except for the merged SMAP/Sentinel SM products (Das
et al., 2020) that however could not be completely independent of the
SMAP 36 km data used for training, thus affecting the results.

To evaluate the resolution improvement, a qualitative comparison
with the original SMAP SM at 36 km has been attempted. Examples are
shown in the maps of Fig. 13: Fig. 13 a), left panel, shows a SM map
derived from CyGNSS and RF at 0.05◦ resolution for an area of 10◦ × 10◦

that includes the Walnut Gulch watershed in USA. The result has been
obtained for November 8th, 2018; the location of the SCAN stations

considered for validating the algorithm is shown in the map as red dots.
Fig. 13 a), right panel, shows the corresponding L3 SMAP SM.

Fig. 13 b) left panel shows instead another area of 10◦ × 10◦ that
includes the OZNET network for May 27th, 2019: on the left the CyGNSS
derived SM and on the right the corresponding SMAP data. Finally,
Fig. 13 c) left shows the CyGNSS derived SM at 0.05◦ for the Tibetan
plateau obtained in date May 28th, 2019, while Fig. 13 c) right shows
the corresponding SMAP SM at 36 km.

In all cases, the SM maps at 0.05◦ exhibit slightly higher SM values
than those reported by SMAP in the driest areas. Besides this, a quali-
tative agreement between the SM patterns identified by SMAP at lower
resolution and those identified by CyGNSS at higher resolution appears
from the comparison; moreover, CyGNSS at 0.05◦ seems capable to
provide finer details and to identify additional patterns at small scale.
Unfortunately, the unavailability of SM distributed data at 0.05◦ reso-
lution to be used as reference, prevented any attempt to further quantify
this comparison.

6. Discussion

The results shown in section V offered several ideas and directions
for the development of the Level 2 SM algorithms for the ESA’s Scout-2
HydroGNSS mission.

Test and validation confirmed the effectiveness of the proposed
technique, that makes use of reference SM at lower resolution to
generate global SM maps at higher resolution, thus overcoming the lack
of distributed SM data at 0.05◦ to be used as the reference for training. In
this sense, the proposed workflow (Fig. 3) can be easily adapted to
HydroGNSS: the ML inputs can be easily modified, added or removed
and re-training on the new datasets is not an issue considering the
computational resources of recent machines.

Concerning the observables to be included in the retrieval, the
reflectivity has been confirmed as the main driving observable, while
negligible improvements have been obtained if adding the other ob-
servables except for SNR. Adding the latter observable to the ML inputs
allows relaxing the SNR threshold from the conventionally adopted 2 dB
down to 0.5 dB, with negligible effects on the accuracy and sensible
advantages for the coverage.

Concerning the accuracy, the results did not point out any relevant
saturation for the higher SM values, confirming that the entire SM range
can be retrieved with similar accuracy. In this sense a prevailing tech-
nique between ANN and RF did not emerge from the analysis. Moreover,
the tests with different input combinations also pointed out that the
auxiliary “static” information, like topography or land cover, has a not
negligible role in bounding the inverse problem. This solution appears

Fig. 11. Total contribution of CyGNSS and auxiliary data for the SM retrieval a) using RF and b) using ANN.

Table 4
Main statistics of the global validation against ISMN.

ANN (0.05◦) RF (0.05◦) SMAP (EASE 36)

R 0.64 0.65 0.57
RMSE (m3/m3) 0.082 0.084 0.087
Bias (m3/m3) 0.005 0.013 0.012

Table 5
Main statistics of the validation against selected ISMN stations.

R RMSE (m3/m3)

ANN RF SMAP ANN RF SMAP

Walnut Gulch 0.60 0.78 0.74 0.037 0.029 0.034
MAQU 0.71 0.79 0.91 0.051 0.057 0.114
OZNET 0.60 0.70 0.67 0.068 0.065 0.059
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better suitable than other proposals involving auxiliary “dynamic” in-
formation also derived from SMAP, as e.g. VWC or VOD, with the dis-
advantages of linking resolution and coverage to those of SMAP, and
making the retrievals biased by the intrinsic correlation (up to R = 0.75
in the dataset considered for this study) between SM and the VWC/VOD
that are all part of the same processing.

Related to the vegetation effect, the analysis pointed out some ac-
curacy decrease in forested areas because of the attenuation effect of
vegetation biomass on the CyGNSS observation that the use of the AGB
map as auxiliary input is not sufficient to compensate completely. This
aspect deserves further analysis, which will be carried out in the pros-
ecution of this research for better understanding the GNSS-R limits in
mapping SM in densely forested areas as e.g. the Congo and Amazon
rainforests.

Focusing on the results that can be transferred to HydroGNSS, this
study cannot provide final answers on the maximum spatial resolution
achievable, being HydroGNSS planned to operate with two satellites in
near polar orbit, thus with completely different mission characteristics.

Also, this study cannot quantify the contribution of dual frequency
and dual polarization data, that are peculiar of HydroGNSS, to the re-
trievals: this analysis is so far demanded to model simulations (Dente
et al., 2020, 2024). Further analysis shall also address the aspects related
to the higher latitudes that HydroGNSS will cover, as the freeze/thaw
and its effects on the SM retrievals in boreal areas. To date, these aspects
have been partially investigated in Santi et al. (2020) based on
TechDemoSat-1 (TDS-1 –(Unwin et al., 2016)).

7. Conclusions

Twomachine learning techniques aimed at exploiting GNSS-R for the
retrieval of Soil Moisture have been developed and validated by using

CyGNSS data, with the aim of defining retrieval concepts to be applied to
the incoming HydroGNSS mission.

Based on the obtained results, GNSS-R is confirmed as a suitable and
promising tool for mapping SM at global scale and few kilometres res-
olution. Considering that both satellite missions aiming at this scope,
namely SMAP and SMOS, are well beyond their lifetime, and no heir
missions with comparable resolution are foreseen so far, GNSS-R could
represent the sole opportunity for global SMmapping in a near future. In
this sense, it should be remarked that the proposed implementation
makes the operational application of the trained algorithms independent
of the availability of SMAP (or any other EO) SM product, which is only
needed for training.

Further efforts should be carried out to verify and improve the
generalization capabilities of the proposed algorithms and to identify
alternative sources of reference SM to update the training in case the
abovementioned missions will cease operations. The possibility of
lowering the 0.06 m3/m3 RMSE, which appears so far as the accuracy
limit for both CyGNSS and SMAP in global scale retrievals, will also be
evaluated in the prosecution of this research. Further analysis at regional
and global scale will be carried out in this sense for better understanding
the peculiarities of the bistatic scattering mechanism and addressing the
effect of confounding factors as roughness, vegetation and inland wa-
ters, with the final aim of finding accuracy improvement strategies that
can be transferred to HydroGNSS.
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