
58  acm Inroads  2024 December • Vol. 15 • No. 4

CONTRIBUTED ARTICLESARTICLES

CS2023

The Role of Formal
Methods in Computer

Science Education
By Maurice ter Beek, CNR–ISTI, Manfred Broy, Technische Universität München, and

Brijesh Dongol, University of Surrey

This piece points out the key position of formal methods
in Computer Science (CS) education, which must thus be

reflected in any CS curriculum as a knowledge area rather
than as elective topics in distinct knowledge areas. This
is confirmed by the increasing use of formal methods in
industry [4]—not limited to safety-critical domains. First,
we indicate the importance of formal methods thinking
in CS education [17], since this provides the necessary
rigor in reasoning about software, its specification, its
verification, and its correctness—all fundamental skills
for future software developers. Then, we argue that every
computer scientist needs to know formal methods [6], since
the skills and knowledge acquired in this way provide the
indispensable solid foundation that forms the backbone
of CS practice. Finally, we underline that teaching formal
methods need not come at the cost of displacing other
engineering aspects of CS that are already widely accepted
as essential. On the contrary, formal methods have the
potential to support and strengthen the presentation
and knowledge in all these subdisciplines. We provide
suggestions for educators on how to incorporate formal
methods into CS education.

INTRODUCTION
This article summarizes discussion and evidence brought for-
ward in three white papers on the role of formal methods in CS
education, which were written by 35 authors [4,6,17]. Formal
methods have multiple characterizations in the literature as
languages and techniques (and tools) based on rigorous math-
ematical foundations for the specification, development, and
(manual or automated) analysis and verification of software and
hardware systems [4,6,12,17,24,41].

Let us start by explaining what a formal method is. According
to IEEE, “software engineering methods provide an organized,
systematic approach for specifying, designing, constructing,
testing, and verifying the resulting software products and as-
sociated work items involved in developing computer software
applications. The methods impose a certain structure, set of
steps, practices, and procedures on the software engineering
effort to make it more methodical, repeatable, and more suc-
cess-oriented” [27]. A method is called “formal” if its set of steps
is applied using formal techniques such that the correctness of
the result of the application is formally justified. Let us look at a
very basic example. Using Hoare-style program annotation, we
write the formal proposition

{Q} S {R}

to express that from any state in which the assertion Q (i.e.,
the precondition) holds, execution of the program S (if it
terminates) leads to a state in which the assertion R (i.e.,
the postcondition) holds. There is a set of proof rules to
give a formal proof for this proposition. In this example of
a formal method, the effect of the program is formalized
by formalizing the assertions Q and R and the proposition
{Q} S {R} is a formal statement that is formally verified.
Nevertheless, this idea can also be applied as a semi-formal
method, by formalizing the assertions Q and R and then
giving informal arguments to argue that {Q} S {R} holds.
The method can also be applied fully informally by giv-
ing informal descriptions of Q and R and giving informal
arguments to show that these descriptions are fulfilled.
Having seen and understood the formal method, both the
semi-formal and the informal method are not only clearly
understood—they can be applied with much more care.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702231&domain=pdf&date_stamp=2024-11-11

acm Inroads • inroads.acm.org  59

ARTICLES

Figure 1: A proof of correctness of a program to compute the factorial in
Dafny.

Figure 2: Formal methods teaching (Image courtesy of Luigia Petre, generated using Dall-E).

Many tools that support (semi-)automated verification have
been developed. Provers such as Dafny [31], which enable ver-
ification of Hoare-style annotations, are routinely used in in-
dustry [11]. In Figure 1, we give the example of a Dafny method
Factorial for computing the factorial of the given input. The
precondition (denoted by the requires keyword) assumes that
the input value x is at least 0, while the postcondition (denoted
by the ensures keyword) guarantees that the return value r is
indeed the factorial of the input x, where the factorial is speci-

fied by the recursive function definition (factorial) in lines 1–3.
This proof additionally requires the support of a loop invariant
in line 13, which must be supplied by the programmer. All other
aspects of the proof, e.g., the introduction of intermediate as-
sertions, are automatically handled by Dafny.

Ongoing improvements in such formal verification tools
means that they are often used to teach formal methods in
courses around the world [21], since they allow students to
quickly link theory with practice. From an educator’s perspec-
tive, the ability to explain concepts such as pre/postconditions
and invariants using a tool that can check their correctness is
compelling proposition, since this immediately improves a stu-
dent’s engagement with these seemingly abstract concepts.

Formal methods come in many shapes and sizes, rang-
ing from lightweight static analysis to heavyweight interac-
tive theorem proving (see Figure 2). We emphasize the role
of formal methods in complementing existing validation and
verification techniques like testing and simulation. This may
include the use of partiality [28] (of specifications, languag-
es, modeling, and analysis) to reduce the cost of deployment
and increase tractability. The distinguishing feature of formal
methods is their capability to enable the systematic usage of
formal foundations in CS in engineering tasks such as guaran-
teeing the absence of misinterpretations of requirements in a
system under development.

60  acm Inroads  2024 December • Vol. 15 • No. 4

ARTICLES
CS2023 The Role of Formal Methods in Computer Science Education

Therefore, at the very
least formal methods think-
ing, enabling the applica-
tion of formal methods in
lightweight, practical, and
accessible ways, should be
part of the recommended
curriculum for every CS
student. We have advocated
for formal methods think-
ing at three levels of exper-

tise: informal (Level 1), semi-formal (Level 2) and fully formal
(Level 3) [17]. Students who train only in this ‘thinking’ will
become much better programmers with a deeper understand-
ing of their tasks, since it involves annotating programs with
assertions that describe what is true at particular points of a
program. Our basic example of the formal method of verifying
{Q} S {R} demonstrates clearly that knowing the formal method
supports the semi-formal or informal use of the idea. Formal
methods thinking (in particular, Levels 1 and 2) can be incor-
porated into any CS curriculum without introducing additional
teaching hours. Moreover, there are students who, exposed to
those ideas, will be ideally positioned to study more: why the
techniques work; how they can be automated; and how new
ones can be created. Thus, teaching Levels 1 and 2 supports
subsequent (optional) courses that include topics such as for-
mal semantics and proof-automation techniques (Level 3).

Formal methods can assist in teaching programming to nov-
ices more effectively than by informal reasoning and testing.
Formal methods explain design patterns, model-driven engi-
neering, software architecture, software product lines, require-
ments engineering, and security, being complementary to these
CS fields. Formalisms concisely and precisely express under-
lying fundamental design principles and equip programmers
with a tool to handle related problems.

ACM CS2023 would have been the ideal time and place to
adjust the way we teach CS. There are mature tools and proofs
of concept available and the possibility of designing coherent
teaching paths. Importantly, this can be done without displac-
ing the other ‘engineering’ aspects of CS already widely accept-
ed as essential. Support for teachers is available, for instance via
Formal Methods Europe (FME) [20,22].

The next four sections each deal with a different one of the
aforementioned four key points, the first three of which are
based on the above mentioned three white papers. First, we em-
phasize the importance of formal methods thinking in CS edu-
cation. Then, we underline the importance of knowing formal
methods for CS graduates, as witnessed and testified by prac-
titioners using formal methods in industry in the subsequent
section, after which we aim to convince the reader that teaching
formal methods need not come at the cost of displacing other
engineering aspects of CS. Finally, we conclude by wrapping up
our position on the role of formal methods in CS education.
All quotes reported hereafter stem from the three white papers,
unless indicated otherwise.

Obviously, there are vari-
ous positions of the experts in
our field on the significance of
formal methods. In the follow-
ing, we formulate a plea for in-
troducing formal methods as a
core subject into CS curricula.
We provide supporting evi-
dence from renowned experts
in the field. Currently, formal
methods do not appear in the
ACM CS2023 curriculum to the extent that reflects their fun-
damental role in CS and the benefits that a targeted education
in formal methods brings. In particular, formal methods do not
appear as a separate knowledge area but only as elective top-
ics in some knowledge units in two distinct knowledge areas
(namely Foundations of Programming Languages and Software
Engineering). The abovementioned white papers make the fol-
lowing four key points.

1. Formal methods are applicable in numerous industrial do-
mains, not limited to safety-critical applications.

2. Formal methods cover key tasks in CS such as require-
ments engineering, specification, algorithmic problem
solving, verification, model-driven engineering, security,
and many more.

3. Every CS graduate needs to have a fundamental education
in formal methods.

4. The current offering of formal methods in the CS curricu-
la and, in particular, in CS2023 is inadequate.

Computer Science, namely the science of solving prob-
lems by software and software-intensive systems, provides the
knowledge and skills to understand and capture precisely what
a situation requires, and then develops a program providing a
formal solution. Two of the most fundamental skills of a com-
puter scientist, those of abstraction and formalization, are ef-
fectively addressed by formal methods. They provide the rigor
for reasoning in precise terms about goals, such as specifica-
tion, validation, and verification, thus guaranteeing adequacy,
accuracy, and correctness of designs and implementations.

Formal methods are becoming more widely applied in in-
dustry, from eliciting requirements and early design to de-
ployment, configuration, and runtime monitoring. Evidence of
successfully applying formal methods in industry ranges from
stories in the safety-critical domain, such as railways and other
transportation domains, to areas such as lithography manufac-
turing and cloud security in e-commerce, for example. “Papers
and testimonies come from representatives who, either direct-
ly or indirectly, use or have used formal methods in their in-
dustrial project endeavors. Importantly, they are spread geo-
graphically, including Europe, Asia, North and South America,
and involve well-known worldwide companies such as Alstom,
Amazon, ASML, Bang & Olufsen, Boeing, Collins Aerospace,
Embraer, Facebook, Google, Huawei, IBM, Intel, Microsoft,
Motorola, Oracle, Siemens, and Volvo” [4].

ACM CS2023 would have been the
ideal time and place to adjust

the way we teach CS. There are
mature tools and proofs of concept

available and the possibility of
designing coherent teaching paths.

acm Inroads • inroads.acm.org  61

ARTICLES

• Software Development:
writing clean code
and documentation,
establishing correctness;

• Verification: specification-
based testing,
complementing testing
with formal reasoning

• Maintenance: system
adaptation, error
correction, quality
improvement

Formal methods are increas-
ingly employed in soft-ware
engineering, cybersecurity, and
computer networking—to name
just a few. The central challenge

addressed by formal methods is “the need for precision and rigor
in modelling and analyzing computer systems and software” [17].

KNOWING FORMAL METHODS
Early computing pioneers like Turing and von Neumann recog-
nized the importance of reasoning about programs, publishing
papers in the 1940s that demonstrated the possibility of record-
ing proofs for program correctness. Over the decades, research-
ers have enhanced the tractability of specification and reason-
ing, developing supporting software tools, many of which still
require users to understand the underlying formalisms.

Just like structural engineers do not always apply their most
rigorous techniques, not all software needs to be developed for-
mally. But just like structural engineers need to learn the founda-
tional methods supporting documentation and reasoning about
their designs, “software engineers must learn how precise spec-
ifications are constructed and how their key design decisions
are subject to rigorous justification” [6]. No structural engineer
would be permitted to work on the design of a bridge without a
solid understanding of the relevant mathematical theories.

Building reliable systems necessitates rigorous development
approaches rooted in abstract comprehensive models, unambig-
uous specifications, thorough testing, and verification methods
to ensure system requirements are met. While software systems
do not endure wear and tear, changing environments introduce
new requirements, necessitating long-term maintenance plans.
CS is an independent engineering discipline, which draws from
and interacts with other engineering disciplines, but relies heav-
ily on formal techniques. Computer programs interface with the
physical world and impact the real world, from controlling ma-
chinery to managing energy distribution. In many such domains,
formal descriptions are indispensable to predict and prevent
unintended consequences with significant responsibility. Creat-
ing these formal descriptions requires skills in abstraction, rigor,
and a clear understanding of the models’ semantics. It seems ir-
responsible to let anyone design high-impact computer control

FORMAL METHODS
THINKING
Formal methods thinking of-
fers distinct advantages over
relying solely on an intuitive
understanding of program ex-
ecution. Testing, for instance,
has limitations: it may not
guarantee correctness, sub-
jective judgment is needed
for some outputs, and untried
cases can hide errors, at least
as long as validated formal
specifications are not worked
out. Courses that teach for-
mal methods provide stu-
dents with an independent
understanding of programs by
proving their satisfaction of specifications for all inputs, com-
plementing testing capabilities. While testing remains crucial,
formal methods augment it by reducing the likelihood of mis-
takes, improving specification precision, and fostering reflec-
tive design practices, thus instilling in students “a mindset of
reflecting on our designs and checking (or verifying) that the
intentions (or requirements) are met” [17]. Formal methods
enhance one’s argumentation skills and lay the foundation for
solid reasoning about systems behavior.

Most CS curricula initially cover mathematical foundations
alongside introductions to programming, algorithms, and data
structures. As students progress, they specialize in various ap-
plications and CS knowledge areas like databases, security, con-
currency, networks, Artificial Intelligence (AI), etc. The level of
foundational mathematics varies based on later specializations,
encompassing topics such as discrete mathematics, logic, prob-
ability theory, control theory, and linear algebra. While the dis-
cussion of the appropriate level of mathematics for the average
programmer is not the focus here, a reasonable argument could
be made that people should not be writing programs whose
functionality requires discrete mathematics to describe it, un-
less they have some command of discrete mathematics them-
selves. We believe that formal methods thinking should extend
beyond discrete mathematics to address also the complex dy-
namics and behavior of modern systems.

Formal-methods thinking is especially beneficial in pro-
gramming, enhancing students’ ability to model computational
problems and comprehend their code, thereby improving their
programming skills. However, formal methods thinking ex-
tends beyond programming and can be applied throughout the
software life cycle phases:
• Analysis: system modeling and requirements elicitation

and specification
• Product Design: specification of functional and quality

requirements
• Validation: analyzing requirements on validity and

comprehensiveness

Formal-methods thinking is
especially beneficial in programming,

enhancing students’ ability to
model computational problems and

comprehend their code, thereby
improving their programming skills.
However, formal methods thinking

extends beyond programming
and can be applied throughout the

software life cycle phases.

62  acm Inroads  2024 December • Vol. 15 • No. 4

ARTICLES
CS2023 The Role of Formal Methods in Computer Science Education

automated formal reasoning is
challenging that entire struc-
ture, changing both the quality
of AWS products and the cost
structure to support them. The
key at AWS has been to avoid
‘shiny-object syndrome’ [14]
and instead build and apply
tools that quietly but reliably
change the behavior of engi-
neers. Many leaders at AWS
were skeptical of this type of
work in 2016, but the success
in areas such as cryptography,
identity, storage and virtual-
ization has changed minds.”

Rod Chapman (AWS)
[4]: “In late 2020, AWS an-
nounced the availability of
strong read-after-write con-
sistency in the S3 storage

service. S3 operates at a currently preposterous scale, storing
over 100 trillion objects and handling over 10 Million requests
per second [39]. Strong consistency ensures that the same
view of an object is available to all readers instantly following
a write operation to that object. Consistency properties were
specified and verified using Dafny [31], a verification-aware
programming language.”

Ivo ter Horst (ASML) [4]: “To make ASML’s lithography sys-
tems run reliably and consistently ASML needs software that
sends unambiguous instructions in every situation to the care-
fully engineered hardware. One way that ASML ensures this is
by formally verifying (model checking) the specified machine
behavior and automatically generating correct and semantically
equivalent code from those models” [5].

TEACHING FORMAL METHODS
Fundamental formal methods in CS, comprising modeling,
formal specification, refinement, and verification, constitute
a key knowledge area with widespread relevance in many of
today’s innovative applications, like self-driving cars, in a so-
ciety that increasingly relies on software systems. Currently,
discrete mathematics courses are often perceived as early
challenges in CS education, disconnected from modern pro-
gramming languages, yet they are crucial springboards for in-
troducing formal methods. An additional core area directly
focused on formal methods could help contextualize discrete
mathematics courses for students and could demonstrate why
such courses are taught so early as a starting foundation for a
CS education.

CS2023 envisions 17 knowledge areas [1], most of which can
be enhanced by formal methods (or formal methods thinking).
We now discuss some of these knowledge areas to illustrate the
strength of formal methods, providing several successful exam-

programs without suitable
training in formal methods
to mitigate potential risks, re-
gardless of whether these are
applied to systems from the
safety-critical domain.

Fortunately, program-
mers commonly use some
(lightweight) formal meth-
ods (thinking) in their daily
work, such as type systems
for defining formal require-
ments on value expressions
and checking compliance of
the values produced by ex-
pressions with given types.
This also helps with program
decomposition and structur-
ing. Some programming lan-
guages have type systems that
demand a formal understand-
ing of types and the type-checking process, and the ability to
apply abstraction. In practice, often formal techniques are no
longer called ‘formal methods’ since they are so smoothly in-
tegrated into the engineering. Formal methods can act as a
bridge between pure mathematical foundations and general
software development. “Formal methods thinking consists of
describing a system to be understood or designed in terms of
fundamental discrete mathematical entities such as sets, lists,
maps, relations, functions, differential equations, probabilis-
tic models, and constraints” [6]. Such formalization typically
unveils issues not seen otherwise and it moreover fosters an
early shared vision among stakeholders. Abstraction plays a
crucial role in this process [15,30].

Programs and software are formal entities. The steps from
an idea and an informal problem description to a program or a
piece of software are the steps from the informal to the formal.
Formal methods are thus in the heart of CS.

FORMAL METHODS IN INDUSTRY
While many success stories of applying formal methods in in-
dustry concern safety-critical systems [19,25,40], recent liter-
ature reports an uptake in the application of formal methods
also outside safety-critical applications. For instance, to ensure
the quality of cloud services at Amazon [3,32], of cloud data-
bases and weak memory models at Huawei [23,34], and of mo-
bile apps at Facebook [16]. Furthermore, representatives from
a wide range of industry sectors have contributed testimonies
concerning the use of formal methods in their projects [4]. We
include some relevant parts of their contributions here.

Byron Cook (founder of the automated reasoning group
at AWS) [4]: “‘Formal methods’ is transforming how Amazon
Web Services (AWS) secures the cloud. Security has historical-
ly been a manual, high-judgement and thus un-scalable field;

“‘Formal methods’ is transforming
how Amazon Web Services (AWS)

secures the cloud. Security
has historically been a manual,

high-judgement and thus un-scalable
field; automated formal reasoning

is challenging that entire
structure, changing both the quality

of AWS products and the
cost structure to support them.

The key at AWS has been to avoid
‘shiny-object syndrome.’”

acm Inroads • inroads.acm.org  63

ARTICLES

PARALLEL AND DISTRIBUTED COMPUTING
This knowledge area encompasses various topics, ranging
from parallelization and dependencies to progress, dead-
locks, faults, safety, and liveness. Although formal methods
are not explicitly mentioned, the suggested learning outcomes
for core CS2023 contain examples like “Write a program that
correctly terminates when all of a set of concurrent tasks have
completed” [1], which obviously requires knowledge of cor-
rectness, termination, and techniques for rigorous reasoning
about programs, as well as rigorous semantics of concurrency.
“This area states as prerequisites logic, discrete mathematics,
foundations of software engineering, but none of them in the
current status of the ACM standard provides the ability to be
able to understand and justify correctness of computational
systems” [17]. Formal methods are mentioned as a means of
specifying concurrent implementations (e.g., linearizability),
and as a means of formalizing inter-process communication
(e.g., using a process algebra such as CSP). This shows that,
when systems become complex (as in the case of concurrent
and distributed programs), formal methods are unavoidable
due to the high likelihood of human error. Teach how to un-
derstand and justify the correctness of systems in the presence
of the topics addressed in this knowledge area (e.g., program
parallelization, atomicity, concurrency, progress, deadlocks,
faults, safety, and liveness), which in essence lists formal
methods as a prerequisite (viz., logic, discrete mathematics,
and software engineering foundations).

SECURITY
This knowledge area focuses on instilling a security mindset in
CS students by understanding vulnerabilities of—and threats
against—software systems, ensuring that security (including
concepts like privacy and cryptography) is inherent in all their
output. Teach how formal methods can provide the assurance of
security properties in algorithms and protocols, ensuring their
resilience against attacks. For example, formal methods such as
Dafny are used at Amazon Web Services to reason about en-
cryption properties and cryptography infrastructures [11,13].

SOFTWARE DEVELOPMENT FUNDAMENTALS
This knowledge area covers fundamental concepts and skills
concerning programming, the use of data structures, refine-
ment, and an understanding of how algorithms impact program
performance. As mentioned earlier, algorithms should not be
detached from reasoning about their correctness, yet formal
methods are not mentioned as part of Software Development
Fundamentals in CS2023. In general, however, formal methods
concepts enter mainstream programming (think of contracts in
C++ or mutexes in concurrent programming). We find it hard
to imagine their effective use without knowing formal methods.
“We teach children counting and algebra before giving them a
pocket calculator, for very good reasons” [17]. Teach to reason
(at least informally) about the correctness of programs (e.g., by
specifying requirements and justifying why these are met by the
proposed program). Support on how to integrate formal methods

ples of applications of formal methods in these knowledge areas
from the literature, as well as brief suggestions for what to teach
in relation with formal methods from [4: Section 4: Educating
for Formal Methods in Industry,6,17]. We then conclude this
section by providing some supporting evidence from renowned
experts in the field for our plea to teach formal methods as part
of any CS curriculum since it provides “fundamental Computer
Science skills that industry would profit from when hiring com-
puter scientists” [4: Section 4: Educating for Formal Methods
in Industry].

ALGORITHMIC FOUNDATIONS
The focus of this knowledge area is on teaching fundamental
data structures, classical algorithms, algorithm construction
strategies, and computational complexity and computability
theory. While there are suggestions on addressing invariants,
especially in loops and search algorithms, the CS2023 curric-
ulum lacks explicit competencies related to reasoning about
algorithm correctness. “Yet students should learn from the be-
ginning to reason (at least informally) about the correctness of
their algorithms” [17]. One way to instill this type of reasoning
in students is to teach the classical algorithms with arguments
for correctness (e.g., the classical sorting algorithms). For ex-
ample, the application of formal methods—in particular inter-
active theorem proving—recently identified a bug in the Tim-
Sort sorting algorithm of the Java standard library [26].

ARCHITECTURE AND ORGANIZATION
This knowledge area strives to enhance comprehension of
the hardware environments that underpin nearly all comput-
ing, and the corresponding interfaces provided to higher soft-
ware layers. The scope of the hardware considered spans from
low-end embedded system processors to high-end enterprise
multiprocessors. Teach how formal methods are employed in
this area to validate the accuracy of hardware designs and to
guarantee that the combination of hardware and software com-
ponents adheres to their specifications (e.g., to verify security
requirements in hardware security architectures [18]). Formal
modeling of application architectures by specifying the inter-
face behavior of components is the backbone of architecture
design and system integration. This also applies to software
architectures with notions such as encapsulation, information
hiding, interface modeling, and modularity, which cannot be
understood without formal models.

ARTIFICIAL INTELLIGENCE
This knowledge area prepares CS students to recognize when it
is suitable to use an AI method (e.g., neural networks, machine
learning) and how to apply it, taking the broader societal impacts
and implications into account, including issues in AI ethics, fair-
ness, trust, and explainability. Teach how to use formal meth-
ods to capture the assumptions of the designs of deep neural
networks as used in large language models as well as their ver-
ification (with model-checking and interactive theorem proving
techniques) or counterexample-based retraining [8,29,37].

64  acm Inroads  2024 December • Vol. 15 • No. 4

ARTICLES
CS2023 The Role of Formal Methods in Computer Science Education

RECOMMENDATIONS BY EXPERTS
According to a recent survey involving 130 formal methods ex-
perts [24]—including three Turing Award winners [2], all FME
Fellowship Award winners [21], and 17 CAV Award winners
[9]—the most suitable places for formal methods in a teaching
curriculum is “in master courses at the university” or “in bache-
lor courses at the university,” since this is what 80% and 79.2% of
the respondents, respectively, answered to the question When
and where should formal methods be taught? [24: Section 5].
Even though more than one answer was allowed, apparently
many experts believe that formal methods should be taught at
undergraduate or graduate level. Also, the situation of formal
methods in CS education is currently receiving “not enough at-
tention” or receiving “sufficient attention, but scattered all over,”
since this is what 50% and 31.5% of the respondents, respec-
tively, answered to the question What is your opinion on the
level of importance currently attributed to teaching of formal
methods at universities?

Furthermore, the fact that “engineers lack proper training in
formal methods” is the key limiting factor for a wider adoption
of formal methods by industry, according to 71.5% of the re-
spondents [24 Section 5]. The survey concludes that “the current
situation [of formal methods education] is very heterogeneous
across universities, and many experts call for a standardization
of university curricula with respect to formal methods,” which is
confirmed by a recent white paper advocating “the inclusion of
a compulsory formal methods course in computer science and
software engineering curricula” based on the observation that
“there is a lack of computer science graduates who are qualified
to apply formal methods in industry” [10], and by the aforemen-
tioned recent textbook on formal methods in software engineer-
ing [36], which claims that “in computer science and software
engineering education, formal methods usually play a minor role
only.” In the specific context of safety- and mission-critical ap-
plications, a very recent paper moreover recognizes “an urgent
need to emphasize and integrate formal methods into the un-
dergraduate curriculum in CS in the United States,” since “the
lack of a well-structured exposure to formal methods is a serious
shortcoming in our computing curricula” [35].

HOW TO INTEGRATE FORMAL METHODS
INTO CS CURRICULA
The integration of additional material into curricula is always
a challenge. Typically, every lecturer is engaged to bring in as
much as possible of his or her subject considered highly rele-
vant. How could there be more space for formal methods?

To understand how to bring in additional material cover-
ing the subject of formal methods, we have to keep in mind
that in every CS subject there is a substantial amount of for-
malization and thus of formal methods. Classical examples are
relational databases or process models. For quite a number of
knowledge areas, similar formal methods are used and taught.
It would therefore be more appropriate to teach those formal

is available through a recent textbook [33] that is “suitable for
advanced undergraduate and graduate courses in software de-
velopment.”

SOFTWARE ENGINEERING
This knowledge area centers on appropriate means for soft-
ware design, construction, and verification and validation,
primarily through testing. A non-core formal methods mod-
ule suggests learning outcomes like “describe the role formal
specification and analysis techniques can play in the devel-
opment of complex software” [1], while testing is the prima-
ry validation technique in other modules. However, formal
methods and testing are not mutually exclusive: “Understand-
ing correctness and reasoning about programs can greatly
benefit effective testing” [17]. Formal methods tools for static
analysis, like Infer, are used by major companies such as Face-
book [16]. The role of formal modeling in software engineer-
ing has to be emphasized much more explicitly: teach formal
methods. The fact that these are non-core in CS2023 suggests
that other topics must be displaced to make room for formal
methods. However, we argue that formal methods thinking
can (and should) be introduced into a software engineering
stream in a lightweight manner without such displacement
[17]. Support on how to integrate formal methods is available
through a recent textbook [36] that is “suitable for graduate
and undergraduate courses in software engineering.”

FOUNDATIONS OF PROGRAMMING LANGUAGES
This knowledge area provides a basis for understanding
the foundations, implementation, and formal description
of modern programming languages. “There is an increas-
ing interest in formal methods to prove program correct-
ness and other properties. To support this, increased cov-
erage of topics related to formal methods is included, but
all of these topics are identified as non-core” [1]. Indeed,
there are non-core knowledge units on formal semantics
and formal development methodologies, with learning
outcomes like “use proof assisted programming languages
to develop fully specified and verified software artifacts”
and “discuss when and how formal methods can be ef-
fectively used in the development process” [1]. However,
formal methods are “at the heart of modern programming
languages” [16] and “some programming languages have
very powerful type systems, which require a clear and
formal understanding of types and of the type checking
process, as well as the ability to employ helpful abstrac-
tion” [6]: teach formal methods. “The Software Founda-
tions series [38] uses the Coq proof assistant to rigorously
describe both the features of the programming languages
being developed and the algorithms that are implemented
in these languages” [17].

But not only work on programming language requires
knowledge in formal methods. This applies also to modeling
languages and as well to tool design [7].

acm Inroads • inroads.acm.org  65

ARTICLES

to be better rooted in higher ed-
ucation curricula for computer
science and software engineering
programmes of study.”

In the words of The White
House [40: Part II: Securing the
Building Blocks of Cyberspace—
Formal Methods]: “Given the
complexities of code, testing is a
necessary but insufficient step in
the development process to fully
reduce vulnerabilities at scale. If
correctness is defined as the abil-
ity of a piece of software to meet
a specific security requirement,
then it is possible to demonstrate
correctness using mathematical
techniques called formal meth-
ods. These techniques, often
used to prove a range of software

outcomes, can also be used in a cybersecurity context and are
viable even in complex environments like space. While for-
mal methods have been studied for decades, their deployment
remains limited; further innovation in approaches to make
formal methods widely accessible is vital to accelerate broad
adoption. Doing so enables formal methods to serve as anoth-
er powerful tool to give software developers greater assurance
that entire classes of vulnerabilities, even beyond memory
safety bugs, are absent.”

We acknowledge the enormous effort that went into CS2023,
but unfortunately without a professional integration of formal
methods the result requires further improvement and discus-
sion. More detailed work is needed—going beyond what we
can achieve by our arguments here—to show how a core of for-
mal methods is needed, introducing key formal methods that
then are used in the various knowledge areas.

Acknowledgments
We thank our co-authors of the three white papers [4,6,17] for their contributions:
Achim Brucker, Rod Chapman, Rance Cleaveland, Catherine Dubois, Alessandro
Fantechi, Hubert Garavel, Mario Gleirscher, Rong Gu, Stefan Hallerstede, Klaus Havelund,
Eric Hehner, Ivo ter Horst, Jeroen Keiren, Markus Alexander Kuppe, Thierry Lecomte,
Michael Leuschel, Alexandra Mendes, Carroll Morgan, Peter Müller, André Platzer, Leila
Ribeiro, Jan Ringert, Kristin Yvonne Rozier, Augusto Sampaio, Cristina Seceleanu,
Alexandra Silva, Graeme Smith, Allison Sullivan, Martyn Thomas, Erik de Vink, Tim
Willemse, and Lijun Zhang. We also thank Ana Cavalcanti, Cliff Jones, and Luigia Petre
for comments on an early draft which helped improve the article (and Luigia also for
Figure 2). Finally, we thank the three anonymous reviewers, whose comments have
allowed us to improve this article.

References
 1. ACM CS2023 Knowledge Areas; https://csed.acm.org/knowledge-areas/. Accessed

2024 Apr 29.
 2. ACM Turing Award winners; https://amturing.acm.org/byyear.cfm. Accessed 2024

Apr 29.
 3. Backes, J., Bolignano, P., Cook, B., Gacek, A., Luckow, K. S., Rungta, N., Schäf,

M., Schlesinger, C., Tanash, R., Varming, C., and Whalen, M. W. One-Click Formal
Methods. IEEE Softw. 36, 6 (2019), 61–65; https://doi.org/10.1109/MS.2019.2930609

 4. ter Beek, M. H., Chapman, R., Cleaveland, R., Garavel, H., Gu, R., ter Horst, I., Keiren,
J. J. A., Lecomte, T., Leuschel, M., Rozier, K. Y., Sampaio, A., Seceleanu, C., Thomas,
M., Willemse, T. A. C., and Zhang, L. Formal Methods in Industry. Form. Asp. Comput.
(2024); https://doi.org/10.1145/3689374

methods in foundational
lectures and only refer to
them and use them in the
different knowledge areas
without having to go deep-
ly into separate introduc-
tions. An additional pos-
itive effect would be that
students will observe these
overlaps among the differ-
ent knowledge areas, thus
achieving a clearer under-
standing of basic concepts
and methods of the specif-
ic disciplines.

The fact that formal
methods are non-core in
CS2023 does not imply
that other topics must be
displaced to make room for
formal methods. Formal methods can (and should) be included
in any CS curriculum without such displacement. Introducing
formal methods as a distinct knowledge area would avoid the
need to treat basic formal methods in elective topics in distinct
knowledge areas by referring to the knowledge area on formal
methods. This would save time in the respective knowledge ar-
eas while students understand that basic formal methods are
useful in several knowledge areas.

CONCLUSION
We have presented arguments from three white papers that in-
dicate the indispensable role of formal methods in CS educa-
tion. Currently, formal methods do not appear as a knowledge
area in the ACM CS2023 curriculum. The current offering of
formal methods in the CS education is inadequate. We believe
that every CS graduate needs to have an education in formal
methods, since they can support algorithmic problem solving,
AI, model-driven engineering, security, and additional areas of
CS, and are moreover applicable in numerous industrial do-
mains, not limited to safety-critical applications. Additionally,
not only does formal methods pertain to AI as outlined here,
formally verified software itself stands in necessary contrast
to the wave of software created by generative AI, offering hard
guarantees about correctness that are not possible with sta-
tistical approaches to software construction. A revision of the
ACM CS2023 curriculum is required to adjust the way CS is
taught, incorporating formal methods as a knowledge area and
a key foundation without displacing other widely accepted en-
gineering aspects of CS. We put forward to what extent eight of
the 17 knowledge areas of CS2023 are, or rather should be, re-
lated to formal methods. Three white papers [4,6,17] reinforce
the conclusion of an earlier white paper [10]—all together au-
thored by more than 50 computer scientists and practitioners
worldwide—in which it is argued that “formal methods need

A revision of the ACM CS2023
curriculum is required to adjust the

way CS is taught, incorporating
formal methods as a knowledge

area and a key foundation without
displacing other widely accepted

engineering aspects of CS. We put
forward to what extent eight of the
17 knowledge areas of CS2023 are,

or rather should be, related to
formal methods.

66  acm Inroads  2024 December • Vol. 15 • No. 4

ARTICLES
CS2023 The Role of Formal Methods in Computer Science Education

 29. Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor,
S., Wu, S., Zeljic, A., Dill, D. L., Kochenderfer, M. J., and Barrett, C. W. The Marabou
Framework for Verification and Analysis of Deep Neural Networks. In Proceedings
of the 31st International Conference on Computer Aided Verification (CAV’19)
(Lecture Notes in Computer Science, Vol. 11561), I. Dillig and S. Tasiran (Eds.).
Springer, Germany, 443–452; https://doi.org/10.1007/978-3-030-25540-4_26.

 30. Kramer, J. Is Abstraction the Key to Computing? Commun. ACM 50, 4 (2007),
36–42; https://doi.org/10.1145/1232743.1232745.

 31. Leino, K. R. M. Program Proofs. MIT Press, USA, 2023; https://mitpress.mit.
edu/9780262546232/program-proofs/. Accessed 2024 Sep 27.

 32. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., and Deardeuff, M. How
Amazon Web Services Uses Formal Methods. Commun. ACM 58, 4 (2015), 66–73;
https://doi.org/10.1145/2699417.

 33. Nielson, F., and Nielson, H. R. Formal Methods: An Appetizer. Springer, Germany,
2019; https://doi.org/10.1007/978-3-030-05156-3.

 34. Oberhauser, J., de Lima Chehab, R. L., Behrens, D., Fu, M., Paolillo, A., Oberhauser, L.,
Bhat, K., Wen, Y., Chen, H., Kim, J., and Vafeiadis, V. VSync: Push-Button Verification
and Optimization for Synchronization Primitives on Weak Memory Models. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’21). ACM, USA, 530–545;
https://doi.org/10.1145/3445814.3446748.

 35. Ramnath, S., and Walk, S. Structuring Formal Methods into the Undergraduate
Computer Science Curriculum. In Proceedings of the 16th International NASA
Formal Methods Symposium (NFM’24) (Lecture Notes in Computer Science, Vol.
14627), N. Benz, D. Gopinath, and N. Shi (Eds.). Springer, Germany, 399–405;
https://doi.org/10.1007/978-3-031-60698-4_24.

 36. Roggenbach, M., Cerone, A., Schlingloff, B.-H., Schneider, G., and Shaikh, S. A.
Formal Methods for Software Engineering: Languages, Methods, Application
Domains. Springer, Germany, 2022; https://doi.org/10.1007/978-3-030-38800-3.

 37. Seshia, S. A., Desai, A., Dreossi, T., Fremont, D. J., Ghosh, S., Kim, E., Shivakumar, S.,
Vazquez-Chanlatte, M., and Yue, X. Formal Specification for Deep Neural Networks.
In Proceedings of the 16th International Symposium on Automated Technology
for Verification and Analysis (ATVA’18) (Lecture Notes in Computer Science, Vol.
11138), S. K. Lahiri and C. Wang (Eds.). Springer, Germany, 20–34; https://doi.
org/10.1007/978-3-030-01090-4_2.

 38. Software Foundations; https://softwarefoundations.cis.upenn.edu/. Accessed 2024
Sep 13.

 39. Vogels, W. Diving Deep on S3 Consistency; https://www.allthingsdistributed.
com/2021/04/s3-strong-consistency.html. Accessed 2024 Jul 29.

 40. The White House. Back to the Building Blocks: A Path Toward Secure and
Measurable Software. Technical Report. White House Office of the National
Cyber Director (ONCD), 2024; https://www.whitehouse.gov/wp-content/
uploads/2024/02/Final-ONCD-Technical-Report.pdf. Accessed 2024 Jul 29.

 41. Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. Formal methods:
Practice and experience. ACM Comput. Surv. 41, 4 (2009), 19:1–19:36; https://doi.
org/10.1145/1592434.1592436.

Maurice H. ter Beek
CNR–ISTI, Pisa, Italy
maurice.terbeek@isti.cnr.it

Manfred Broy
Technische Universität München, München, Bayern, Germany
broy@in.tum.de

Brijesh Dongol
University of Surrey, Guildford, Surrey, UK.
b.dongol@surrey.ac.uk

DOI: 10.1145/3702231 © 2024 Copyright held by owner/author(s).

 5. Binns, L. By computers, for computers: Improving scanner metrology software with
generated code; https://www.linkedin.com/pulse/computers-improving-scanner-
metrology-software-code-lewis/. Accessed 2024 Apr 29.

 6. Broy, M., Brucker, A., Fantechi, A., Gleirscher, M., Havelund, K., Kuppe, M. A.,
Mendes, A., Platzer, A., Ringert, J., and Sullivan, A. Does Every Computer Scientist
Need to Know Formal Methods? Form. Asp. Comput. (2024); https://doi.
org/10.1145/3670795.

 7. Broy, M. and Rumpe, B. Development Use Cases for Semantics-Driven Modeling
Languages. Commun. ACM 66, 5 (2023), 62–71; https://doi.org/10.1145/3569927.

 8. Brucker, A. D. and Stell, A. Verifying Feedforward Neural Networks for Classification
in Isabelle/HOL. In Proceedings of the 25th International Symposium on Formal
Methods (FM’23) (Lecture Notes in Computer Science, Vol. 14000), M. Chechik,
J.-P. Katoen, and M. Leucker (Eds.). Springer, Germany, 427–444; https://doi.
org/10.1007/978-3-031-27481-7_24.

 9. CAV Award winners; http://i-cav.org/cav-award/. Accessed 2024 Jul 29.
 10. Cerone, A., Roggenbach, M., Davenport, J., Denner, C., Farrell, M., Haveraaen, M.,

Moller, F., Körner, P., Krings, S., Ölveczky, P. C., Schlingloff, B.-H., Shilov, N., and
Zhumagambetov, R. Rooting Formal Methods Within Higher Education Curricula
for Computer Science and Software Engineering – A White Paper. In Revised
Selected Papers of the 1st International Workshop on Formal Methods – Fun for
Everybody (FMFun’19) (Communications in Computer and Information Science, Vol.
1301), A. Cerone and M. Roggenbach (Eds.). Springer, Germany, 1–26; https://doi.
org/10.1007/978-3-030-71374-4_1.

 11. Chakarov, A., Fedchin, A., Rakamaric, Z., and Rungta, N. Better Counterexamples
for Dafny. In Proceedings of the 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’22) (Lecture Notes
in Computer Science, Vol. 13243), D. Fisman and G. Rosu (Eds.). Springer, Germany,
404–411; https://doi.org/10.1007/978-3-030-99524-9_23.

 12. Clarke, E. M., Wing, J. M., et al. Formal Methods: State of the Art and
Future Directions. ACM Comput. Surv. 28, 4 (1996), 626–643; https://doi.
org/10.1145/242223.242257.

 13. Cook, B. Formal Reasoning About the Security of Amazon Web Services. In
Proceedings of the 30th International Conference on Computer Aided Verification
(CAV’18) (Lecture Notes in Computer Science, Vol. 10982), H. Chockler and G.
Weissenbacher (Eds.). Springer, Germany, 38–47; https://doi.org/10.1007/978-3-319-
96145-3_3.

 14. Cook, J. Shiny Object Syndrome: The Biggest Problem For Today’s Entrepreneurs.
Forbes (2023); https://www.forbes.com/sites/jodiecook/2023/02/20/shiny-object-
syndrome-the-biggest-problem-for-todays-entrepreneurs/?sh=5a90cb4b6709.
Accessed 2024 Jul 29.

 15. Dijkstra, E. W. On the Cruelty of Really Teaching Computing Science. Commun.
ACM 32, 12 (1989), 1398–1404; https://doi.org/10.1145/76380.76381 [This is Dijkstra’s
Contribution to “A Debate on Teaching Computing Science” by P. J. Denning, pp.
1397–1414.]

 16. Distefano, D., Fähndrich, M., Logozzo, F., and O’Hearn, P. W. Scaling Static Analyses
at Facebook. Commun. ACM 62, 8 (2019), 62–70; https://doi.org/10.1145/3338112.

 17. Dongol B., Dubois C., Hallerstede S., Hehner E., Morgan C., Müller P., Ribeiro L.,
Silva A., Smith G., and de Vink E. 2024. On Formal Methods Thinking in Computer
Science Education. Form. Asp. Comput. (2024); https://doi.org/10.1145/3670419.

 18. Ferraiuolo, A., Xu, R., Zhang, D., Myers, A. C., and Suh, G. E. Verification of a Practical
Hardware Security Architecture Through Static Information Flow Analysis. In
Proceedings of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’17), Y. Chen, O. Temam,
and J. Carter (Eds.). ACM, USA, 555–568; https://doi.org/10.1145/3037697.3037739.

 19. Ferrari, A., and ter Beek, M. H. Formal Methods in Railways: a Systematic
Mapping Study. ACM Comput. Surv. 55, 4 (2023), 69:1–69:37; https://doi.
org/10.1145/3520480.

 20. FME (Formal Methods Europe); https://fmeurope.org. Accessed 2024 Apr 29.
 21. FME Fellowship Award winners; https://www.fmeurope.org/awards/. Accessed

2024 Apr 29.
 22. FME Formal Methods Teaching Committee. FME Education Course Database;

https://fme-teaching.github.io/courses/. Accessed 2024 Sep 24.
 23. Gao, S., Zhan, B., Liu, D., Sun, X., Zhi, Y., Jansen, D. N., and Zhang, L. Formal

Verification of Consensus in the Taurus Distributed Database. In Proceedings of
the 24th International Symposium on Formal Methods (FM’21) (Lecture Notes in
Computer Science, Vol. 13047), M. Huisman, C. S. Pasareanu, and N. Zhan (Eds.).
Springer, Germany, 741–751; https://doi.org/10.1007/978-3-030-90870-6_42.

 24. Garavel, H., ter Beek, M. H., and van de Pol, J. The 2020 Expert Survey on Formal
Methods. In Proceedings of the 25th International Conference on Formal Methods
for Industrial Critical Systems (FMICS’20) (Lecture Notes in Computer Science, Vol.
12327), M. H. ter Beek and D. Ničković (Eds.). Springer, Germany, 3–69; https://doi.
org/10.1007/978-3-030-58298-2_1.

 25. Gleirscher, M., and Marmsoler, D. Formal Methods in Dependable Systems
Engineering: A Survey of Professionals from Europe and North America. Empir.
Softw. Eng. 25, 6 (2020), 4473–4546; https://doi.org/10.1007/s10664-020-09836-5

 26. de Gouw, S., de Boer, F. S., Bubel, R., Hähnle, R., Rot, J., and Steinhöfel, D. Verifying
OpenJDK’s Sort Method for Generic Collections. J. Autom. Reason. 62, 1 (2019),
93–126; https://doi.org/10.1007/s10817-017-9426-4.

 27. IEEE Computer Society. Software Engineering Models and Methods; https://www.
computer.org/resources/software-engineering-models. Accessed 2024 Sep 24.

 28. Jones, C. B., Jackson, D., and Wing, J. Formal Methods Light. IEEE Comput. 29, 4
(1996), 20–22; https://doi.org/10.1109/MC.1996.10038.

