
R E S E A R CH A R T I C L E - T E C HNO LOG Y

Software medical device maintenance: DevOps based
approach for problem and modification management

Maria Raffaella Martina1 | Elisabetta Bianchini1 | Sara Sinceri1 |

Martina Francesconi2 | Vincenzo Gemignani1

1Institute of Clinical Physiology (IFC), National

Research Council (CNR), Pisa, Italy

2Department of Clinical and Experimental

Medicine, University of Pisa, Pisa, Italy

Correspondence

Maria Raffaella Martina and Vincenzo

Gemignani, Institute of Clinical Physiology

(IFC), National Research Council (CNR), Pisa,

Italy.

Email: martinamariella@gmail.com and

vincenzo.gemignani@ifc.cnr.it

Abstract

Software problem resolution and change control processes are crucial for the perfor-

mance, safety, and regulatory clearance of a medical device. Software changes are

frequent throughout the whole life cycle of a product; therefore, iterative analysis

and risk assessment are necessary to determine the impact of changes on the whole

system. IEC standard 62304 clarifies software medical device life cycle processes

including problem and modification analysis and requirements. The aim of this work

is to describe a cost-effective and fully customizable solution for software medical

devices problem and modification management implemented in our group. Key fea-

tures of the problem and modification management related to the software life cycle

have been identified and taken into account. A digital commercial platform for soft-

ware development and maintenance has been identified and used to implement an

architecture satisfying the standard. The architecture solution (SWMA, software

maintenance architecture) has been successfully developed and a description of how

it addresses IEC 62304 standard requirements both in terms of problem resolution

and in terms of change control has been provided. The presented system can be use-

ful for manufacturers/groups to establish software maintenance plans that include

activities and tasks related to software problem resolution and change control pro-

cesses. The approach can be adopted for analyzing and resolving problems arising

before and after the release of a medical device.

K E YWORD S

change control, DevOps approach, IEC 62304 standard, medical device, software life cycle,
software problem resolution

1 | INTRODUCTION

The digital revolution has been impacting each field of medicine. Most of medical devices (MDs) are dependent on software for their processes

and controls as well as for their design and development. Recently, the development of medical device software (MDSW), as defined by the

Maria Raffaella Martina and Elisabetta Bianchini contributed equally to the paper.

Received: 2 May 2022 Revised: 14 February 2023 Accepted: 2 April 2023

DOI: 10.1002/smr.2570

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

J Softw Evol Proc. 2024;36:e2570. wileyonlinelibrary.com/journal/smr 1 of 15

https://doi.org/10.1002/smr.2570

https://orcid.org/0000-0003-2489-8639
mailto:martinamariella@gmail.com
mailto:vincenzo.gemignani@ifc.cnr.it
https://doi.org/10.1002/smr.2570
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2570
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2570&domain=pdf&date_stamp=2023-04-14

Guidance on Qualification and Classification of Software in Regulation (EU) 2017/745 – MDR,1 is increasingly helping physicians to make accu-

rate diagnosis and guide decisions, highlighting the high potential for innovation and improvement in the health care sector.

MDSWs play a relevant clinical role impacting on patients and operators, thus need to be highly regulated. In most countries, regulation

establishes criteria and requirements to be met for medical device software to be marketed.2 In particular, US Food and Drug Administration

(FDA) regulates the medical device sector in the United States,3 whereas the Medical Device Regulation (MDR 2017/745), in force from May

2021 postponed by 1 year due to the coronavirus pandemic,4 regulates the medical device sector in the EU countries replacing the previous

Directive 93/42/EEC5 and EU MDD (Medical Device Directive) 2007/47/EC.6

Medical device manufacturers marketed in the EU and European Economic Area must comply with the new MDR that focuses on continuous

clinical evaluation processes well-structured in procedures and documented with detailed report. Furthermore, processes and documentation

relating to post-market clinical follow-up evaluation, summary of safety and clinical performance, risk management, and post-market surveillance

must be organized according to the risk class of the device. The MDR establishes that the manufacturer must have specific procedures to confirm

compliance with the general safety and performance requirements.7 One of the changes introduced by the new regulation concerns the software

as a medical device sector. In particular, rule 11 makes the certification process clearer by classifying most of the medical software starting from

class IIa up to III.8 A “Medical Device Software” is a software intended by the manufacturer to be used, alone or in combination, for human beings,

including diagnosis, prevention, monitoring, prediction, prognosis, treatment, or alleviation of disease.1 In particular, a software is subject to MDR

if it performs operations on data other than storage or archiving and if these operations are for medical purposes and for the benefit of the

patient's health.2

International organizations (such as ISO - International Organization for Standardization), deliver a set of standards to guide medical device

manufacturers to meet complex regulatory requirements. An entity can use, to demonstrate to the regulatory authorities the safety and reliability

of its processes and products, the compliance with the standards related to its activity. A key standard describing processes and requirements for

a safe design and maintenance of the medical device software is the IEC 62304 Medical device software - Software life cycle processes9 publi-

shed by the International Electrotechnical Commission (IEC) and recognized by the FDA in USA as well. The requirements of IEC 62304 directly

relate to some of the requirements of other standards, for example, ISO 13485 concerning the quality management standard for medical devices,

the risk management standard ISO 14971, and the medical device usability standard IEC 62366-1.10 Furthermore, within the quality management

system an efficient documentation control must be provided for all the processes of the medical device life cycle, ranging from development to

maintenance and post-market activities,11 as specified by the new MDR that emphasizes the value of the interconnection between the docu-

mented management system, risk analysis, safety, and performance of medical devices.

IEC 62304 clarifies software life cycle processes for management, implementation, integration as well as problem and modification analysis.

Software problem resolution and change control processes are crucial for the performance, safety, and regulatory clearance of a medical device.

Changes are continuously implemented throughout the life cycle of a software, including new features or improvements that might impact on the

software use. Thus, iterative analysis and risk assessment are necessary to determine the effects of changes on the whole system.12

IEC 62304 explores the issue of problem resolution by specifying that for each problem encountered in the software life cycle, processes

must be activated to make decisions, take correct actions, assign tasks, and compile related documentation. To manage this complex network of

regulatory requirements and processes, new approaches can be useful, such as DevOps where development and operations are integrated activi-

ties to rapidly manage tasks, ensure quality and safety, control feedback, and reduce development time and costs thanks to digital tools and work-

flows.13

In this paper we propose a cost-effective, replicable and fully customizable solution for software medical devices problem and modification

management, based on a low-cost commercial software platform, that was implemented in our group in a spin-off project of the CNR Institute of

Clinical Physiology and University of Pisa (Quipu srl). In the subsequent sections, the adopted digital commercial platform, the implementation of

the architecture solution (SWMA) and how this can satisfy IEC 62304 standard requirements are presented.

1.1 | Empirical evaluation

The DevOps is considered a cultural approach able to provide greater collaboration and communication by aligning people, processes, and tools

with benefits, for example, for multidisciplinary teams involved in the entire life cycle of a product. Some DevOps tools* are commercially avail-

able, and companies can adopt them in order to increase time efficiency and to reduce time to market. DORA 2019 State of DevOps report14

shows that teams using DevOps tools and practices to build, test, and deliver software are able to release deliverables more frequently (208 times

more frequently and 106 times faster than low-performing teams), with higher quality and stability.

Regarding the literature related to the DevOps methodology, a need for more empirical studies in this area is reported.15 Hence, recent

papers investigated, by means of interviews or questionnaires, the use of the DevOps approach in software organizations16 and report as

*https://www.atlassian.com/devops.

2 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.atlassian.com/devops

output that this methodology is increasingly in use for different goals related, for example, to reduce lead-time, improve problem-solving, and

feedback collection.17 In all cases, DevOps promotes communication and team collaboration thus helping to create bridges to overcome the

barriers between development and operations skills as well as to improve quality, safety, and effectiveness throughout the software

lifecycle.18

The perception reported in some cases was the lack of data relating to benefits, costs, and risks not sufficiently explored, and some organiza-

tions have introduced new employee role called DevOps Engineer to implement and monitor the DevOps methodology.17 Even more so it is nec-

essary to spread the use of low-cost tools and customizable implementations to improve task coordination, interoperability of the team, and thus

quality, traceability, and safety of the products to meet the challenges associated with iterative and continuous integration, development, deploy-

ment, test, track, and release phases for any software.

In our group, we experienced advantages thanks to the implementation of a DevOps approach mainly related to the maintenance of the

developed software and of its medical device file. A software is not a static system, it changes dynamically, and more than one software version is

released every year due to bug fixes and improvements, to meet new user needs and new cybersecurity requirements. One of the crucial issues

for the maintenance of software life cycle processes is tracking every action while keeping documentation up to date. This would be very complex

without the implemented architecture that allows tracking of all software changes and how they affect different aspects of the medical device file,

for example, in changing a requirement, a test to perform, the risk analysis, and user documentation. It would be difficult to manage the links

among all different aspects covered by the medical device file without the help of the developed architecture. In our team, this technology is ben-

eficial mainly for interoperability and traceability, that is, having tools to effectively track the changes on the affected releases is essential as well

as easily create and export the documentation updated for each version.

2 | METHODS

Key aspects of problems/modifications' management related to the software life cycle were identified and taken into account. These

include identification of a digital platform and requirements' identification based on available standards. A digital commercial platform for

software development and maintenance was identified to develop our customized architecture solution addressing medical device's

requirements.

2.1 | Digital platform used for the development of an architecture solution

Digital platforms for managing software development and maintenance, besides safety and security, need to take into consideration other users'

needs, ranging from planning of tasks to tracking of data processes to provide a heuristic management within the software life cycle; thus, funda-

mental requirements to be met are

• high customization

• possibility of integrating with other platforms

• cost-effective

Based on the three points above, our customized digital solution was implemented by using Jira (https://www.atlassian.com/software/jira), a

commercial software platform developed by Atlassian Corporation Plc (Sydney, Australia). Jira is a software development tool built to help teams

to manage their work in terms of planning, tasking, tracking, reporting, and team interaction bringing the advantage of managing all activities in an

integrated and smarter way, thus improving the organization of work.

The DevOps approach is the combination of software development practices and operations with the goal of optimizing product quality and

delivery to users. However, many companies find difficult to evaluate their performance in order to enhance them. Jira software allows to mea-

sure and improve organization's processes thanks to features that allow manufacturers to visualize and measure progress from idea through to

production, based on information and data on product distribution easily available providing elevated control and visibility in the company's

toolchain.19

2020 DevOps Trends Survey among 500 developers and IT decision makers reports that most of the respondents said DevOps had a direct

impact on business metrics but encountered barriers in their DevOps implementation. In this context, Jira software can be considered a useful

tool for manufacturers to support the implementation of DevOps approach in their company.20

This platform presents high degree of customization and configurability that can be exploited by internal expertise and know-how. Further-

more, Jira has an affordable cost and can be easily integrate with other platforms for a transversal tasks' management.

MARTINA ET AL. 3 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.atlassian.com/software/jira

2.1.1 | Documentation control and problem and modification management integration

Documentation control is a crucial point for the whole life cycle of a medical device including development, maintenance, post-market surveil-

lance, and control of records in order to ensure quality and safety. Furthermore, documentation management is a valuable control tool to ensure

continuous improvement and risk minimization as fundamental aspects of the medical device design and deployment.

Jira can connect with Confluence,† a commercial software platform developed by Atlassian Corporation Plc (Sydney, Australia) used by our

group for documentation control. A scheme for Jira and Confluence integration system is reported in Figure 1. Our group can rely on a structured

quality management system, which is relevant to design and develop medical software. Quality management system manages documentation and

records related to the key company's activities through a customized architecture based on Confluence, supporting features such as implementa-

tion, versioning, approval, secure access of documentation, and compliance with standards throughout the software life cycle.

Confluence–Jira integration in our system simplifies the management of the software development and maintenance processes because the

two applications work together from planning to execution of the activities with organized workflows and task tracking by integration of the doc-

umentation management. Our team members are in sync in all activities leading up to releases and updates, with a centralized space to organize

requirements, release notes, goals, and tasks to be done. These software platforms translate product requirements and user stories into specific

actionable features, thus simplifying context switching with direct links between documentation and related issues in Jira. Furthermore, Jira and

Confluence softwares help ease communication between development teams and non-technical stakeholders and bring the advantage of having a

single source of truth for software documentation. (https://www.atlassian.com/software/confluence/jira-integration).

2.2 | Requirements' identification

To fulfill the regulatory requirements for the analyzed processes, we referred to IEC 62304, the reference standard for software medical devices.

Compliance with this standard requires manufacturers to establish software maintenance processes that include problem and modification analy-

sis relating to feedback, verification of reported problems, and management and approval for implementing a modification option. Software prob-

lem resolution and change control processes are crucial for the performance, safety, or regulatory clearance of a medical device and are

mentioned in different points of the IEC 62304 standard (i.e., Clauses 5, 6, 8, and 9).

Moreover, as defined in Clauses 4.2 and 4.3, a software system is assigned by the manufacturer to safety class A, B, or C according to possi-

ble events on patients, operators, or other subjects involved resulting from a hazard connected to the software system. In particular, class A when

no injury or damage to health is possible, class B if non-serious injury is possible, and class C in case of death or serious injury is possible. Modifi-

cations control is crucial to manage the risk management process complying with regulation and international standards (i.e., ISO 14971).

†https://www.atlassian.com/software/confluence.

F IGURE 1 Jira and Confluence integration system and processes.

4 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.atlassian.com/software/confluence/jira-integration
https://www.atlassian.com/software/confluence

A standard revision project proposes to extend the scope of IEC 62304 beyond medical devices to health software used to manage, preserve,

or improve people's health including cybersecurity issues in medical devices and health software.10 Regulatory cybersecurity guidance draft for

manufacturers of medical devices has been published in the United States.21 In EU, cybersecurity requirements are reported in Annex I of the

MDR,22 deal with both premarket and post-market aspects, with the aim to provide a basis for the development of recommendations and guid-

ance for medical device manufacturers as well as to manage cybersecurity risks and protect patient health information. This topic needs further

study and will not be covered in this paper.

The next sub-sections report a detailed description of the requirements' identification for the two key processes addressed within this work:

software problem resolution and change control.

2.2.1 | Software problem resolution process requirements

The main phases to be managed in the software problem resolution process are specified in Clause 9 of IEC 62304 standard. Due to its relevant

role in the development and maintenance cycle, this process is mentioned also in other relevant steps of the standard (Figure 2). The software

problem resolution process must be defined for handling problems detected in the software at each stage of the life cycle.

The software configuration management planning specifies when the manufacturer should use the problem resolution process to manage

anomalies, integration, and integration testing.

Problems can be discovered before or after release, inside the manufacturer's organization, or outside it. Manufacturers establish software

maintenance plans with activities and tasks for the use of the problem resolution process for analyzing and solving problems arising after release

of the product.

All the problems detected during the life cycle of the software medical device must follow a path of investigation and change control

that will be tested and recorded in problem reports including their resolution and verification. Problem reports are evaluated to determine

how they affect the safety of a released software product and whether a change to the released software product is needed to address

the problem.

With reference to point 9 of the IEC 62304 standard, the problem reports are classified according to the type (e.g., corrective, preventive, or

adaptive to new environment), scope (e.g., size of change, number of device models affected, and supported accessories affected), and criticality

regarding effect on performance, safety, security, or regulatory clearance of a medical device.

The manufacturer investigates the problem to assess the relevance to safety by referring to the software risk management process and docu-

ments the results, then creates a change request for actions needed to correct the problem, or documents the rationale for taking no action. The

manufacturer may also decide not to correct the problem if it is not relevant to safety.

The verification of software problem resolution will determine if the problem has been resolved, the problem report has been closed and

adverse trends reversed, as well as if additional problems have been introduced to correct a problem or implement a request.

After all testing is completed, the test documentation will include the outcomes, anomalies, software version tested, hardware and software

test configurations, relevant test tools, date tested, and identification of the tester.

It is particularly important to verify that the risk control measures integrated into the medical device are not negatively modified by a soft-

ware change. It is also crucial to assess the impact of a software change in terms of new hazards or modifications of risks' mitigation as this could

even change the software safety classification.

IEC 62304 standard discerns between software maintenance (Clause 6) and software problem resolution (Clause 9) processes. The core of

the software maintenance process is defined as the reception of feedback after release of the software product to ensure that safety-related

problem reports are addressed and reported to appropriate regulatory authorities and affected users. Moreover, the maintenance process pro-

vides that the implemented software is revalidated and re-released. On the other hand, the core of the software problem resolution process is

analyzing problem reports, deciding on changes and evaluating the consequences, then implementing and verifying the changes while maintaining

the consistency of the software configuration items including the risk management file. It follows that the software maintenance process uses the

operating software problem resolution process to analyze problems' report to produce changes' requests that identify the configuration items to

change and the verification steps.

2.2.2 | Change requests control requirements

Change request is a documented specification of a change to be made to a software product. As specified in Clause 6 of IEC 62304, the manufac-

turer evaluates each change request for its effect on the organization, released software products, and interfaced systems and decide on approval.

Due to its relevant role in the development and maintenance cycle, requirements related to change requests management are mentioned also in

other relevant steps of the standard.

MARTINA ET AL. 5 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

F IGURE 2 Software problem resolution application within the life cycle processes of a software medical device according to the international
standard IEC 62304:2006.

6 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The manufacturer identifies the approved change requests and, if needed, informs users and regulators about the problems detected in the

software and the consequences of using the unmodified version and explains the type of changes and how to receive and install them.

The approved changes are implemented as specified in the change request with change control process entered into established maintenance

or software development process and the manufacturer releases the changes as part of a full re-release of the software or as a modification kit.

Within the changes' implementation, the manufacturer undertakes all the necessary actions to verify the changes including changes to the soft-

ware safety classification. The traceability of the changes is crucial, and it is achieved by means of an audit trail where each change request, rele-

vant problem report, and approval of the change request can be traced.

The manufacturer is responsible for controlling and documenting the activities and information relating to the change request. This activity is

necessary to avoid unauthorized or unintended changes to the software configuration items and to ensure the full implementation and verifica-

tion of the approved change requests. A change needs to be linked to an approved and documented change request.

All the described requirements, mentioned in Clauses 5, 6, 8, and 9 of IEC 62304, have been addressed, and the related implementations are

shown in the following section.

3 | RESULTS

3.1 | Developed architecture solution

The implemented solution SWMA based on Jira platform has been designed to fulfill the reference requirement both in terms of problem resolu-

tion and in terms of change control by addressing the activities described below.

3.1.1 | Inputs to the software problem resolution process

Sources of software problem reports may include

• anomalies detected during software development, internal testing, external testing or by the final user;

• software feedback evaluation; and

• non-conformity reports and/or customer complaints,

as summarized in Figure 3.

F IGURE 3 Inputs and outputs to software problem report.

MARTINA ET AL. 7 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Problems detected from different sources and affecting the product shall be documented as “bug” issues in Jira (Figure 4), according to the

internal risk management procedure.

A responsible is identified for collecting and recording bugs during the software design and development and after the release. All feedback

recorded as bugs shall be evaluated to determine whether a problem exists in the software product, the deliverable, or activities.

3.1.2 | Bug issues

A bug issue can be in one of the statuses reported in the Table 1.

Once the bug has been reported, internally or externally to the organization, a bug issue is created (status OPEN), and tasks and sub-tasks are

assigned and performed within the team (status IN PROGRESS). When the software is implemented according to the bug issue, the status

F IGURE 4 Example of bug issue in Jira managing problem.

TABLE 1 Status and description of a bug issue.

Status Description

OPEN The bug has been recorded and must be investigated.

IN PROGRESS The bug has been investigated and its resolution is in implementation.

RESOLVED The bug resolution has been implemented and must be approved.

CLOSED The bug has been closed. It may be “Resolved” or “Unresolved” (Resolution field).

REOPENED The bug has been re-submitted.

8 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

F IGURE 5 Flow chart of a Jira bug issue.

MARTINA ET AL. 9 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

changes in RESOLVED. A series of tests are run to verify if the bug is fixed. If yes, the RESOLVED status is complete; however, crucial tasks

related to the bug issue are needed before closing it, for example, the creation of documentation. Furthermore, an automatic mechanism has been

implemented to not close the bug issue until all tasks are completed. If the tests fail, the bug issue's status changes to REOPENED for implemen-

tation (IN PROGRESS), then RESOLVED, and finally CLOSED.

Figure 5 shows a flowchart of the whole bug issue management.

3.1.3 | Bug recording

Once a software problem is collected, a new bug issue in Jira is created.

A bug issue contains the fields reported in the Table 2.

The bug issue can have sub-tasks that can be assigned and tracked individually. A sub-task can be created for an issue either to split the issue

into smaller chunks or to allow various aspects of an issue to be assigned to different people. The sub-task can be in one of the following statuses:

TO DO, the sub-task has been created; IN PROGRESS, the sub-task is in implementation; and DONE, the sub-task has been implemented. Bug

issues and their sub-tasks can have comments and/or attachments that document the activity.

3.1.4 | Investigate the problem

Each bug issue shall be evaluated to determine how it affects the safety and effectiveness of a released software product, according to the inter-

nal risk management procedure and which change to the software product is needed to address the problem. The scope of the change is evalu-

ated (software versions affected, resources, and time needed to fix the problem).

The responsible for maintenance process shall investigate the problem, check if it can be replicated, check which versions of the software are

affected, identify possible causes and identify a possible software change for the problem resolution. The bug issue is automatically reported in a

dedicated “change list” (Figure 6) that is periodically reviewed by the quality manager.

The bug issue is analyzed taking into account its impact on safety and effectiveness, and a decision is taken on the need for a further

investigation. The subsequent steps can be managed through a risk analysis, corrective or preventive action, non-conformity, communication

to third parties (such as competent authority), or other needed process. The outcome of the investigation (if any) is documented in the

“change list.” When required by the results of the investigation, the problem shall be managed also according to details reported in the

TABLE 2 Required field and description for each bug issue.

Field Description

ID ID of the bug issue

Project Name of the software project

Summary Short description of the bug

Description Detailed description of the bug

Priority Priority of the bug resolution among highest, high, medium, low, and lowest

Component/s Software component/s affected by the bug

Fix version Software version where the bug resolution is implemented

Reporter Who reported the bug

Assignee Who is responsible for the implementation of the bug resolution

Environment Environment (i.e., operating systems) where the bug is present

Affects version/s Software version where the bug was detected

Status According to the added workflow

Resolution Resolved or unresolved

Detected by Who detected the bug: internal user, external user, development, quality assurance

Detected by notes Notes regarding who detected the bug and who and when the bug registration was authorized

Related investigation Issue related investigation (no investigation, risk analysis, CAPA, third parties

communication, non-conformity, other)

Related investigation notes Notes regarding the related investigation

10 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

internal procedure for post-market surveillance. All relevant parties shall be informed about (i) any problem in released software products and

the consequences of continued unchanged use and (ii) the nature of any available changes to released software products and how to obtain

and install the changes.

Once the bug has been investigated, a priority is assigned to the bug (among highest, high, medium, low, and lowest) according to the results

of the investigation. A version of the software for the implementation of the bug resolution can be also reported. The responsible for maintenance

process assigns the issue and in conjunction with the quality manager assign its sub-tasks (if any) to the staff members and move the issue to the

IN PROGRESS status, so that the implementation of the bug resolution can start. When required by the results of the investigation, the responsi-

ble for maintenance process shall give the highest priority and starts the problem resolution immediately. If required, an ad hoc release of the soft-

ware shall be programmed, where the bug is resolved.

3.1.5 | Software change implementation for the bug resolution

The software changes needed to solve the bug are implemented by the product design team. The assignee will be the person in charge for the

software implementation. Once the change is implemented, it undergoes a dedicated testing phase. For verifying the correct implementation, an

ad hoc test can be created and executed; alternatively, it is possible to execute an existing test from those available (the test execution shall be

linked to the Jira issue). Once the implemented issue is tested, if the test is successful, the assignee shall move the issue in the RESOLVED status

and the resolution field will be DONE. Otherwise, the assignee shall continue working on the issue until he or she obtains the expected result. If

the product design team decided not to proceed, the issue can be anyway moved in the RESOLVED status and the resolution field will be

WON'T DO.

3.1.6 | Software change approving

Once RESOLVED, if the resolution is DONE, the software change shall be

a. closed and integrated in the new version of the product;

b. properly documented in the technical documentation; and

c. fully tested according to the software test plan.

F IGURE 6 Change list of issues. This in an example of how it is possible to add the JIRA issue macro in a Confluence page in order to have a
list of issues that is populated automatically. Once you have added the macro, you can customize how the list of issues appears on the page,
including how much information to display, how many issues, and so on. It is possible to configure this view through an advanced search that
allows to build structured queries using the JIRA Query Language (JQL) to search for issues and to specify criteria that cannot be defined in the
quick or basic searches.

MARTINA ET AL. 11 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Otherwise, the issue can be moved to the CLOSED status or to the REOPENED status according to its final evaluation by the product design

team. If REOPENED, the software change shall be accepted with the same process of the OPEN issues mentioned above.

3.1.7 | Change request not deriving by a problem resolution process

Inputs for software changes may arise not only by a problem resolution need and may come from anyone in the company, from external consul-

tants, subcontractors, and from customers. These inputs shall be reported to the responsible for maintenance process who can initialize the design

and process change request by creating a “software change” issue in SWMA, similarly to the bug issues mentioned in the previous paragraphs.

Software change issues are intended for implementing specific and limited changes aimed to take improvements to the original project in fields

TABLE 3 IEC 62304 requirements related to the problem resolution process.

IEC 62304 clause
mentioning the problem
resolution process Specific points Compliance of the implemented architecture

Software
risk class
(A, B, C).

5.1 Software development

planning

5.1.1 Software

development plan

5.1.9 Software

configuration

management planning

All these activities are managed thanks to a quality management system

(ISO 13485) including planning and maintenance processes. A

responsible is identified for handling problems at each stage of the

software life cycle. All feedback recorded are evaluated to determine

whether a problem exists in the software product, the deliverable or

activities.

The software configuration management information includes that once a

software problem is collected, a new bug issue in JIRA is created.

A, B, C

5.6. Software integration and

integration testing

5.6.8 Use software

problem resolution

PROCESS

The software problem resolution process based on JIRA is applied to the

anomalies found during software system, integration, and integration

testing. The bug issue is reported in a dedicated “change list” that is
periodically reviewed by the quality manager.

B, C

5.7 SOFTWARE SYSTEM

testing

5.7.2 Use software

problem resolution

PROCESS

B, C

6 Software maintenance

process

6.1 Establish software

maintenance plan

6.2.2 Use software

problem resolution

PROCESS

The planned and implemented software problem resolution process

analyzes and solves, through the implemented digital solution, problems

arising after the release of the medical device software addressing

problem reports.

A, B, C

9 Software problem

resolution process

9.1 Prepare PROBLEM

REPORTS

9.2 Investigate the

problem

9.3 Advise relevant

parties

9.4 Use change control

process

9.5 Maintain records

9.6 Analyze problems for

trends

9.7 Verify software

problem resolution

9.8 Test documentation

contents.

Problems detected from different sources and affecting software are

documented as “bug” issues in JIRA.

The responsible for maintenance process investigates the problem and

identify possible causes and a possible software change for the problem

resolution. Each bug issue is evaluated to determine how it affects the

safety and effectiveness of a released software product, according to the

internal risk management procedure. Bug issues are created for actions

needed to correct the problem, or document the rationale for taking no

action.

All relevant parties are informed about the existence of the problem in

released software products and the nature of any available changes

implemented observing the requirements of the change control process.

Records of problems and their resolution are appropriately documented

including their verification.

The bug issue assigns sub-tasks that can be tracked individually and allows

to verify if the problem has been resolved and the problem report has

been closed, adverse trends have been reversed, change requests have

been implemented in the appropriate software products and activities,

and additional problems have been introduced.

Documentation containing test results, anomalies found, the version of

software tested, relevant hardware and software test configurations,

relevant test tools, date tested, and identification of the tester is always

tracked and available.

A, B, C

12 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

such as reliability, architecture, usability, serviceability, or manufacturability. More comprehensive changes requiring a strong revision of the origi-

nal project might also require to be evaluated according to the internal software design and development procedure.

The change request is recorded, and then, if approved, resulting modifications are managed as “software change” issues in Jira.

The software change issue status flow follows the steps of the bug issue reported in Figure 3 and contains the same fields. Similarly, the soft-

ware change issue can be managed through sub-tasks that can be assigned and tracked individually.

3.2 | Requirements' fulfillment

The requirements described in the previous paragraph are mentioned in Clauses 5, 6, 8, and 9 of 62304. Tables 3 and 4 show how the specific

points have been addressed, by the implemented digital solution, for problem resolution and change control, respectively.

It is worth noting that the group has a quality management system that successfully underwent external audits (years

2018-2019-2020-2021-2022) according to UNI EN ISO 13485: 2016 international standard and the 93/42/EEC Medical Device Directive

(MDD). Moreover, the certification for conformity to the new EU MDR has been recently obtained for the developed software medical device

(December 2022).

4 | CONCLUSIONS

The growing number of regulatory requirements that medical devices must comply with leads to the need for automated and digital approaches

to better manage products' development and maintenance processes throughout their life cycle.

TABLE 4 IEC 62304 requirements related to the change request management.

IEC 62304 clause

mentioning the change
request process Specific points Compliance of the implemented architecture

Software risk
class (A, B, C).

6.2 Problem and

modification analysis

6.2.3 Analyze CHANGE

REQUESTS

6.2.4 CHANGE REQUEST

approval

6.2.5 Communicate to

users and regulators

Each change request is reported to the responsible for maintenance

process who initializes the design and process change request by

creating a “software change” issue. Change effect on the

organization, released software products, and systems are analyzed.

The change request is recorded and, if approved, resulting changes can

be managed trough sub-tasks that can be assigned and tracked

individually.

The approved change requests that affect released software products

are identified, so users and regulators are informed about any

consequences of continued unchanged use, the nature of any

available changes and how to obtain and install the changes.

B, C (6.2.3)

A, B, C

(6.2.4-6.2.5)

6.3 Modification

implementation

6.3.1 Use established

PROCESS to implement

modification

6.3.2 Re-release modified

SOFTWARE SYSTEM

Software development and maintenance processes are established and

used, thanks to the developed architecture, to implement the

modifications.

Modifications may be released as part of a full re-release of a software

system or as a modification kit comprising changed software items

and the necessary tools to install the changes as modifications to an

existing software system.

A, B, C

8.2 Change control 8.2.1 Approve CHANGE

REQUESTS

8.2.2 Implement changes

8.2.3 Verify changes

8.2.4 Provide means for

TRACEABILITY of

change

The change is implemented as specified in the change request and

undergoes a testing phase and any activity and verification that

needs to be repeated as a result of the change, including changes to

the software safety classification of software systems and software

items.

Each change request, relevant problem report, and approval of the

change request is ever traced and available thanks to the developed

architecture.

A, B, C

9 Software problem

resolution process

9.4 Use change control

process

All approved and implemented change requests are in accordance with

requirements of the change control process.

A, B, C

MARTINA ET AL. 13 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In particular, software medical devices are highly complex and dynamic systems that are affected by a large number of changes and

implementations throughout their life cycle. Each modifications can generate unwanted effects, so it is necessary to verify and test each change

also in relation to the risk analysis and the impact on the entire system.12

It is mandatory that MDSWs provide safety, reliability, and security because failure to comply with these aspects can lead to injury or be fatal.

Manufacturers who can rely on an efficient quality management system can implement procedures that simplify compliance with needed require-

ments and the traceability of relevant processes as risk management, problem resolution and change management. However, the control, manage-

ment, and traceability of the development and maintenance processes can be difficult and expensive tasks.23

To facilitate access to the market of innovative medical device software while ensuring high-level for safety and health, it is necessary to digi-

tize processes and to use tools for interconnection between the people of the company. In this scenario, we proposed a cost-effective and fully

customizable solution for problems' and modifications' management, based on a low-cost commercial platform and implemented in our group, the

developed approach can help manufacturers/groups to navigate the complex regulatory network and to manage life cycle processes for the safe

development and maintenance of a medical device software.

In particular, the architecture solution, based on the commercial tool, was described addressing reference medical devices requirements both

in terms of problem resolution and change control representing crucial aspects for performance, safety, or regulatory clearance of a medical

device as mentioned in the IEC 62304 standard.

Our solution presents high degree of customization and configurability that can be exploited inside an organization by internal expertise and

know-how. Furthermore, our solution allows the needed integration of documentation control with implementation, versioning, modification pro-

cesses, and compliance with standards throughout the whole life cycle of the product. In addition, the implemented approach allows to manage

projects across a team from planning to execution with organized workflows, task and access tracking, and integrated documentation

management.

It is worth noting that the presented architecture can be useful for manufacturers to establish software maintenance plans that include activi-

ties and tasks for analyzing and resolving problems arising before or after the release of the medical device software.

Efficient solutions that are economically and operatively sustainable are needed. Control cannot become more challenging than development

itself, it must be a smart and agile tool to aid manufacturers and developers in ensuring effectiveness of the medical device and safety of users.

In this scenario, our approach is based on the management of the maintenance processes of MDSWs in favor of quality and safety in an effi-

cient and digital way to simplify procedures and facilitate control by the regulatory bodies, guaranteeing reliability through compliance to

standards.

CONFLICT OF INTEREST STATEMENT

EB and VG are co-founders of QUIPU s.r.l., Pisa, Italy, a spin-off company of the Italian National Research Council and the University of Pisa

developing software medical devices.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Maria Raffaella Martina https://orcid.org/0000-0003-2489-8639

REFERENCES

1. MDCG. Guidance on Qualification and Classification of Software in Regulation (EU) 2017/745 – MDR and Regulation (EU) 2017/746 – IVDR. Published

online; 2019:1-28. https://ec.europa.eu/docsroom/documents/37581/attachments/1/translations/en/renditions/native

2. Blagec K, Jungwirth D, Haluza D, Samwald M. Effects of medical device regulations on the development of stand-alone medical software: a pilot study.

Stud Health Technol Inform. 2018;248:180-187. doi:10.3233/978-1-61499-858-7-180

3. Jarow JP, Baxley JH. Medical devices: US medical device regulation. Urol Oncol Semin Orig Investig. 2015;33(3):128-132. doi:10.1016/j.urolonc.2014.

10.004

4. MDR Delay Official as Industry Calls to Push Back IVDRjRAPS. Accessed April 23, 2021. https://www.raps.org/news-and-articles/news-articles/2020/

4/mdr-delay-moves-forward-as-industry-calls-to-push

5. Council Directive. 93/42/EEC of 14 June 1993 Concerning Medical Devices. Published online 1993.

6. McCarthy AD, Lawford PV. Standalone medical device software: the evolving regulatory framework. J Med Eng Technol. 2015;39(7):441-447. doi:10.

3109/03091902.2015.1088087

7. Bhatia P, Ali LCC, Burri KG, Pritchard G, Singh N, Upadhyay N. New documents required by the medical device regulation. Med Writ. 2020;29(3):

24-29.

8. Becker K, Lipprandt M, Röhrig R, Neumuth T. Digital health - software as a medical device in focus of the medical device regulation (MDR). IT - Inf

Technol. 2019;61(5-6):211-218. doi:10.1515/itit-2019-0026

9. BSI. Medical Device Software — Software Life-Cycle Processes. Bs En 623042006 +a12015. Vol. 3(November 2008); 2015. 88p. https://www.iso.org/

standard/64686.html

14 of 15 MARTINA ET AL.

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-2489-8639
https://orcid.org/0000-0003-2489-8639
https://ec.europa.eu/docsroom/documents/37581/attachments/1/translations/en/renditions/native
info:doi/10.3233/978-1-61499-858-7-180
info:doi/10.1016/j.urolonc.2014.10.004
info:doi/10.1016/j.urolonc.2014.10.004
https://www.raps.org/news-and-articles/news-articles/2020/4/mdr-delay-moves-forward-as-industry-calls-to-push
https://www.raps.org/news-and-articles/news-articles/2020/4/mdr-delay-moves-forward-as-industry-calls-to-push
info:doi/10.3109/03091902.2015.1088087
info:doi/10.3109/03091902.2015.1088087
info:doi/10.1515/itit-2019-0026
https://www.iso.org/standard/64686.html
https://www.iso.org/standard/64686.html

10. Värri A, Kranz-Zuppan P, De La Cruz R. IEC 62304 ed. 2: software life cycle standard for health software. Stud Health Technol Inform. 2019;264:868-

872. doi:10.3233/SHTI190347

11. Bianchini E, Francesconi M, Testa M, Tanase M, Gemignani V. Unique device identification and traceability for medical software: a major challenge for

manufacturers in an ever-evolving marketplace. J Biomed Inform. 2019;93:103150. doi:10.1016/j.jbi.2019.103150

12. Hrgarek N. Certification and regulatory challenges in medical device software development. In: 2012 4th International Workshop on Software Engineer-

ing in Health Care (SEHC); 2012:40-43. doi:10.1109/SEHC.2012.6227011

13. Laukkarinen T, Kuusinen K, Mikkonen T. DevOps in regulated software development: Case medical devices. In: Proc - 2017 IEEE/ACM 39th Int Conf

Softw Eng New Ideas Emerg Results Track, ICSE-NIER 2017. Published online; 2017:15-18. doi:10.1109/ICSE-NIER.2017.20

14. The 2019 Accelerate State of DevOps: Elite performance, productivity, and scalingjGoogle Cloud Blog. Accessed February 1, 2023. https://cloud.

google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling

15. Jabbari R, bin Ali N, Petersen K, Tanveer B. Towards a benefits dependency network for DevOps based on a systematic literature review. J Softw Evol

Process. 2018;30(11):e1957. doi:10.1002/smr.1957

16. Lwakatare LE, Karvonen T, Sauvola T, et al. Towards DevOps in the embedded systems domain: why is it so hard? In: Proc Annu Hawaii Int Conf Syst

Sci. Vol.2016-March; 2016:5437-5446. doi:10.1109/HICSS.2016.671

17. Erich FMA, Amrit C, Daneva M. A qualitative study of DevOps usage in practice. J Softw Evol Process. 2017;29(6):1-20. doi:10.1002/smr.1885

18. Angel M, Bermejo P. DevOps: Is There a Gap Between Education and Industry? 2023;(October 2022):1-25. doi:10.1002/smr.2534

19. Half of All DevOps Teams Can't Measure Performance - Work Life by Atlassian. Accessed April 23, 2021. https://www.atlassian.com/blog/devops/new-

devops-metrics?utm_source=website&utm_medium=link&utm_campaign=devops_moment_2_launch

20. Atlassian. DevOps Trends Survey. Published online. Vol. 2020; 2020:1-38. https://www.atlassian.com/whitepapers/devops-survey-2020

21. FDA. Content of Premarket Submissions for Management of Cybersecurity in Medical Devices. FDA Guid. Published online; 2018:6. https://www.fda.gov/

media/119933/download

22. Medical Device Coordination Group. Guidance on Cybersecurity for Medical Devices. Mdcg 2019-16. Published online; 2019:1-46. https://ec.europa.

eu/docsroom/documents/38941

23. Regan G, Biro M, Mc Caffery F, Mc Daid K, Flood D. A traceability process assessment model for the medical device domain. In: Communications in

Computer and Information Science. Vol.425. Springer Verlag; 2014:206-216. doi:10.1007/978-3-662-43896-1_18

How to cite this article: Martina MR, Bianchini E, Sinceri S, Francesconi M, Gemignani V. Software medical device maintenance: DevOps

based approach for problem and modification management. J Softw Evol Proc. 2024;36(4):e2570. doi:10.1002/smr.2570

MARTINA ET AL. 15 of 15

 20477481, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2570 by C
N

R
 Pisa, W

iley O
nline L

ibrary on [17/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.3233/SHTI190347
info:doi/10.1016/j.jbi.2019.103150
info:doi/10.1109/SEHC.2012.6227011
info:doi/10.1109/ICSE-NIER.2017.20
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
info:doi/10.1002/smr.1957
info:doi/10.1109/HICSS.2016.671
info:doi/10.1002/smr.1885
info:doi/10.1002/smr.2534
https://www.atlassian.com/blog/devops/new-devops-metrics?utm_source=website&utm_medium=link&utm_campaign=devops_moment_2_launch
https://www.atlassian.com/blog/devops/new-devops-metrics?utm_source=website&utm_medium=link&utm_campaign=devops_moment_2_launch
https://www.atlassian.com/whitepapers/devops-survey-2020
https://www.fda.gov/media/119933/download
https://www.fda.gov/media/119933/download
https://ec.europa.eu/docsroom/documents/38941
https://ec.europa.eu/docsroom/documents/38941
info:doi/10.1007/978-3-662-43896-1_18
info:doi/10.1002/smr.2570

	Software medical device maintenance: DevOps based approach for problem and modification management
	1 INTRODUCTION
	1.1 Empirical evaluation

	2 METHODS
	2.1 Digital platform used for the development of an architecture solution
	2.1.1 Documentation control and problem and modification management integration

	2.2 Requirements' identification
	2.2.1 Software problem resolution process requirements
	2.2.2 Change requests control requirements

	3 RESULTS
	3.1 Developed architecture solution
	3.1.1 Inputs to the software problem resolution process
	3.1.2 Bug issues
	3.1.3 Bug recording
	3.1.4 Investigate the problem
	3.1.5 Software change implementation for the bug resolution
	3.1.6 Software change approving
	3.1.7 Change request not deriving by a problem resolution process

	3.2 Requirements' fulfillment

	4 CONCLUSIONS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

