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Abstract: Optical diffraction tomography (ODT) is a label-free technique for three dimensional
imaging of micron-sized objects. Coherence and limited sampling of 3D Fourier space are
often responsible for the appearance of artifacts. Here we present an ODT microscope that
uses low temporal coherence light and spatial light modulators to retrieve reliable 3D maps
of the refractive index. A common-path interferometer, based on a spatial light modulator,
measures the complex fields transmitted by a sample. Measured fields, acquired while scanning
the illumination direction using a digital micro-mirror device, are fed into a Rytov reconstruction
algorithm to obtain refractive index maps whose accuracy is directly evaluated on microfabricated
3D test objects. Even for challenging shapes such as pyramids, bridges, and dumbbells, we obtain
volumetric reconstructions that compare very well with electron microscopy images.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical tomography provides a label-free solution for three dimensional imaging of micron-sized
objects with diffraction limit resolution. To produce a 3D map of the sample refractive index, in
all the diverse approaches reported in the literature, a set of 2D images is acquired while some sort
of scanning is performed. A simple and effective strategy is to illuminate the sample with a low
coherence light source using a high numerical aperture condenser and collect a stack of intensity
patterns by scanning the image plane along the optical axis [1–3]. In this case, the reconstruction
algorithm analyzes a three dimensional intensity pattern whose fluctuations, with respect to a
constant background, are assumed to be linearly dependent on the refractive index. Assuming
that the response of the optical system to a point scatterer is known, then within the single
scattering approximation, i.e., the Born approximation [4,5], the volumetric intensity produced by
the entire sample could be expressed as the superposition of point contributions distributed over
the sample’s volume and its refractive index map can be retrieved by a deconvolution algorithm.

A first method to solve the inverse problem consists in minimizing the difference between
the experimental data and a dataset computed using a forward numerical model [6–9]. This
optimization procedure converges at the cost of large computational time. Alternatively, using the
beam-propagation method as a forward numerical model, it is possible to compute the derivative
of the transmitted field with respect to the distribution of the refractive index and therefore
minimize a cost function with a steepest-descent algorithm [10].

Apart from these methods, which are based on the minimization of a cost function, faster
inversion algorithms are reported in the literature. For instance, quantitative phase maps of
cells, acquired with a Mach-Zehnder heterodyne interferometer, can be analyzed using a Radon
transform based algorithm to obtain the refractive index in 3D [11,12]. This approach, which
neglects diffraction, is suited for thin objects with low contrast that are not far from the objective
focal plane. In this respect, Fourier diffraction tomography gives a more accurate reconstruction
[13–20]. For thin and low contrast objects, multiple scattering can be neglected and therefore the
scalar wave equation can be approximated to find a simple relation between the 2D measured
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scattered field and the 3D refractive index in the Fourier space [4]. Along this vein, one can assume
slowly varying perturbations on the phase gradient [4,5,21,22], i.e., the Rytov approximation,
to find a simple solution to the scalar wave equation. Using this framework, one can solve the
inverse problem with no severe restriction on the observed objects size and contrast [23] and
avoiding time-consuming direct-search algorithms.

In this work, we use Rytov reconstruction algorithm in combination with a LED light source
whose tilt angle can be scanned. Compared to lasers, light sources with low temporal coherence
result in a substantial improvement in terms of speckle background and image stability so that
reconstruction artifacts are more easily avoided [24]. More specifically, previous work took
advantage of the lower temporal coherence of LED to reduce the speckle noise [2,3,7,9,15,22]. To
retrieve the transmitted complex field, which is not a straightforward task given the low temporal
coherence of the source, we opted for using a common-path interferometer based on a Spatial
Light Modulator (SLM). SLMs have proven to be useful tools for microscopy, especially with
regards to phase contrast imaging [25] and quantitative phase imaging [26–28]. In preexisting
quantitative phase imaging based on a differential interference microscope [29–31] the phase
gradient is measured along a single direction. Differently, here the SLM duplicates and laterally
translates one of the two copies of the field and, upon phase-shifting it, it is possible to retrieve
the phase gradient [31] on both axes. This allows for a reliable measurement of the phase map
passing through the computation of its Laplacian. Having access to the field phases, we obtain
the complex fields that are fed to the tomographic reconstruction algorithm to compute the 3D
refractive index maps of biological and synthetic micro-fabricated samples.

2. Methods

2.1. Experimental setup and field measurement

Our experimental setup is sketched in Fig. 1(a). We use a green LED (Thorlabs M530L4,
λ = 530 ± 10 nm) as light source. The lens L1 creates a magnified image of the LED on a digital
micromirror device (DMD, Texas Instruments DLP3000), whose active surface is completely
illuminated. Light impinging on the DMD is oriented in such a way that light reflecting from the
pixels in the “on” state is collected by the lens L2, while light reflecting from pixels in the “off”
state is blocked. A magnified image of the DMD display is reproduced on the back-focal plane
of the condenser lens L3 (NA = 0.8). The magnification is adjusted so that the DMD minor
axis (3.4 mm) fits into the 1 inch diameter of the lens. On the sample plane, to each pixel in
the “on” state it corresponds a collimated illumination beam with a given incidence. During the
acquisition, to have enough light, we turn on a group of pixels whose beam’s average incidence
angle is pre-calibrated as explained later in the text. The size of the “on” pixels sub-matrix
controls the spatial coherence of each impinging beam since it acts as a diaphragm regulating the
numerical aperture of the illumination.

For each illumination angle, our goal is to measure the transmitted complex field. Given the
low temporal coherence, to detect the field phase, we must opt for common-path interferometry.
The phase of a field is measured by duplicating the beam, e.g., using a diffraction grating [14,16],
and, before the two duplicates are recombined, one is spatially filtered by a pinhole [14,16] or
phase shifted [25,26,32]. A practical option, which does not rely on accurate alignment, is to
measure the phase gradient of the beam by adding a programmable phase retarder to a Differential
Contrast Microscope [29,30]; this method has also been referred to as Gradient Light Interference
Microscopy (GLIM) [31]. In analogy to GLIM, here we measure the phase gradients, but both
the beam duplication and the phase shifting are obtained through a single SLM (Meadowlark
Optics HSP256–0532). Using the analyzer P placed right after the tube lens (see Fig. 1(a)), light
is polarized along a direction aligned at 45◦ with respect to the SLM active axis (in our case the
vertical axis). On the CCD plane, a translation ∆ of the vertical component with respect to the
horizontal component is obtained by applying a linear phase mask on the SLM that is placed in



Research Article Vol. 30, No. 13 / 20 Jun 2022 / Optics Express 22323

100X
NA 1.3

LED

Camera

SLM

DMD2= r+f

NPBS

P

P

TL

(a)
=0 = /2 = =3 /2

Icamera

=(+ ,0) =(- ,0) =(0,- )=(0,+ )

(b)

(x,y)x y

Eq. 3

x |+ x |- y |+ y |-
average

L1
L2

L3

average

L4

L5

Fig. 1. (a) Experimental setup. The sample is illuminated by a low temporal coherence
source. The illumination beam’s angle and aperture are selected using a DMD whose image
is reformed by the lenses L1 and L2 on the back-focal plane of the condenser L3. Light is
polarized at 45◦ with respect to the SLM active axis by the first polarizer P. On the camera
plane, the polarization component along the SLM active axis is laterally shifted by ∆ as
a consequence of a linear grating displayed on the SLM. A second polarization analyzer
projects the two polarization components on a 45◦ axis so that the two interfere. (b) Given a
shift direction ∆, the SLM changes the relative phase of the two fields so that the gradient of
the phase can be computed as in Eq. (3). The phase gradients computed with ∆ = (±∆, 0)
are combined to obtain a cleaner gradient along x; the same is done for ∆ = (0,±∆). The
two phase gradients ∂xθ and ∂yθ are differentiated numerically to compute the Laplacian
that is integrated to finally obtain θ. Scalebar is 2 µm.

the Fourier plane:

Φ(r) = 2π
λf
∆ · r + ϕ (1)

where r are the 2D coordinates of the SLM pixels, f = 100 mm is the focal length of the lens
L5 that Fourier transforms the field from the SLM plane to the camera plane, and finally ϕ is a
constant phase whose role will be described shortly hereafter. Both polarizations are projected
again along an axis rotated by 45◦ with respect to the vertical direction, therefore, the resulting
recorded intensity is:

Iφcamera(r) = I(r) + I(r + ∆) + 2
√︁

I(r)I(r + ∆) cos (θ(r + ∆) − θ(r) + ϕ) (2)

where the intensity of the transmitted field E is I and θ is its phase. When ∆ is small, the phase
difference in the cosine can be approximated with the phase gradient; this can be extracted using
four images, acquired while varying ϕ among the values [0, π/2, π, 3π/2], as follows [29]:

∇θ · ∆ = arctan

(︄
Iπ/2camera − I3π/2

camera

I0
camera − Iπcamera

)︄
. (3)

If the SLM phase mask is oriented along the x axis then ∆ = (∆, 0) and the gradient ∂θ/∂x is
obtained. Given the phase mask in Eq. (1), the translation ∆ is measured for the LED central
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wavelength, with small imaging bias due to dispersion. To minimize artifacts, ∂θ/∂x is computed
by averaging the two gradients obtained with ∆ = (∆, 0) and ∆ = (−∆, 0). Similarly, ∂θ/∂y
is obtained using both values of ∆ = (0,±∆). The numerical gradients ∂θ/∂x and ∂θ/∂y are
differentiated numerically to obtain the phase Laplacian ∇2θ that can be in turn integrated as
θ = F−1 [︁

F
[︁
∇2θ

]︁
/k2]︁ , where F[· · · ] indicates the 2D Fourier operator and k is the coordinate

in the reciprocal space. From Eq. (2) we can also extract the field intensity by simply averaging
Iφcamera in Eq. (2) for ϕ and ∆ and approximating I(r + ∆) ≈ I(r). The entire procedure is
summarized in Fig. 1(b).

To compute the scattered field, the incident field must be previously recorded. This can be
done by measuring a background field with an empty field of view:

UB =

(︃√︁
I(r)eiθ(r) −

√︂
Ibg(r)eiθbg(r)

)︃
e−iθbg(r)+iq·r (4)

where the subscript bg indicates the intensity and the phase acquired with an empty field of view
and q is the wavevector of the incident field projected on the x − y plane. The term outside the
parentheses in Eq. (4) is needed to improve the image quality: theoretically the background phase
θbg should be simply a linear phase gradient due to a tilted illumination direction, but in practice
undesired noise is always present. Such noise can be removed by subtracting θbg and adding
the expected phase gradient q · r from the measured phase. The scattered field is processed to
reconstruct the refractive index inverting the scalar wave equation in the Born approximation.
In the Rytov approximation, the field is not decomposed as a sum of two terms eiq·r + UB, i.e.,
incident plus scattered field, but it is decomposed as eiq·reθR that is the product of the incident
field times a perturbation term eθR . θR can be obtained starting form the measured fields as:

θR = log

(︄ √
Ieiθ√︁

Ibgeiθbg

)︄
= i

(︁
θ − θbg

)︁
+

1
2

log
(︃

I
Ibg

)︃
. (5)

In our experiments, we used 38 different directions for sample illumination. These tilted
illumination beams were produced by displaying sequentially on the DMD sub-matrices of 30×30
pixels in the “on” state, centered on a square grid with a step of 50 pixels. When the beam is
focused by the condenser lens, the sample is reached by a quasi plane wave with an incident
angle (in air) of up to 52◦, corresponding to the maximum achievable angle of our condenser lens
(NA = 0.79). The spatial coherence is approximately ℓc ≈ λ/fML2W = 4 µm, where f = 16 mm
is the focal length of L3 in Fig. 1(a), ML2 = 9 is the magnification due to the lens L2 reimaging
the DMD on the back-focal plane of L3, and W = 7.45 µm × 30 pixels is the size of the pixel
sub-matrix in the “on” state.

Starting from Eq. (2), a good measurement of the field intensity and phase is obtained when
I(r) ≈ I(r + ∆) and θ(r + ∆) − θ(r) ≈ ∇θ(r) · ∆, which is the case if ∆ is much smaller than
the inverse of the maximum observable spatial frequency λ/NA ≈ 0.4 µm. To observe the
interference term of Eq. (2), ∆ must be also smaller than the transverse spatial coherence length
ℓc ≈ 4 µm. Considering the microscope magnification, we choose the value ∆ = 0.07 µm for the
SLM displacement, a quantity that is well below ℓc and λ/NA. A lower bound for ∆ is given by
noise that is inevitably present in Iφcamera(r). As ∆ is lowered, the term θ(r+∆) − θ(r) ≈ ∇θ(r) ·∆
approaches zero and thus becomes hardly detectable through Eq. (3).

The entire acquisition procedure takes about 2 minutes. This time lapse is mainly occupied by
shutter time, which has to be large to compensate the low light intensity. Considering all the
illumination directions, approximately 30 seconds are spent to display on the SLM the phase
masks that give the four shifts of the global phase [0, π/2, π, 3π/2] and the four tilts ∆ = (±∆, 0)
and ∆ = (0,±∆).
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2.2. Tomographic reconstruction

Before describing our reconstruction algorithm based on the Rytov approximation, we will first
introduce the Fourier diffraction tomography method based on the Born approximation. We start
from the scalar wave equation and consider a sample that is illuminated by a plane wave:

∇2UB + k2
0UB ≈ −2k2

0δmeiq·r (6)

where k0 = 2πn0/λ with n0 being the medium refractive index, r is the coordinate in the 3D
space, q is the illumination wavevector and δm = (n − n0)/n0 is the relative refractive index
contrast of the sample. The equation above is obtained by expressing the field as U = eiq·r + UB
and neglecting the term δmUB meaning that we are working under the assumption of single
scattering. Also, the difference of the squared of the refractive indices (n2 − n2

0) is approximated
as 2n2

0δm. By taking the Fourier transform of Eq. (6), one can isolate UB:

UB(k) = −
2k2

0

k2
0 − k2

δm(k − q) (7)

where k is the 3D coordinate in the reciprocal space. Equation (7) relates δm with the 3D
scattered field that also contains unmeasurable near field contributions. To express the 3D map of
the relative refractive index contrast δm as a function of the 2D measured field one must compute
the inverse Fourier transform at z = 0:

UB(kx, ky, z = 0) =
2πik2

0
Kz
δm(kx − qx, ky − qy, Kz − qz) (8)

where Kz =
√︂

k2
0 − k2

x − k2
y and Us(kx, ky, z = 0) is the 2D Fourier transform of the observed

scattered field. Equation (8) is at the base of Fourier diffraction theorem and can be used to
fill the 3D Fourier space of δm upon changing the incident wavevector q [13–20]. To avoid
reconstruction artifacts in δm, complex interpolation algorithms [33] must be used to fit UB in
the 3D reciprocal space. Alternatively, Fourier interpolation can be avoided by constructing δm
directly in the real space. Given the illumination wavevector q, the measured scattered field
U(q)

B (x, y, z = 0) can be back-propagated in the 3D space and then multiplied by exp(iq · r) so
that, in the reciprocal space, the only Fourier components populated are the ones laying on a
translated hemisphere as in Eq. (8). By adding up these terms for every q, the entire observable
Fourier components are populated. However, since the hemispheres in the Fourier space partially
overlap, a normalization is necessary:

δm(r) = N(r) ⊗
(︄

−1
2πik0

∑︂
q

U(q)
B (r)e−iq·r

)︄
(9)

where the term N is the normalization filter. In Fourier transform based tomography, real-space
back-projection is sometimes used to obtain an image phantom that must be filtered to compute
the correct image [34]. Here, the normalization filter N is built in the reciprocal space as follows:
we start from a 3D array filled with zeros and for each q the value 1 is added to the voxels through
which the hemisphere kz − qz = (k2

0 − (kx − qx)
2 − (ky − qy)

2)1/2 passes. Finally, for the voxels
with value different from zero, the inverse is taken. A summary of the steps described above is
shown in Fig. 2.

The Born approximation is accurate only for low contrast samples (δm ≪ k−1
0 L−1 for an object

with size L). A more robust approximation is the one given by Rytov [5], in which the field is
decomposed as U = eiq·reθR . The phase θR can be expressed as a series whose first order term
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Fig. 2. Scheme of the reconstruction algorithm of Eqs. (9),(11). For each illumination
wavevector q, the input field is back-propagated in the 3D space. In the Born approximation,
the input field is the scattered field while, in the Rytov approximation, it is constructed
as [θReiq·r]z=0 where θR(z = 0) is computed as in Eq. (5). The Fourier transform of the
back-propagated field stack has non-zero components on a hemisphere with radius k0. Each
stack is multiplied by e−iq·r that is equivalent to a shift in the Fourier space. The Fourier
space is filled by summing over all q. A convolution with a normalization function ensures
that all the Fourier components are weighted properly.

can be found by solving a differential equation whose form is close to the scalar wave equation
(Eq. (20) in [4]): (︂

∇2 + k2
0

)︂ [︁
eiq·rθR

]︁
≈ 2k2

0δm. (10)

Equation (10) is similar to Eq. (6) with δmeiq·r taking the place of δm and UB being replaced
by the fictitious field Û = θReiq·r. Following the same steps that lead to Eq. (9), we can conclude
that:

δm(r) = N(r) ⊗
(︄

1
2πik0

∑︂
q

Û(r)e−iq·r

)︄
(11)

where Û(r) is computed by back-propagating in the 3D space the 2D field [θReiq·r]z=0 which is
obtained experimentally as in Eq. (5).

3. Results

To validate our technique, and to identify the range of experimental conditions in which our
method is capable of producing quantitatively reliable refractive index tomograms, we imaged
spherical particles of different sizes and at different refractive index contrasts with respect to the
medium in which they are immersed. Slices of the 3D reconstructions along the x − y and x − z
planes passing through the center of each sphere are shown together with plots of the refractive
index contrast along x in Fig. 3. In all reconstructions, a priori information on the samples (i.e., a
strictly positive or a strictly negative refractive index contrast) is used by zeroing all voxels that
violate these constraints. These artefacts in the reconstructions are due to incomplete sampling
of the Fourier space, as shown in Fig. 2 (see also Appendix A for a more extensive discussion).

A comparison between the reconstructed refractive index maps of a 2 µm silica microsphere
immersed in water (refractive index 1.334 at 530 nm) using Born and Rytov approximations
is shown in Figs. 3(a),(b). Silica beads’ refractive index is often smaller than the value for
fused silica (1.457 at 530 nm) as a consequence of the fabrication process that leaves pores
in the structure and can vary between 1.37 and 1.46 [35,36]. The reconstruction based on the
Born approximation yields a tomogram with non-uniform values of the refractive index within
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Fig. 3. 3D reconstructions of the refractive index contrast with respect to the medium
(δn = n − n0) for four different microspheres. Slices of the x − y and the x − z planes are
shown together with a plot along the axis parallel to the x direction passing through the
microsphere’s center. The reconstruction of the 2 µm silica bead shown in (a) is based
on the Born approximation, while the other tomograms (b)-(e) are reconstructed using
Rytov’s approximation. For the microspheres with a refractive index higher than the medium
(a),(b),(d),(e) the condition of positive contrast is imposed by setting to zero the voxels for
which δn<0; the opposite is done for the silica bead in glycerol (c) where the unphysical
values δn>0 are set to zero. Dashed lines indicate the expected size of the spherical bead.
All scale bars are 2 µm

the bead’s volume, and the particle’s shape appears irregular and elongated in the z direction.
Conversely, the Rytov algorithm provides a more regular reconstruction with a refractive index
of 1.43 ± 0.01; small fluctuations around this value are present in the volume occupied by the
microsphere. The tomograms produced by the two approximations differ significantly as a
consequence of the relatively high refractive index contrast (δn ≃ 0.1) of the silica microbead in
water, confirming that the Rytov approach provides a much more faithful reconstruction when
the single-scattering hypothesis starts to fail. We note that the measured value of the refractive
index is consistent with the expected range of values for (porous) silica microspheres.

Figures 3(c)-(e) also shows more tests of the Rytov algorithm with samples of varying
microspheres’ size and refractive index contrast. In particular, we analysed the case of negative
refractive index contrast (panel c) using 3.7 µm silica beads in glycerol (refractive index 1.474
at 530 nm) and the case of a larger sphere size of 7 µm (panel d) silica in water. Notably, we
obtained tomograms with refractive index reasonably constant within particles’ volume, with
values of 1.394 ± 0.006 and 1.48 ± 0.03, respectively. The first value lays within the expected
range while the second is slightly larger then expected. Differently, the reconstruction shown
in Fig. 3(e) of the 5 µm polystyrene sphere (refractive index 1.599 at 530 nm) in water shows
a non-uniform distribution of the refractive index together with contrast values that are lower
than the expected δn = 0.265. This indicates that a moderately high refractive index contrast is
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challenging also for Rytov’s method. We note that tomographic reconstructions of colloidal beads
are difficult to be found in the literature as usually these techniques are tested against biological
samples whose shape is not known in advance. To the best of our knowledge, the only exception
is a work in which polystyrene 3 µm diameter beads immersed in microscope oil (δn ≈ 0.08) are
reconstructed [37]. As label-free tomography has shown to be a useful tool for 3D imaging of
biological samples, here our technique is tested on a microglia cell adhering to the substrate of
an Ibidi µ-Slide multi-well plate. The cells were kept at 37◦ Celsius via a custom built thermostat
mounted on the microscope stage. A 3D rendering of the cell refractive index and the x − y slice
of the plane on the substrate-medium interface are shown in Fig. 4(d). As compared to spheres,
here the contrast is very low (δn in the range 0.025 − 0.05, with nmedium = 1.334) and the cell
shows a thick body with thin and wide (north in the image) or long (south) protrusions laying on
the substrate. Even in this case the Rytov algorithm yields a good reconstruction with refractive
index values between ≈ 1.36 and ≈ 1.39, as expected for most cells [11,38].
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Fig. 4. 3D reconstructions of SU8 microstructures (refractive index 1.603) fabricated with
two-photon polymerization: pyramid in oil (a), arch in oil (b) and dumbbell in water (c). For
each structure 2D sections of the reconstruction are show more quantitatively the structure
size. Each tomographic reconstruction is paired with a corresponding SEM image for
comparison. (d) 3D reconstruction of the refractive index map of a microglia cell. Inset
shows a 2D slice of the reconstruction at the coverglass interface. All color bars indicate the
refractive index contrast δn. The cell refractive index contrast with respect to the medium
lays between 0.025 and 0.05 as expected for most cells [38].

We showed that our optical tomography based on the Rytov approximation is capable to
extract reliable tomograms of samples that, in the case of micro-beads, have a high contrast
and a simple spherical shape, and, in the case of a cell, have a low contrast and a complex
shape. Objects with known, non-trivial shape and contrast δn ≈ 0.1 represent a challenging
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goal, open to the possibility of checking whether the reconstructed shape reproduces accurately
the real one. To this aim, we imaged three SU-8 microstructures (refractive index 1.603 at 530
nm), fabricated via 2-photon polymerization [39,40] as test objects. Figure 4 shows the three
reconstructions, a dumbbell in water (a), a pyramid in oil (b), and a square arch in oil (c), along
with the corresponding electron microscopy images (d),(e),(f). Scanning Electron Microscopy
(SEM) images of microstructures sputtered with a chrome layer were acquired using a FEI
Quanta 400 microscope. Imaging was performed on samples tilted by 22◦ with respect to the
vertical direction, using an extracting voltage of 20 kV. In the case of the dumbbell (Fig. 4(c)),
despite the refractive index contrast is very high (δn = 0.269), it is possible to reconstruct the
two spheres as well as to resolve the thin bar that connects them. We threshold the 3D map
to remove background noise and compare the structure size, which we assume to occupy the
voxels above threshold, with the one measured on the electron microscopy images. For the
sphere we measured an inplane diameter of 2.2 µm and a size approximately 2.4 along the optical
axis, which compares well with the value of 2.5 µm measured with the SEM, while for the bar
thickness we measure 0.66 µm that is also close to the value of 0.63 µm obtained with the SEM. A
fair agreement between the tomographic and the SEM images is achieved but the high refractive
index contrast respect to the surrounding medium makes the reconstruction quite challenging.
Reconstruction of SU8 structures in oil (refractive index 1.518 at 530 nm, δn = 0.085), having a
much lower contrast, are shown in Figs. 4(a),(b).

Figure 4(a) shows a 3D reconstruction of a pyramid. The vertical slice of the reconstruction,
passing through the apex and the midpoint of the base edges, shows that the angle (60 degrees by
design) is compatible with our observations. Similarly horizontal slices show clearly the square
base of the pyramid. The arch is a more challenging structure (Fig. 4(b)), as a consequence of
the horizontal elevated crossbar and the void space below it. We measured a leg thickness of 2.9
µm (2.1 µm on SEM), the total length of the crossbar 7.0 µm (6.8 on SEM), the crossbar section
has a vertical and horizontal size of respectively 4.1 and 1.7 µm (4.0 and 1.7 µm on SEM).

4. Conclusions

We developed a new tomographic microscopy technique that uses an LED source and a common-
path interferomenter. Unlike most of tomographic techniques using low temporal coherence light
[2,3,7,9,15], we used an algorithm based on Rytov approximation that provides a fast sample
reconstruction while being not limited in terms of sample contrast. The algorithm requires the
knowledge of the complex transmitted field that is not easily accessible if a low coherence source
is used. We addressed the problem of measuring the phase of a field with low temporal coherence
by acquiring multiple images, each corresponding to a controlled phase modulation applied by
an SLM placed in the image Fourier plane. The advantage of our method lies in the use of a
common-path interferometer that, unlike heterodyne interferometers, does not suffer from phase
fluctuations and does not require any optical path compensation in the reference arm, which in the
case of low temporal coherence light must be extremely precise. We characterized our technique
and tested it on both biological and synthetic samples, and for the second ones we compared the
obtained 3D reconstructions with SEM images. Results assessed the robustness of the Rytov
approximation and demonstrated that we can get a reliable tomogram of small structures like a
dumbell (a submicron thick bar connecting two ≈ 2 µm diameter spheres) with high refractive
index contrast (≈ 0.27) with respect to the water medium. In the case of the pyramids and the
arch, the bigger size of approximately 10 µm forced us to reduce the contrast to ≈ 0.08, by using
microscope oil as the medium around the structures, to get faithful tomographic reconstructions.
Our method provides reliable reconstructions of 3D refractive index maps of both biological and
microfabricated structures. These features make it particularly useful for 3D imaging of complex
structures that integrate biological components within artificial microstructures [41].
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Appendix A: Fourier sampling and sign constraints

Here we want to discuss the effect of the limited sampling of the refractive index map in the
Fourier space on the refractive index reconstruction in the real space. Each illumination direction
allows us to sample the refractive index in the Fourier space on a hemisphere as shown in Fig. 2.
By increasing the number of incident angles, the reciprocal space is more densely sampled but
the regions above and below the red area represented in Fig. 2 will always remain uncovered. To
cover the missing space one should be able to rotate the specimen while keeping it relatively
stable in x, y, z [18,21], but this is impracticable in most cases.

In Fig. 5(a) we plot as solid blue line the refractive index profile along x of the same 2 µm
silica microsphere shown in Fig. 3(b) along with the x − y and x − z slices. Note that there is
a region around the microsphere where the refractive index is lower than the medium one. In
Fig. 3(b) we used the a priori knowledge on the sample and set to zero the voxels having negative
refractive index contrast. An alternative way to impose this positivity condition is described in
[23]: i) set to zero the negative refractive index voxels; ii) take the inverse Fourier transform (now
the sampled regions in the Fourier space have different values and the unsampled regions are no
longer zero); iii) replace the accessible components of the Fourier space with the measured data;
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0.12
b) c) d)

y
x

z
x

a)

d) e)

raw reconstruction priori knowledge ( n>0)
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Fig. 5. (a) Reconstructions of the 2 µm silica bead in water shown in Fig. 3(b). The blue
solid line plots the refractive index contrast before the voxels with negative contrast are set
to 0. The x − y and the x − z slices of the same reconstruction are shown in (b). The orange
line plots an alternative way to impose the a priori knowledge on the sample as explained in
the appendix. The x − y and the x − z slices for the same reconstruction are shown in (c).
(d),(e) Simulated reconstructions of a silica bead in water for different numbers of incident
angles. (d) Profiles along the x axis. (e) Profiles along the optical axis z.
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iv) take the inverse Fourier transform. This procedure is iterated until the algorithm converges.
The obtained profile is plotted by the orange line in Fig. 5(a). Most of the voxels have a positive
contrast but the uniformity inside the region occupied by the microsphere is lost as can be seen
from the x − y and the x − z slices in Fig. 5(c). For this reason we impose sign constraints using
the simpler procedure described in the text.

Finally, we investigated how changing the number of the incident beams affects the reconstructed
image. For this purpose, using Mie theory [42], we computed the field scattered by a 2 µm silica
bead immersed in water, assuming δn = 0.1. The incident beam is modeled as a monochromatic
plane wave with λ = 0.53. The incident wavevectors are distributed uniformly on spherical cap
and the maximum incident angle is the same one of our condenser, corresponding to a NA of
0.8. Figure 5(d) plots the reconstructed refractive index contrast along the x axis while Fig. 5(e)
plots the same quantity along the optical axis z. As the number of incident angles increases the
refractive index value profile inside the particle becomes flatter, the image sharpens, and the
area with negative refractive index appears. In particular, the reconstruction sharpens along the
optical axis z. Conversely, with a low number of incident angles, the refractive index contrast
does not drop to zero, even at a distance of 4 µm from the bead center.
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