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Abstract

We consider the dependability of fault tolerant software executed iteratively, as
e.g. in process control applications. We first recall the models usually adopted for
evaluating the probability of mission survival (reliability at a certain time) and
performability, and show the results obtained by applying these models to the
adaptive scheme for software fault-tolerance SCOP, "Self-Configuring Optimal
Programming" and to the more popular schemes, recovery blocks and multiple
version programming. Then we explore the consequences on dependability figures
of two characteristics of iterative software: a) system failure must be defined in
terms of the behaviour of the software over successive iterations, because the
controlled system can usually tolerate short bursts of errors of the control software;
b) the probabilistic correlation between successive executions of the softwareis an
important factor in determining the failure behaviour of the software. Positive
correlation is to be expected for various reasons, not least the fact that the input
values representing physical variables of the controlled system evolve along a
"trajectory" in the input space of the software. We present models accounting for
these characteristics and evaluate the effects of different distributions of the
correlation between successive executions of the software and the sensitivity of the
dependability figures to our model parameters.




In control systems, the inputs often follow a trajectory of small steps in the input space,
representing points in the state space of the controlled object. Experiments have shown
contiguous failure regions in the program input space, i.e., connected subsets of the input
space such that all the individual points in them cause the program to fail. Theoretical
justifications have also been advanced for claiming that this clustering of failures is generally to
be expected [5]. This implies that the inputs which originate failures of the software are very
rarely isolated events but more likely grouped in clusters [1], [6]. A software variant would
produce bursts of errors when the input trajectory intersects a "fault region” for that variant.
So. an error at one execution would be an indication of a high probability (i.e., higher than the
marginal probability for that variant) of an error at the next execution.

Causes for positive correlation can be found in other types of systems as well: periods of peak
load in time-shared computers or in communication links could lead, through unusual timing
conditions, to a high probability of errors in all the executions that take place during the peak.
Last, issues of imperfect recovery (state corruption) and interactions with hardware faults
further complicate the problem. One consequence of this likely positive correlation is that the
mission survival probabilities derived from the independence assumption are probably very
pessimistic. To show this, we can point out that, with independence, and if we call pr the
probability of failure at an execution, the probability of not failing over a mission of n
executions is (1-pg)D; but, if the failures at all executions were completely correlated (either no
execution fails or all fail), the same probability would become (1-pf), no matter how long the
mission is. If we also consider, in our model of system failure, bursts of software failures to
be more dangerous than single failures, it is clear that predicting the distribution of bursts is
trivial with the independence assumption, but obviously optimistic: in reality, once a first
failure happens, a burst is much more likely to follow than predicted by the independence

assumption.

3  "White box" models with independence between successive
executions
In this section, we describe the "white box" modelling approach, as applied to the SCOP

scheme with three variants, and recall the solutions of similar models for the NVP and RB
schemes.

3.1 Basic assumptions

The assumptions we make in this model are quite similar to those of several other authors 2],
[20], (28], [29]. These assumptions include:

1. the behaviour of each variant at an iteration is statistically independent of its behaviour
at other iterations;

2. all the outcomes (of an execution) which include errors of subcomponents (variants and
adjudicators) can be subdivided into two classes: those where there are undetectable
errors. (some variants fail together and produce consistent results, an adjudicator fails
and decides that an incorrect result from a variant is correct); and those where only
detectable errors occur; in this latter case, the errors of the subcomponents are
statistically independent events;

3. "compensation" among errors never happens: e.g., if a majority of erroneous results
exists, it never happens that the adjudicator errs by choosing a correct result instead;

4. acertain degree of symmetry is assumed in the probabilistic behaviour of the system:
the probabilities of most events are assumed invariant under permutation among the
variants; this has obvious mathematical convenience;

5. the adjudicator is specified to see correct results as consistent (that is, a failure by the
adjudicator to see them as consistent is considered as an error of the adjudicator);

6. the watchdog timer is assumed never to fail.




In modelling RB and NVP, we have made slight changes, with respect to [2] and [28], to the
definitions of the events considered and the assumptions made. However, the results obtained
are comparable for all practical purposes, if parameters with similar meanings are given similar
values. The detailed differences are discussed in {10]. In short, they are mostly due to our not
using the notion of fault (a bug in the software, as opposed to the error, or incorrect behaviour
caused by the bug) in defining the events of interest.

3.2 The model for SCOP
A redundant component based on the SCOP scheme with three variants includes:
- three functionally equivalent but independently developed programs (variants);

- an adjudicator which determines a consensus result from the results delivered by the
variants. We assume as a delivery condition a 2-out-of-3 majority;

- a watchdog timer which detects violations of the timing constraint (executions
exceeding the maximum allowed duration).
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Figure 1. Possible execution paths in SCOP operation. The paths represented in the lower
half of the picture imply value failure (undetected for the paths drawn as dashed lines)

Figure 1 shows the operation of the SCOP scheme. Each iteration is divided in two phases. In
the first phase, variant 1 and variant 2 begin to execute at the same time. After both have
completed their executions, the adjudicator compares their results. If they are consistent, it
accepts them. Otherwise, the second phase begins, variant 3 executes, and then the adjudicator
decides on the basis of all three resuits, seeking a 2-out-of-3 majority. The paths in Figure 1
correspond to the different possible outcomes:

(1): at the end of the first phase there exists a majority representing a correct computation
and the output is a correct result;

(2): at the end of the first phase the result is rejected, at the end of the second phase there
exists a majority representing a correct computation and the output is a correct result;

(3): at the end of the first phase an erroneous result is accepted (undetected failure);

(4): at the end of the first phase the result is rejected, at the end of the second phase an
erroneous result is accepted (undetected failure);

(5): at the end of the second phase the result is rejected (detected failure);

(6): the duration of the redundant execution exceeds a specified limit (the real-time
constraint) and the execution is aborted (detected failure).

3.2.1 Dependability submodel

The relevant events defined on the outcomes of one execution of the SCOP component and the
notations for their probabilities are as illustrated in Table 1. The assumption of no
compensation between errors has allowed us to reduce the event space to be considered.



Probabiliti

Error Types (Events) ities
3 variants et with consistent results Qv
b variants err with consistent results (the 3rd result is inconsistent with them, and d2v
may be correct or erroneous)
The adjudicator errs and terminates the execution with phase 1, selecting an| Avdl
erroneous, non-majority result
The adjudicator errs and terminates the execution with phase 2, selecting an) dvd2
erroneous, non-majority result
A variant errs, conditioned on none of the above events happening (i.e., there are one div
or more detected errors: their statistical independence is assumed)
The adjudicator errs, at the end of either phase | or phase 2, by not recognising o
majority (hence causing a detected failure), conditioned on the existence of a majoril]

Table 1. Error types and notation for SCOP

The detailed model of one execution of the redundant component, without considering the
operation of the watchdog timer, is shown in Figure 2. Table 2 shows the definitions of the

states.
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Figure 2. The dependability submodel for SCOP




States Definition
! initial state of an iteration
VP execution of two variants in the first phase
{DP;lie {1.2,34,56,7}} execution of adjudicator after VP

{VS;lie {1,2,3,45,6}} execution of one variant in the second phase
{DS;1ie {123,45,6}} execution of adjudicator after VS;

B detected failure (caused by a detected value error)

C undetected failure (caused by an undetected value error)

Table 2. Definition of states for the SCOP dependability model

The graph is somewhat complex, in order to represent clearly all the possible paths of
execution, showing how certain executions terminate with the first phase, while others go on
with the execution of the third variant and a new adjudication.

Most of our parameters are the unconditional probabilities of sets of outcomes of the whole
redundant execution (including the executions of both the variants and the adjudicator): hence,
some of the arcs exiting VP are labelled with these probabilities, and are followed by arcs, as
e.g. from DPs to VSs, labelled with a probability equal to 1. We briefly describe (out of
numerical sequence to simplify the explanation) the meanings of the arcs from VP.

DP; at the end of phase 1, variants 1 and 2 are both erroneous and in agreement (this
includes the case of a consistent error among all 3 variants, an event which has a clear
physical meaning, though it can only be observed if the adjudicator fails to recognise
the agreement in phase 1); .

DPs variants 1 and 2 are correct and thus in agreement, variant 3 fails, and the adjudicator
fails in such a way as not to recognise the agreement in phase I, and to choose the
result of variant 3 as a majority;

DPg one among variants 1 and 2 fails, the other does not, but the adjudicator fails to notice
the disagreement and chooses the wrong result as correct;

DP, at the end of phase 1 there is no majority (either one variant is in error, or both are, but
with inconsistent results), and then variant 3 also errs, forming an erroneous majority
with either variant 1 or variant 2. Neither DPs nor DPg occurs. This leads to either an
undetected or a detected failure, depending on whether the adjudicator recognises this
majority or fails to recognise it;

DP; none of the above events occurs, and variants 1 and 2 produce inconsistent, erroneous
results: no majority exists; the adjudicator recognises the lack of a majority;

DP, none of the above events occurs; one among variants 1 and 2 produces an erroneous
result; depending on whether variant 3 produces a correct result, phase 2 terminates
with a correct majority (DS2) or not (DS3);

DP; none of the above events occurs; variants 1 and 2 are correct.

In states DPy, DS,, DS4, DP7 a majority exists. The adjudicator may fail to recognise it, with
probability qq, and produce a detected failure. It has been plausibly assumed that if the
adjudicator fails in this fashion at the end of phase 1, it will consistently fail at the end of phase
2: hence the probabilities equal to 1 on the arcs downstream of DS and DSe. To simplify the
expression of the solution, we define a set of intermediate parameters as shown in the bottom
left corner of Figure 2, We call the probabilities of an undetected and of a detected failure,
without the watchdog timer (that is, due solely to the values of the results of the
subcomponents), pcy and ppy, respectively. From the state transition diagram, it follows that:



pev =q3 +q2(1—-gqq) and
Pby = a2ad +am(l—a4)+q1(1=-q4)@jy + (1= qiy)ag) + (1 -qr ~qm(1-q4)q4 =
= (1-q4)ad +(Gaiv 20 = qiy) + a3 )1~ qa)1 - qg) + 4244

3.2.2 Timing submodel

The model described in 3.2.1 does not account for the possibility of a time-out. In principle, all
the events defined on this model may have a non-null intersection with the event "the execution
exceeds its allotted time and is aborted by the watchdog timer". As we call this event a subset
of "detected failure" (i.e., from the system point of view, "benign failure"), the implication is
that considering time-outs increases (or, in the limit, leaves unaltered) the probability of benign
failures and decreases the probabilities of successes and catastrophic failures.

To estimate this probability experimentally, one would run statistical testing on the software,
and estimate the tail of the distribution of execution times. One could also measure execution
times of the individual subcomponents, but would then need some assumption about the
correlations between these distributions and between them and value failures. If one considered
dynamic scheduling, as in [11], [26-29], the distribution of execution times would also be
needed for predicting how many executions take place in a given time. We will show the
effects of this different approach in Section 4.2.

A simple, though unrealistic model ([26], [28], [29]) assumes exponentially, independently
distributed execution times for the subcomponents. In addition, the duration of an execution
(without the watchdog timer) is assumed to be independent of its producing a value error or
not. We applied this model to SCOP in [11], and will use its solution here as an example. To
quantify the effect of time-outs, [28] considers the event "time-out" as a subset of the event
"the execution produces a correct value". We, on the contrary, use the above-mentioned
assumption of independence between the execution times of the subcomponents and their error
behaviour, that is, time-outs have the same relative frequency for executions that would
produce a correct value as for those producing a detected or undetected value failure.

3.2.3 Probability of completing a mission and performability

Let ps, pb, and pe=1-ps—pp be respectively the probabilities of success, benign failure and
catastrophic failure per execution. Then, the probability of completing a mission consisting of a

number n of iterations is that of a series of n executions without catastrophic failure, (1- pe) -

The value E[Mjy] of the expected total reward is: E[Mp] = n . pj - (1-p.)" which is the
$ b

product of the probability of completing a mission without a catastrophic failure (1 - pc)" and

the expected number of successes in n iterations without a catastrophic failures n 5 pj = So,
s b

when static scheduling is adopted, the probability of completing the mission has a very strong

influence on the performability measure; the differences between different schemes are driven

only by the probability of completing a mission (the number of executions being constant)
while the reward structure influences only the slope of the performability functions.

3.3 Models for NVP and RB

We do not describe the detailed models we use [10]. The definitions of the relevant events
considered are listed in the following tables. The expressions for ppy and pey for NVP only
differ from those obtained for SCOP in having 3qyq instead of q3. When evaluating these
expressions, we have rather arbitrarily considered both qvd2 and qvq1 as similar events of
"common-mode failures among the adjudicator and one variant”, and accordingly assigned
them the probabilities qvq and 2qvd, respectively: with the values we have later assigned to

these parameters, this arbitrary assignment has a negligible effect on the results.
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Error Types Probabilities
3 variants err with consistent results q3v
2 variants err with consistent results (the 3rd result is inconsistent with them, qQ2v
and may be correct or erroneous)
The adjudicator errs by selecting an erroneous, non-majority result Qvd
A variant errs, conditioned on none of the above events happening (i.e., there are Jiv
one or more detected errors; their statistical independence is assumed)
The adjudicator errs by not recognising a majority (hence causing a detected ad
failure), conditioned on the existence of a majority
Table 3. Error types and notation for NVP
Error Types Probabilities
The secondary variant errs and the adjudicator accepts its result, conditional on Qsa
the secondary being executed
Common mode error of P and AT, or P, S and AT (primary variant errs and the dpa> 9psa
adjudicator accepts its result)
Common mode error of P and S (primary and secondary variant err with dps
consistent results)
Detectable error of the primary or secondary alternate (assumed independent) dp» Qs
Error of the acceptance test AT causing it to reject a result, given the result is Ga
correct
Table 4. Error types and notation for RB
RB NVP
probability of undetectedl Pp da 9sa + 9p dsa + dpa + 3qvd+q2(1-9d)
failure without Gpsa
watchdog timer with pp = 1-qp-Gps-Gpa-dpsa
probability of detected | Pp da (Ps +ds) +dp Psda + | (1-qD (1-q2)dd +q1(1-q2) +
failure without Qp 9s + 9ps q29d-3qva [(1 -qp) ad +qi1l
watchdog timer with ps = 1-qs-sg with q; =3 ¢;? (1 - gjy) + Gy’

Table 5. Solutions of the NVP and RB models (for one execution)
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The NVP and SCOP schemes behave in exactly the same manner with regard to failures of the
variants: a SCOP execution scheme using 2-out-of-3 majority guarantees that, with a correct
adjudicator, exactly the same outcome will be produced as that produced by the same variants
when organised in an NVP scheme. The differences may lay in the error behaviour of the
adjudicator, and the different probabilities of the outcomes involving such errors. These
probabilities are exceedingly difficult to estimate, but in the next section we plausibly assume
them to be low compared to those of one or two variants failing. As for the timing of
executions, for NVP the model has to represent the fact that adjudication only takes place after
the slowest variant has terminated, but no second phase of execution is ever needed. In the case
of RB, only the primary variant executes in the first phase, so there is no waiting for a slower
variant before running the acceptance test, but a second phase may follow, as in SCOP. These
differences imply that the same subcomponents, when combined in different schemes, would
give different probabilities of time-out.

4 Results of the "white box" model with independence between
successive executions

4.1 Solution of the basic model

We now show the results obtained from the models described above. Our choice of parameters
is, by necessity, arbitrary, but it will suffice to show the implications of these models and
especially of assuming independence between successive executions.

Table 6 lists the values of the parameters for the "white box" dependability submodel (without
timing), used to produce the plots of the solutions of the models (Figures 3 and 4).

RB NVP SCOP
dp =9qs = 9a’ from 0 to 5 10°3 gjv : from 0 to 5 103 gjy : from0to 5 105
Qpsa = 10-10 q3v = 10710 q3y = 10710
qps = 102 sz q2v = 102 inz qv = 102 in2
qpa = 102 gp? qvg = 10710 qudt =2 1010
Jsa= 102 sz Qvd2 = 10°10
qd= 109 qd = 109

Table 6. Values of the dependability parameters used for Figures 3 and 4

Our choice of parameter values reflects some plausible assumptions. We set qav proportional to
giv so that, in our plots, moving towards the right along the horizontal axis will represent
increasing probabilities of value failures of the variants (with a particular, fixed relationship
between the probabilities of the different kinds of failure). In defining the proportion between
benign failures (a function of giy) and catastrophic failures (a function of qzy) we have
plausibly chosen a probability of coincident failure of two variants, qay, markedly higher than
would be implied by an assumption of independent failures. The probabilities of coincident
errors of two or three subcomponents are higher than those of independent errors of the
corresponding subcomponents (reflecting a positive correlation among subcomponent failures).
The adjudicator (acceptance test for RB) has a much lower error probability than the variants in
an NVP or SCOP system, and a comparable probability for RB.
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The probability of time-out, py, has been determined using the exponential model mentioned in
Section 3.2.2, with the values shown in Table 7 for the timing parameters. For RB and SCOP,
it is assumed that the variant chosen to be only executed after an error is detected is the slowest
one: pp thus increases with the probability of value errors. NVP has a higher, constant value
of pp because it unconditionally executes the slowest of the variants. Table 8 shows the effects

of varying giv on pyt and on [, the average duration of an execution.

RB kp=)\-a= 1/2, A.S= 1/7

T = 25 msecs

NVP / M=h=U2 =0l Ag=5

SCOP T =25 msecs
Table 7. Values of the timing parameters (msec') used for Figures 3 and 4

Qiv 0 51073

SCOP| pot 8.281 106 1.317 10°3
m 3,2000 3.2007
NVP | pbt 0.029 0.029
m 7.7613 7.7613

RB Pbt 5.031 105 5.802 105
i 3.9999 4.0007

Table 8. Probability of time-out, ppt, and average execution times (msec), for the extremes of
the range of g;y in Figures 3 and 4 :

In all the figures, the mission duration is 106 iterations, a reasonable order of magnitude for,
e.g., a workday in non-continuous process factory operation, or in office work, and a flight
for civil avionics (with an execution rate of a few tens of iterations per second).

With these parameter values, Figure 3 shows, for each scheme, the probability of mission
failure, i.e., of having at least one undetected error in a mission. As shown, this choice of
parameter ranges extends to unrealistically low probabilities of success of a mission. The fact is
that, due to the assumed independence between successive iterations, these are approximately
exponential curves. The curves cross the vertical axis at a value greater than O (which is not
apparent in our plots), representing the failures due to coincident errors of three variants and/or
of the adjudication. The difference between the curves for NVP and SCOP is only due to their
different values of pyt, and would decrease if the execution times of the fastest and of the
slowest variant were less different.

Figure 4 shows the performability measures. As explained in Section 3.2.3, these amount to
the product of the probability of surviving the mission times the expected number of successes
per completed mission.
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Figure 3. Probability of mission failure for RB, NVP and SCOP, in the case of independence
between successive executions, as the failure probability per execution increases, with qzv
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Figure 4. Performability comparison of RB, NVP and SCOP, in the case of independence
between successive executions, as the failure probability per execution increases, with qov
proportional to giy
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4.2  Effects of dynamic scheduling on performability

We show, by way of comparison, how measures would change if one assumed, as in [11],
[28], [29], that each iteration is triggered by the termination of the previous one and measured
performability over a mission of fixed duration.
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Figure 5. Performability comparisons of RB, NVP and SCOP with dynamic scheduling, as
the failure probability per execution increases with goy proportional to g;v. The execution rates
of the variants are equal in (a) and strongly different in (b), about one tenth of those in Table 7

The plots in Figure 5 show this measure (which we call E[M;] as opposed to E[M;], measured
over a fixed number of iterations), which we derived in [11]. The dynamic scheduling implies
that many more executions can be packed in the same duration. To show numbers of
executions (and hence performability values) in the order of those in Figure 4, we have made
the execution rates of the variants one tenth of those used for Figures 3 and 4. T he plots appear
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very different from those of Figure 4, because different schemes imply different expected
numbers of executions per mission. RB has an advantage over SCOP, and SCOP over NVP,
as in SCOP the adjudication must always wait for the second-slowest variant and in NVP for
the slowest one. However, the adjudication has been assumed to be faster for SCOP and NVP
than for RB, and this explains the high performability shown for SCOP for abscissae close to
zero. The number of executions is also affected by the fact that an execution may, in RB and
SCOP, last for two phases instead of one; but this may only affect the small fraction of execu-
tions where at least one error takes place, so that the number of executions per mission can be
considered practically constant, for a given scheme, once the distributions of execution times
for the subcomponents are assigned. Towards the left in these figures, as the probability of
undetected failure approaches zero, the utility of a mission tends to the mean number of
executions in a mission, decreased by the fraction of detected failures. As one moves to the
right, the probability of undetected failures, and hence missions with zero utility, increases.
SCOP and RB, packing more executions in the same mission time, suffer more than NVP.

The differences among Figures 5.a and 5.b are explained by considering that differences in the
mean execution times of the variants increase the performance disadvantage of NVP with
respect to SCOP and RB. With our parameters, while the number of executions per mission is
maximum in SCOP, which explains SCOP having the highest E[M] for the lower values of the
abscissae, the slope of the curves is smallest for RB, as its probability of undetected failure per
execution is roughly one third of that of the others. An interesting consideration is that in the
left-hand part of these plots, SCOP yields the best performability values, while its probability
of surviving a mission is the worst.

4.3  Effects of different reward models

These performability measures are based on a specific, very simple reward model which of
course has limited applicability. We illustrate in this section the effects of choosing different
reward models, in the context of static scheduling, limiting ourselves to additive models of the

form:

"no.of successes” © Gg — "no.of detected failures” * Cg, if mission success
M, =4, " " . e .
" no.of successes” * Gs — "no.of detected failures” * Cp — Cc, if mission failure

where Gs, Cp and Cc represent the gain associated to a successful iteration, the cost associated
to a detected failure and the cost associated to the mission failure respectively. Of course,
depending on the application context, much more complex reward structures may apply, in
which the pattern of failures over time is also a factor. In addition, in most practical contexts,
many categories of mission failures with different costs would be considered (as well as
multiple categories of benign failures).

With the above reward structure, the expected reward E[M,] over a mission of n iterations is:

n
E[M,]=(psGs - PvCB - PcCC)'l"“(’LI‘)';‘&:l“
Figure 6 shows the plots of the performability for RB and SCOP for three different sets of
values of the parameters Gs, Cp and Cc, as indicated on the left corner of the figure. For
example, with reference to the scenarios briefly described in Section 2.2, case a), where Cp
and Cc are zero, would model the space probe application (after an initial investment, only the
gain from successes is considered). Case b) and case c) could model a continuous production
process (e.g. of a chemical), where each iteration adds some small amount of product and a
mission failure means damaging machinery. In case b), benign failures are taken as delaying
production, without damage, and in case c) they do damage some amount of product. The
abscissae represent, as in Figures 3 and 4, gjy under the hypothesis that qpy is a function of
Qiv, thus representing a combined measure for inconsistent and consistent failures. For case ¢),
the performability curves start low at the abscissa g;y=0, because of the cost of benign failures
due to time-outs and adjudication failures; this is more apparent for RB which has a higher
probability of time-outs than SCOP.
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Figure 6. Performability comparison of RB and SCOP with a different reward model, in the
case of independence between successive executions, as the failure probability per execution

increases with qoy proportional to giy

Of course, this selection of parameter values is still just a sample of the reward structures that
may apply in different real-world situations: the figure shows how heavily the reward structure
chosen affects the relative "goodness” of the different schemes.

5 Modelling sequences of executions with a "black box'" model of
the fault-tolerant component

5.1 Correlated executions and new failure models

In this section, we drop many details of the "white box" model, but attempt to model more
realistically the behaviour of a software component over a sequence of executions. The fault-
tolerant component is now modelled as a black box, with probabilities ps, pb, and pc=1-pPs—pb
of, respectively, success, benign failure and catastrophic failure per execution. These
(marginal) probabilities are constant during the mission, but the probability of an outcome at a
specific execution conditional on the outcome of the previous execution is now allowed to
differ from the corresponding marginal probability. For instance, we allow:

ps# p(success at the i-th execution | benign failure at the (i-1)-th execution).

This models the fact that, in reality, the inputs to the software evolve along a trajectory through
the input space, and this trajectory "crosses" the failure regions: once it has entered a failure
region (i.e., the software has failed once), another failure is more likely to happen than it
would be after a failure-free iteration. Of course, the likely number of failures in a series
depends on the size of the failure region (measured along the trajectory), and the "speed" of the
trajectory (i.e., the statistics of the distance between two subsequent inputs). In the rest of this
discussion, we shall not consider these two factors individually, but only their combined
effect, i.e., the distribution of the number of iterations during one crossing of a failure region.
This distribution would in practice be either measured experimentally (in which case, however,
the experiment would possibly allow one to measure directly the dependability figures of
interest), or guessed by the evaluator using knowledge about the input space and the "speed”
with which a trajectory crosses its different regions. For the rest of this discussion, our choice

17



of only considering the number of steps inside a failure region can be simply interpreted in the
sense that we use the length of a step in the trajectory (distance between two inputs) as the unit
of measurement for distances in the inputs space. Of course, reasoning in terms of numbers of
steps is also applicable for applications for which an intuitively sound definition of a distance
function over the input space, or of a trajectory through it, are not available.

In addition, in this section we will consider the possibility that long bursts of benign failures
(as may be expected with a high positive correlation between successive executions) may cause
mission failure. We will model this by the assumption that, although the controlled system can
survive an individual benign failure of the control computer, any series of nc or more benign
failures in a row (where the parameter nc is a characteristic of the controlled system
representing its "robustness") will cause the mission to fail. This is a common characteristic of
continuous-control systems. In certain cases, the controlled system has enough physical inertia
that an individual erroneous output from the control system will not cause the controlled system
to move into a prohibited state. For such systems, the probability of an isolated failure with
catastrophic consequences is zero. In other cases, although some of the failures of the control
system are immediately catastrophic, others (e.g., those where the control system internally
detects its own failure and outputs a safe value to the controlled system) are not, and only if
they are repeated the resulting lack of active control may cause the controlled system to drift
into a dangerous state. Of course, in either case the assumption that any sequence of up (o nc-1
failures will be tolerated, and all longer sequences will be catastrophic, is still a simplification
of reality, yet more realistic than assuming that a controlled system can tolerate any arbitrary
series of benign failures.

To demonstrate the effects of different sets of modelling assumptions, we first show the effects
of assuming that repeated benign failures may cause a catastrophic failure, while still assuming
independent outcomes for successive iterations, and then we abandon the independence
assumption as well.

5.2 "Black box'" model

We derived our model of correlation between successive iterations from those in [12], [30].
We define two kinds of failure events for a software component:

i)  point failure: which happens when the input trajectory enters a failure region,

ii) serial failure: a number of consecutive failures, happening with probability 1 after the
occurrence of a point failure, i.e., after the input trajectory enters a failure region. The
number of serial failures subsequent to any point failure is a random variable, and we
can choose its distribution to represent what we believe to be the stochastic
characteristics of the input trajectories and the failure regions.

In [12], this model was applied to the primary variant in a recovery block scheme. Correlation
between the successive failures of the alternate variant is not considered, since at the first
(point) failure of the alternate the whole scheme fails and execution stops. From these
modelling agsumptions a simple Markov chain with discrete time is developed allowing an
analytical evaluation of the reliability (MTTF) of the RB. [30] analysed the different forms of
correlation of the RB structure, including correlation among the different alternates and among
alternates and the acceptance test on the same inputs. To model the correlation between succes-
sive inputs, [30] used the same assumptions as [12], including the same event set, and used a
SRN (Stochastic Reward Nets) model to evaluate the effects of input correlation on the MTTF.

With respect to this model, we introduce two variations:

- any failure of the software component (either "point” or "serial") may be either benign
or catastrophic (immediate mission failure) for the controlled system;

- furthermore, all sequences of at least nc benign failures produce a mission failure for
the controlled system.
The outcomes of an individual iteration may thus be: i) success, i.e., the delivery of a correct

result, ii) a benign failure of the program, i.e., an output that is not correct but does not, by
itself, cause the entire mission to fail, or iii) a catastrophic failure, i.e., an output that causes
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the immediate failure of the entire mission. The statistics of sequences of these events are
modelled on the basis of the considerations below.

Failure Regions: Experiments [1], [5] and considerations about software structure indicate that
failure points (input values on which the software fails) are grouped in continuous failure
regions. "A priori”, we assume that the probability that an input belongs to a failure region is
the same for every input; one should assume a different distribution, when modelling a
specific system, if it were known, for instance, that some parts of the input space are more
prone to failures than others. Once the trajectory enters a failure region, though, the probability
that the next input will cause a failure (i.e., that it will still belong to the failure region)
increases. In [5] some two-dimensional views of fault regions (blob defects) are shown for a
specific program, and a number of factors affecting the shapes of the faults were identified.
Since there is no evidence for choosing particular shapes on a general basis, we have chosen
shapes which were simple to model, and evaluated bounds which do not depend on the specific

assumptions which are difficult to verify.

Input Sequence: The inputs form a "trajectory”, that is, every input value is close to the
previous one. We have a random or deterministic walk trajectory, with a step length that must
be small compared to the size of the input space (if the step length becomes comparable to the
size -in each dimension- of the input space then, as shown in [6], we obtain a uniform
distribution of the inputs and independence between successive inputs). Many different types
of trajectories may be considered. Examples are: 1) the next input is obtained from the previous
one by modifying the values on each dimension of a random small quantity; 2) (a subcase of 1)
a "forward-biased" trajectory: passing from one input to the next the direction may only change
slightly; 3) (a subcase of 2) a trajectory of points on a straight line, at a random, small distance
from each other.

Our model is appropriate for a situation in which the following assumptions are true:

1) a single success before the nc-th consecutive failure will bring the system back to a
stable state, i.e. the memory of the previous failure sequence is immediately lost;

2)  the trajectory of the input sequence is "forward-biased": passing from one input to the
next the direction may vary with a small angle;

3) the failure regions are convex.

The main purpose of these assumptions is to simplify the modelling without restricting too
much the class of applications that can be modelled. Actually, many control applications (e.g.,
radar systems or navigation systems) show "forward-biased” trajectories. Assumptions 2) and
3) constrain us to trajectories that, once they have left a failure region, are unlikely to re-enter it
soon. They thus allow us to consider as a constant the probability of entering a failure region
since, after leaving a certain failure region, a) there is a low probability of re-entering the failure
region just left within a small number of iterations and b) after an appropriate number of
iterations, the probability of re-entering that failure region is equal to the probability of entering
any other failure region.

We point out that we are modelling only one of the possible causes of correlation between
successive failures, i.e., continuous failure regions in the input space. There are other possible
causes, e.g., the fact that an error at one execution is likely to corrupt the state of the software
and make an error more likely at each subsequent execution. This effect could, in some cases,
be satisfactorily represented by our models: the internal state variables can be considered as
inputs, and it is plausible that at least some of their values evolve along continuous trajectories.
However, further study is needed to determine which models are sufficiently general (or
flexible) to represent the effects of the different causes of correlation.

5.3 Mission failure from repeated benign failures (with independence
between successive iterations)

We now assume that, although the controlled system can survive an individual benign failure
of the control computer, any series of nc or more benign failures in a row will cause the
mission to fail.
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Probability of completing a mission. Our new assumption of course decreases (all
model parameters being equal) the probability of surviving a mission. A reasonably tight test of
whether the probability of a mission failure due to a series of benign failures, pc-serial, can be
neglected can be obtained as follows. An upper bound on pc_serial i$ the probability that a series
of iterations without catastrophic failure is followed by a success and then n, benign failures:
I-(1-p)" "¢

Pc

n-nc-—l

Peoserial S D, (1=po)'Pspb™e =pspp™e

The total probability of mission failure is larger than (1-(1-pc)"), the probability of mission
failure if series of benign failures are of no concern. If the upper bound on pc_serial is negligible
in comparison with this lower bound on the probability of mission failure, then it is legitimate
to neglect Pe-serial in computing the latter.

Performability. With our hypothesised reward structure, the only effect of the increased
probability of mission failure is that a smaller proportion of the missions will be completed.
Thus, the expected performability will be decreased by the same amount as the probability of
completing a mission.

5.4 Correlation between successive iterations, allowing mission failures
from repeated benign failures

Abandoning the independence assumption, we now consider that a benign failure at an iteration
of the program makes it more likely than otherwise that the program will fail at the next
iteration as well. The simplest model of behaviour exhibiting this property is the three-state
Markov chain in Figure 7, in which pgg>pg and pgg<pg. We underscore that this is the

simplest model of correlated failures, but not a realistic one for any one software product.

Figure 7. The model for the iterative execution of a system with correlation

Still, even this very simple model allows one to appreciate the changes with respect to
assuming pBB=PSB, PBS=PSS, Psc=pBc (i.e., independent outcomes among successive
iterations, conditional on not having reached mission failure): the system has a higher marginal
probability of being in the "benign failure" state, and is thus less dependable. The value of the
expected fotal reward will diminish due to the increased number of benign failures, while the
completion of missions may be affected via two mechanisms. The first is an increased
probability of mission failure due to a series of benign failures. The second mechanism is an
increased probability of the next iteration producing a catastrophic failure if the last iteration
produced a failure, albeit benign. This (modelled by setting pgc>pgc) looks like a realistic
assumption in many cases: for instance, one may assume that a benign failure implies that the
program has entered a region of its input space where failure in general is especially likely (as
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implied by the assumption of positive correlation), and that a fixed proportion of such failures
happens to be immediately catastrophic!.

A plausible model that accounts for the robustness factor of the system nc is that in Figure 8.
After an iteration with success (state S), the program has a probability psp that the next
execution will produce a benign failure (i.e., that the input trajectory will enter a failure region).
However, to model the correlation between successive failures, we assume that, once in a
failure region, the probabilities of staying there for one, two or more iterations are given by the
parameters Py, p2, etc. The parameter pnp designates the probability of staying for n iteration

n.—1
i<t Pi-

or more, i.., long enough to cause mission failure: pyy =1~ 3

Figure 8. The model for iterative executions with failure clustering

So, for instance, with probability psbp2 the program enters a failure region, represented by state
B, in our model, from which, unless a catastrophic failure occurs (arc from By to C labelled
Phe) it will be compelled to move to By, after which it exits the failure region. This explains the
role of the states By, B2, etc., all designating a benign failure of the last execution. If the
sequence of failures were longer than nc-1, a mission failure would occur. This is described by
the term psbPan in the expression of the probability of the transition from S to C. By choosing
the values of the parameters p;, we assign a distribution function to the variable "number of
consecutive failures", conditional on being inside a failure region. Parameters psc and pPyc
represent, respectively, the probability of catastrophic failure from state S and from any of the
states B;. Notice that once in Bj (the last benign failure in the crossing of a failure region), the
program may move to another success, or it may enter another failure region: this is modelled
by the series of downward arcs issuing from B, labelled psbp1, PsbP2, PsbhP3, ete. The
probabilities on these arcs are the same as those on the downward arcs issuing from S on the
left: the probabilities of the trajectory entering a new failure region is independent of how long
ago it left another failure region. This seems appropriate for representing a situation of sparse,

I However, there are other realistic scenarios: for instance, there may be a controlled system where most
erroneous control signals are immediately catastrophic, but the control system is engineered to detect
its own internal errors and then issue a safe output and reset itself to a known state from which the
program is likely to proceed correctly. Then, one may well assume that most benign failures are due to
this mechanism, and are very likely to be followed by a success: pg<Pgc and, indeed, pgp<pPps: We

will not consider this scenario any further.
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small failure regions. Notice that this model allows one to represent positive correlation
between successive executions, and independence can be modelled as a limiting case, with
pi =1 and p; =0 for all i>1. Then, only state By would be reached after a benign failure
(B9,..., Bne-1 could never be reached) and from B, the same behaviour as from state S is

allowed.

State C models the failure of a mission due either to crossing a failure region and staying there
for at least n. iterations, or to a catastrophic failure. A third cause for mission failure exists,
i.e., crossing two or more failure regions without interruption, staying in each one for less than
nc failures but so that the total number of consecutive benign failures exceeds nc-1. This
mechanism is not represented by a state in our chain, but rather by a trajectory which, after
entering one of the B; states, and stepping up all the way to By, takes one of the downward
arcs from B, back to one of the Bj, and does so one or more times until it has spent n¢
iterations in the set of the B states. In solving the model, we neglect this third cause of mission
failure: the error thus introduced is negligible, with the ranges of parameter values used here
[7]. Hence, in this discussion, the random variable "duration of a failure burst" is practically
equivalent to "length of stay in a failure region".

Probability of completing a mission. Under these conditions, the positive correlation
between successive iterations will affect the probability of completing a mission both via the
probability of having n consecutive benign failures and via the longer stays in failure regions,
where we assume an increased risk of catastrophic failure. We can use again the expression:

a
P(mission success) = HP(Xi #C 1 X1 C)

i=l

where each term in the product now has the form:
P(X; #C | Xj. # C)=(1-psc)+(Psc ~ Pbc)P(Xi-l =B or.or Xj. = Bnc—lixi-l # C)+

~panPso(l- p(Xi.1 =By or.or Xj.| =B —1[Xi-1 # c))

We note that, in the right-hand side of this equation, the first additive term would be alone with
the independence assumption and if sequences of benign failures did not affect the probability
of mission failures (i.e., if ppc=Ppsc and nc=o°). The second term represents the contribution of
the higher (or lower, as the case might be) probability of catastrophic failure after a benign
failure, compared to that after a success. The third term represents the probability of mission
failure due to n. or more consecutive failures.

Performability. The expected total reward will be affected by:
1)  the increased number of benign failures,
2)  if ppc>Py the increased probability of mission failure due to a catastrophic failure, and
3)  the probability of not completing a mission due to sequences of n¢ or more failures.
The value of E[Mp] is expressed by the following formula (derived in [7]):

ng-l h-1
P ththb .
Ng— -
Zhil phpbbhl ¢
n . i
. 1= "h . imi=h i
v X YR Uttt SN B U (B S YA § R

i=l 1€jlnjiSne~t  0Shsji-1
j=j1+..+isn+h

An approximated expression, which is easier to compute and gives a lower bound on E[My] is:

E[M,, ] = nP(mission success) -

ne-1 -
Zhil hphPob"

ne-l h-1

0 . . .
(nc - 1)Zi=1 l(?)(Psb(l -pan)) (1= Psc = Psb)"
h=; PhPbb

E[M,, ] = nP(mission success) -
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6 Effects of different distributions of the length of stay in
failure regions

The distributions of i) the duration (in steps) of the crossing of a failure region by a trajectory,
ii) the number of steps between two failure regions, determine the dependability figures for a
mission of the fault-tolerant component. By assuming failure regions which are small and far
apart, we have avoided the need to model the time between encountering them with any
precision. The distribution of the stay in the failure regions must be guessed at, by making
plausible assumptions derived from one's knowledge of the type of software, and previous
experience with similar software. Of course, this cannot produce a precise prediction, but the
spread of results obtained with plausible assumptions will be a useful indication.

A useful consideration is that, whatever the chosen distribution function, its effect on
dependability is determined by two parameters: its mean (which determines the duration of
higher exposure to catastrophic failures), and the probability that a sequence of benign failures
is equal or longer than the critical threshold nc. A good estimate of these parameters, even
without the knowledge of the complete distribution, should yield a satisfactory prediction. We
shall therefore concentrate on these two factors (while keeping all others constant) in the
following reliability and performability evaluation, and will show the effect of choosing
distribution functions belonging to different families but with the same values of one or the
other of these two parameters. The families of distributions used in the figures include some
common distributions from the literature, an example of a distribution derived from
assumptions about the microscopic behaviour of the software, and two limiting distributions,
which can be shown to provide an upper and a lower bound on the dependability figures
obtainable for given values of the two parameters. In detail, these distributions are:

- geometric distribution, defined as p; =(1-qx'7! i21, for ge (0,1) and
pp =1 pj =0, 122 for q=0;
- modified negative binomial, defined as p; =(i‘*;r_‘12)(1—q)’qi“‘, i1, for ge (0,1) and
p; =1 p; =0, i22 for g=0;
—0t o i-1

- Poisson, defined as p; = e_(x':T)T' i21;

- an ad-hoc distribution, for a hypothetical application where the following knowledge
has been obtained: i) the input space is a discrete two-dimensional (Cartesian) space; ii)
the shape of failure regions is that of a square with its sides parallel to the axes of the
input space; iii) the input trajectory is a directed straight line crossing the square region
failures vertically, horizontally or diagonally (details are in [7], [8]);

- two limiting classes of distribution functions, representing the two extreme behaviours
of an input trajectory for given values of n¢ and pan:

g defined such that Z;‘:l'z gi)=0, with gnc-1)=1-py and

an | 8D =Pm- The input trajectory, if it enters a failure region, stays in it
o

for at least (n¢ - 1) iterations;
. -1 . .
f defined such that f(1)=1-pp,, With 2:‘:2 f(i)=0, and Zi>nc-l £(i) = pon -

After entering a failure region, the trajectory may either exit immediately (after

one benign failure) or stay in it for at least n. iterations.

We show the results for the probability of mission failure P(Cp) and for the performability
E[M,] with the distributions described above for the length of stays in failure regions. The
other parameters (shown in Table 9) are set consistently with the analysis of the fault tolerant
components in Section 4.

23



Parameters and their values
psb =8 106 Pbe = 1074 (notice that
psc =8 107 Pbb=1-Pbc  Pbc >> Psc)
Pss = L= Psb - Psc ne =10
n_=10%

Table 9. Parameter values used in the numerical evaluation
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Probability of mission failure P(Cn)
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(a) Probability of exceeding nc-1 consecutive failures pnq (x 10‘3)
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Figure 9. Probability of mission failure () and performability (b) as a function of pan for
different distributions of the duration of failure bursts
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Figure 10. Probability of mission failure (a) and performability (b) as a function of the mean
duration of failure bursts

Our dependability measures are plotted in Figures 9.a and 9.b as functions of ppp, in the range
[0, 10-3]. The non-zero value of P(Cy) for pnn=0 is due to the catastrophic failures. In the
case of independence, ppp=1.85 10-46, indistinguishable from 0 in our plots, and
P(Cp)=0.00786828.

A few remarks about Figure 9 follow:

1)  fshows better figures than g because we set pbc > Psc: Moreover, increasing ne would
increase the difference between their probabilities of mission failure;

2)  as noted above, the curves for the four plausible distributions are all enclosed between
those of f and g; their distance from f depends on the mean duration of stay in the
failure regions (and on the difference puc - Psc)s
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3)  the value of psp determines the slope of the curves; increasing psp increases the
probability of entering a failure region and hence the probability of mission failure;

4) f and g give bounds on the probability of mission failure and the performability,
allowing simple tests on the viability of a specific design, given only an estimate of pan-

Figures 10.a and 10.b show our dependability measures as functions of the mean stay in a
failure region. We observe that, for a given mean, distributions with higher variance cause
worse behaviour. The range of parameter values shown extends to unrealistic situations: with
such values, our plots show that, to obtain probabilities of mission failure smaller than 10-1,
the mean stay in failure regions must be limited to 2.5-4.5 steps.

7 How correlation between successive iterations affects
dependability predictions

We will now bring together the results of the previous sections to see how non-zero correlation
between successive iterations would alter the predictions obtained with the independence
assumption from the "white box" model of Section 3. In principle, the parameters of the "black
box" model could be derived from hypotheses on the microscopic behaviour of the fault-
tolerant component, €.g., the correlation between the failure of variant A at iteration i and the
failure of variant B at execution j. However, we do not know how to select such hypotheses to
be plausible for any specific fault-tolerant component, and we limit ourselves to showing the
effect of correlation between successive executions of the whole fault-tolerant component,
assuming one knows the parameters describing it.

Our purpose is to show how, "everything else being equal”, varying degrees of correlation
between failures in successive iterations of the fault-tolerant component affect dependability
predictions. Our "white box" and "black box" models have many interdependent parameters,
and we have to decide what is to "remain equal". We choose to assign the marginal
probabilities (per iteration) of success ps, benign failure py, and catastrophic failure pc, which
one could in theory derive from the "white box" models in Section 3. These "marginal”
probabilities have a clear intuitive meaning: for instance, pp is the probability that the given
software will suffer a benign failure on one input chosen at random from the operational
distribution of inputs. For a given triplet of values for ps, pb and pc, we will show how the
dependability measures we are interested in vary, depending on: i) the way failures cluster in
time, that is, the correlation among failures over time, and ii) the value of ne.

More precisely, we can separate four factors which affect the mission-related dependability
measures:

- the locations of the failure points in the input space, or, in other words, the positions
and shapes of the failure regions. This is a characteristic of the program code,
independent of how the program is used (at least if we only consider programs with a
deterministic behaviour);

- the subdivision of the failure points into those causing benign failures and those
causing catastrophic failures. This may vary with the characteristics of the controlled
system, but we will assume that in our case it never changes. With fault-tolerant
software, a natural conservative assumption is that the only benign failures happen
when the software detects and signals its own internal errors, and in this case the
subdivision is indeed a characteristic of the code only;

- the "input profile", i.e. the probabilities of the different possible input trajectories
during operation, which determine the timing of failures and the duration of failure
bursts. This probability distribution is certainly a function of the "usage environment"
of the controlled system, e.g. for a ship's auto pilot it will be a function of which routes
the ships sails, how often and with which pattern of speeds and headings; for an air
conditioning system for buildings, it will vary with the climate and exposure of the
building where it is installed. Once one has chosen the set of possible installations and
usage modes for one's software, the probability distribution of trajectories is known, in
theory: it can be simulated in practice by testing the software with a simulator of the
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controlled system. Clearly, the evolution of each individual trajectory is affected by the
outputs of the control software itself. While the software behaves correctly, these con-
trol outputs can reasonably be considered a function of its specification only. When the
software fails, it is the details of the faults that determine which control outputs it
produces;

- the robustness of the controlled system, which decides how long a burst of benign
failures it can tolerate, i.€., our n¢ parameter.

To separate the effects of these factors, we initially model the behaviour of the program during
an infinite succession of missions by the Markov chain in Figure 11.

Figure 11. The model for the behaviour of the system during an infinite succession of
missions

This model, like that in Figure 8, allows one to represent independence between successive
executions by setting p; =1 and p; =0 for all i>1, but differs from that model in two ways:

1. repeated benign failures cannot cause a catastrophic failure (only "pointwise”
catastrophic failures are possible). This model thus describes the effects of the program
code and of its usage environment, but not of the robustness of the controlled system,
described by the parameter ng;

7 state C is not an absorbing state: we have added transitions from state C, all with the
same probabilities as the transitions from S to the same destination states. This
represents the fact that a catastrophic failure terminates a mission, and the next mission
starts as after a success. A mission which terminates in state S is followed by another
which starts in state S, so this transition is indistinguishable from any other transition
from S to S. As our marginal probabilities, ps, Pb and pe, can be seen as the average
probabilities of being in the states S, B={B;}, or C over infinitely many missions, they
are the steady-state probabilities of the different states in this model2.

2 Actually, this model does not exactly represent the fact that missions last for a fixed number of itera-
tions, after which the system is reset and restarts from the S state. In the model, instead, once the
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Notice that to derive these marginal probabilities via testing one would need to test the software
along a realistic distribution of trajectories (e.g. using a simulator of the controlled system),
interrupting the execution at each catastrophic failure. However, with that kind of testing, one
would be better advised to attempt and measure directly the dependability measures of interest,
rather than the parameters of this (unavoidably unrealistic) model. The purpose of the
discussion that follows is to show the interplay of the different probabilistic parameters
characterising the behaviour of our software.

The standard method for the steady-state solution of our Markov chain [31] leads, with the
transition rates indicated in Figure 11, to the following system of linear equations:

(Ps +Pbl + Pc)Pss = Ps ,
(Ps + Dbl *+ Pe)PsbPi + Poi+1(1=Pbe) = Pbisi =123,
(ps + Ppl + Pe)Psc +(Pb = Pb1)Pbe = Pc

Ps+Pp+Pc =L Pb= D, Pbi

In these equations, we only know the marginal probabilities ps, P, Pc, and, obviously, cannot
derive the transition probabilities which are our unknowns, and which we need for computing
our dependability measures. Knowing that the system tends to be in a certain state a certain
fraction of the time does not tell us how often it moves into and out of that state. This latter
information describes correlation over time, i.e., what we wish to model. These equations
allow solutions with multiple degrees of freedom: "correlation over time", that is, "the way
failures group into bursts”, cannot be fully described by one number. To visualise the effects
of correlation, we now choose special assumptions under which it is described by one

number. We choose to assume that:
i) Pbc = K Py with k>1 on the basis of the discussion in Section 5.4,

ii) the duration of a failure burst has a geometric distribution with parameter q (so that all
the probabilities p; can be derived as a function of q), as defined in Section 6. In our
model g=0 represents independence, while q approaching 1 represents the maximum

positive correlation, i.e. the case in which a trajectory, after entering a failure region,
will remain in it forever.

Under these assumptions, we solve the system above and obtain all the transition probabilities
as functions of the steady state probabilities, the parameter k and the parameter of the geometric
distribution, q. These expressions are listed in T able 10.

If we now apply these transition probabilities to the model of Figure 11, we can solve it for
missions that last n executions unless they are interrupted. We can also take account of the fact
that sequences of n or more benign failures cause a mission to fail, by plugging our transition
probabilities back into the model of Figure 8 (the parameter ppy in Figure 8 must be set to

I - (p1+p2+...+Pnc_))*

systenn has entered a state in the set Bj, it will (with non-zero probability) go through i successive
benign failures before returning to S. If we include an infinite number of benign failure states Bj, this
could be a serious problem indeed. In practice, no significant discrepancy should arise if i) even if
infinite Bj states exist, the probabilities p; dwindle to negligible values when i exceeds some threshold,
and ii) this threshold is much smaller than the number of iterations per mission. This latter condition
ensures that sequences of benign failures which are interrupted by the end of the mission - the only
sequences that cause discrepancies between the model and reality - are a small fraction of the total
number of sequences of benign failures. All this is predicated on our assumption that transition
probabilities are time-invariant: there is no "especially dangerous” phase ina mission. This assumption
would need to change, e.g., to consider hardware failures over a long mission (more likely towards the
end than at the beginning).

3 This procedure will in general introduce an error: given a program, with its failure regions, and given a
distribution of input trajectories, changing the value of n¢ changes the subset of trajectories which end
prematurely with a mission failure, and may thus change the parameters of the model. A direct method
for finding mission-related dependability measures is to use the model of Figure 8, with the correct
value of nc and the values of all the transition probabilities in the actual missions, including those
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pSS PS
I~ ppq
pgp | RoUL- q)(1 = ppa) + kq((1 - q)pp +Pc))
(1-ppq)(1 +(k - Dppq)
p Pc
sc T+ (k- Dppq
kp,
Pbe T+ (k- Dppa
kp,
Pbb = T3 - Dppa

Table 10. Expressions for the transition probabilities of the model in Figure 11
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Figure 12. Probability of mission failure, as a function of pe, for different values of the
parameter q of the geometric distribution of the lengths of bursts of benign failures

Figure 12 shows the curves obtained in such a way, i.e. the probability of mission failure, as a
function of the marginal probability pc, for a geometric distribution of the lengths of bursts of
benign failures, and for different values of the parameter q of the geometric distribution. We
have set ps = 105 pp, i.e. pp =(1-pe)/( 105+1)and ps =[(1-pc)1051/(10°+1), k=100 (i.e.,
pbc=100 psc) and nc=10.

We can now compare the predictions of this model, for this special case of geometric
distribution of the lengths of bursts of benign failures, with those of the independence-based
model in Section 3. We consider the SCOP fault-tolerant component, and assume again (as we
did for Figures 3 to 6) that qay is proportional to gjv, the failure probability per execution of the

which end with n¢ benign failures. From that model one can also derive the marginal probabilities of
the different states, and thus trace plots like those in our Figure 12. This would certainly be a correct
procedure, but very unlikely to be feasible. We only intend to give one example of how changes in
correlation over time may affect these measures, and we have thus preferred the procedure we have
described, which shows the effects of the different factors separately in its different steps.
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Last, we show in Figure 16 how the probability of mission failure varies as a function of the
robustness of the controlled system, described by the parameter nc. Here, the value of gjy 18 set
to 10-5 and three different values of q are considered. Given a distribution of the length of
failure bursts, increasing n¢ reduces pnn, the probability of n¢ or more benign failures in a row,
which would cause mission failure. Again, decreasing values of q, approaching 0, reduce the
probability of mission failure. In our setting, in the case of independence (g=0), the effects of
sequences of failures have negligible influence on the probability of mission failure.
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Figure 16. Probability of mission failure for a fault-tolerant component built using SCOP, as
a function of nc, for different values of correlation between iterations

8 Conclusions

Evaluating the dependability levels that can be obtained with alternative design solutions is
obviously desirable. In the modelling of design schemes with software fault tolerance, and
limited to software with iterative execution (e.g., process control software), we have improved
on the previous literature by studying the effects of both:

1. the tendency of failures to appear in bursts (longer than independence between
successive iterations would imply) , and

2.  the ability of a controlled system to tolerate short bursts of failures.

With all "stractural” models of software dependability, including ours, estimating the parameter
values is difficult, so that the usefulness of the models is mostly in showing the relative
importance of different phenomena which the designer may hope to control, rather than in
producing reliable predictions about a system. Modelling more complex phenomena (as we
did, compared to previous authors) implies having to estimate more parameters: the more
complete models (like ours) are therefore more difficult to use for practical guidance than the
less complete ones. Their advantage is in showing whether and when the less complete models
may give misleading predictions. In particular, we have shown how, if we model the
phenomena of failure bursts and the resilience of the controlled system to benign failures, the
results may vary considerably from those obtained with simpler models.

Our analysis has shown that the dependability figures are a complex function of several
phenomena and that the same values of dependability are obtained by different combinations of
parameters. These indications are useful for designers who believe that they can control some
of the phenomena described by our models. For instance, when additional effort directed at
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improving one of these parameters seems to be of doubtful utility, a designer can attempt to
improve other parameters: if one does not know how to improve the probability of failure per
execution, it may be worthwhile to spend some effort in avoiding (through error detection and
recovery) long bursts of "benign” failures. It may appear convenient for a designer to accept a
higher probability of failure per execution in return for a lower probability of long bursts of
failures; or to pursue the latter so as to be able to build less resilience (a lower n¢) into the
controlled system.

We must underscore that the specific model of "bursty” failures that we chose (i.e., our
modelling assumptions) has the advantage of "plausibility”, not of proven realism. In other
words, it is based on sensible considerations about programs in general, but it has still to be
checked how well it represents the behaviour of any real program. In any case, one should not
consider such a model to have been experimentally validated until it had been tested on quite
many individual, real programs of the type of interest. Even more strongly we must caution the
reader against considering the restrictive assumptions we used in the second part of Section 7,
for the sake of an easier visualisation of results, as applicable to software in general. The plots
shown there visualise how varying the correlation among iterations, even for constant
probabilities of the outcomes of one iteration, changes the dependability measures of interest,
under a special set of circumstances. However, we showed that more degrees of freedom are
possible in the behaviour of a system, which may cause wider variations than those we
showed. A designer wishing to estimate bounds on the behaviour of a specific system should

consider the effects of varying all parameters without arbitrary restrictions.

One use of modelling is in showing bounds, rather than precise predictions, on measures of
interest. A useful contribution of this paper is our specification of the probability distribution
functions f and g for the length of stay in a failure region, or duration of failure bursts (in
Section 6), which give upper and lower bounds on the dependability measures obtainable with
a given probability of non-catastrophic failure bursts.

Even when designers have an intuition of how they could improve the values of individual
parameters, they are usually unable to estimate them with precision or design for a certain
required value: no software designer knows how to put just enough effort in designing a
program so that its reliability is approximately as required, but not too much more. However,
an interesting special case for the use of our models would be that of a program whose input
space and use characteristics are so structured that we can devise a testing strategy to ensure an
upper bound on (or to estimate the distribution of) the sizes of failure regions and hence, given
some knowledge about the dynamics of the controlled system, on the duration of failure bursts.

Although our intention was to improve the evaluation of fault-tolerant software, the "black
box" models we discussed in Sections 5 and 7 clearly apply to all software with iterative
executions.

A limit of our analysis is that it does not explicitly trace the effects of the statistics, measured
across sequences of executions, of the detailed internal events inside a fault-tolerant
component. These effects are clearly important: for instance, if one knew whether a failure of
one version at one iteration should be interpreted as implying that another version is more (or
less) likely than usual to fail at the next execution, i.e., if one had more knowledge about the
overlapping of failure regions for different versions, one could map their implications on the
sequences of failures of the fault-tolerant component seen as a "black box". This would allow
an extension of models like those of Eckhardt and Lee [14] and of Littlewood and Miller [19],
describing the effects of a varying degree of “problem difficulty" over the input space and
between different software variants, to the case of repeated executions. However, we have not
found a mathematical description of these phenomena with parameters intuitive enough to allow
a useful analysis.
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