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Abstract: In recent decades, membrane-based processes have been extensively applied to a wide range
of industrial processes, including gas separation, food industry, drug purification, and wastewater
treatment. Membrane distillation is a thermally driven separation process, in which only vapour
molecules transfer through a microporous hydrophobic membrane. At the operational level, the
performance of membrane distillation is negatively affected by wetting and temperature polarization
phenomena. In order to overcome these issues, advanced membranes have been developed in recent
years. This review, which focuses specifically on membrane distillation presents the basic concepts
associated with the mass and heat transfer through hydrophobic membranes, membrane properties,
and advances in membrane materials. Photothermal materials for solar-driven membrane distillation
applications are also presented and discussed.

Keywords: membrane distillation; temperature polarization; heat and mass transport; membrane
materials

1. Introduction

Membrane processes meet the Process Intensification (PI) requirements because they
can potentially replace traditional energy-intensive techniques and increase the efficiency
of reactive processes [1]. The significant advantages of membrane operations regard their
low direct energy consumption and the opportunity to reduce indirect energy consumption
through the recycling and reuse of raw materials [1,2].

Membrane technology finds applications in many fields of science and industry,
including seawater desalination [3–5], wastewater treatment [6,7], produced water [8–10],
food processing [11–16], textile industry [17–19], pharmaceutical applications [20–24] and
chemical industry [25,26]. The first generation of membrane technologies includes pressure-
driven processes, such as reverse osmosis (RO), nanofiltration (NF), and ultrafiltration (UF).
Optimized membranes are required for these applications to meet the requirements of each
membrane separation process and the corresponding operating conditions.

Pressure-driven processes need membranes operating at high pressures (5–30 bars)
in order to achieve high productivity. Consequently, they require hydrophilic robust
membranes with high mechanical strength able, therefore, to withstand severe operating
conditions.

Over the last few decades, membrane distillation (MD) has attracted much attention,
leading to the emergence of second-generation membrane processes. MD is a separation
process in which only vapour molecules pass across a hydrophobic membrane. To date,
polymeric membranes are the most commonly used membranes in MD technology because
of their inherent hydrophobic properties and good processability [27]. However, the main
drawbacks of MD operating with conventional membranes are represented by the wetting
and temperature polarization. The latter, in particular, reduces the net driving force to
mass transport and, ultimately, decreases the overall efficiency of the process. For this
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reason, MD is still a technologically not mature process. Therefore, the development of
advanced membranes that maximize MD’s efficiency is required to enable its industrial-
scale implementation.

This review describes the heat and mass transfer processes involved in MD, the main
membrane properties, the recent advances in membrane materials, and the advent of
thermoplasmonics in MD.

2. Membrane Distillation

Membrane distillation is an emerging thermal separation method that uses a microp-
orous hydrophobic membrane in contact with a heated aqueous solution on the one hand
(feed or retentate) and a condensing phase (permeate or distillate) on the other [28]. In
this process, the hydrophobic membrane does not act as a conventional barrier or filter but
supports the exchange of mass and energy between two opposing surfaces according to
the principles of phase equilibrium [28].

Some of the key benefits of MD include: (i) lower operating temperatures compared
to those typically used in the conventional distillation columns, allowing the use of low-
grade heat streams such as alternative energy sources (solar, wind, or geothermal), (ii)
theoretically removes 100% of all non-volatiles and (iii) achieves higher water recovery
rates with respect to RO and conventional thermal processes, reducing the amount of brine
released into the environment.

However, MD presents some drawbacks such as (i) the absence of membranes and
modules specifically developed for MD, (ii) the risk of membrane pore wetting, and (iii)
the polarization temperature associated with heat transfer through the membrane.

Generally, MD has been used for desalination applications [29–31] as an alternative to
RO processes or to improve the limited recovery factor of RO and other thermal desalination
techniques [32]. In addition, MD systems have been deemed a viable technology in arid
areas located in regions with plenty of sun further limiting its application mainly to
desalination [33,34]. Nevertheless, MD has been used in many other applications due
to its reduced fouling tendency and its potential to handle complex solutions. The basic
temperature gradient nature of the process also opens up new usage opportunities for
vapour/gas separation applications where the equilibrium composition at any temperature
is enriched with the more volatile component [32]. As a result, the scope of the process
has extended beyond the traditional use of desalination. In addition to the conventional
membrane-based processes, MD has the potential for temperature-sensitive products such
as pharmaceutical compounds, juices, dairy products, natural aromatic compounds, and
solutions of several chemicals. The process can be applied in fields where a very high
rejection of certain components is required such as the treatment of nuclear waste or
radioactive water [35] and water for the semiconductor industry [36].

2.1. Membrane Distillation Configurations

Depending on the way the water vapour is condensed, MD can be classified into
four basic configurations (Figure 1): direct contact membrane distillation (DCMD), air gap
membrane distillation (AGMD), sweep gas membrane distillation (SGMD), and vacuum
membrane distillation (VMD).

Because of its simplicity, DMCD has been extensively investigated, despite its low
efficiency. In the DCMD configuration, both hot feed and cold solutions are in direct contact
with the membrane surface [37]. Volatile components of the feed solution vapourise at the
hot feed side of the membrane, diffuse through the membrane pores and finally condense
into the cold permeate side of the membrane. The main drawback of DCMD configuration
is due to heat loss by conduction, which increases the amount of energy required to keep
the solution hot enough to drive evaporation [3].

AGMD represents the most versatile technique in which only the feed solution is di-
rectly in contact with the hot side of the membrane. A thin air gap separates the hydropho-
bic membrane from the cold condensing surface, providing the possibility of condensing
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the permeate vapours on the cold surface rather than directly in a cold liquid [38]. This
corresponds to a considerable reduction in the amount of heat lost by conduction through
the membrane [39]. However, in AGMD systems, with respect to the DCMD or VMD
configurations [39–41], the fluxes are reduced because the air gap creates additional resis-
tance to mass transfer. AGMD can be used for both DCMD applications and for removing
volatile components as traces of aqueous alcohol solutions.

Combining the advantages of AGMD and DCMD, the SGMD configuration provides
low conductive heat loss and low mass transfer resistance [42]. To maintain the gradient
necessary for transport, an inert gas sweeps the vapour on the permeate side of the mem-
brane [43]. This process has the primary benefit of reducing the mass transport resistance of
the air gap. However, because a small volume of permeate diffuses into a large sweep gas
volume, large external condensers are necessary to condense the vapour water and collect
the permeate [44]. SGMD is mostly used for the removal of volatile organic compounds or
dissolved gases from aqueous solutions.
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Figure 1. Membrane distillation basic configurations: (a) Direct contact membrane distillation
(DCMD); (b) Air gap membrane distillation (AGMD); (c) Sweep gas membrane distillation (SGMD);
(d) Vacuum membrane distillation (VMD). Reprinted from ref. [45] (Open access).

The VMD process is recognized as a cost-effective membrane separation method
which can overcome many of the limitations of other MD systems. VMD applies a vacuum
to the permeate side of the membrane, which allows it to operate at lower temperatures
and pressures [45,46]. Consequently, thermal evaporation efficiency is increased, and the
energy consumption is reduced.

Despite its high efficiency, MD technology is still limited on an industrial scale due to
its low thermal efficiency. The specific energy consumption of traditional MD configurations
can be easily above 1256 kWh m−3 (estimated from the gain output ratio, GOR) [47].
In recent years, new configurations have been proposed to reduce the specific energy
consumption. Various MD configurations have been developed to harvest waste heat
by internal heat recovery of the MD module. In particular, multi-stage and multi-effect
membrane distillation (MEMD) systems have been designed to reduce energy consumption.
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In the late 1990s, the Netherlands Organization for Applied Scientific Research (TNO)
developed the AGMD Memstill MD with a heat recovery module, which was licensed
to Aquastil and Keppel Seghers for commercialization. Memstill reported a very low
specific energy consumption of 56–100 kWh m−3 [48]. Scarab Development AB (Sweden)
developed a heat-recovery AGMD module with a plate-and-frame design [49]. An energy
consumption of 810 kWh m−3 was achieved with a microporous PTFE membrane from
GoreTex [50]. Vacuum multi-effect membrane distillation (V-MEMD) is a similar concept
to MEMD, where efficiency is increased with the help of vacuum. V-MEMD consists of
a heater, multiple evaporation–condensation stages, and an external condenser [51]. By
recovering condensation heat from each stage, V-MEMD processes reduce specific energy
consumption to 175–350 kWh m−3 [51].

2.2. Membrane Modules

Tubular module and plate and frame module represent the two main MD module
configurations.

A hollow fiber (HF) tubular module consists of HF membranes enclosed into a housing
as shown in Figure 2a. The feed is introduced into the shell side of the HFs, and cooling
fluid, sweeping gas, or negative pressure can be applied on the other side to form VMD,
SGMD, or DCMD [52]. Due to their large active area and small size, HF modules have a
high potential for commercial applications. Good flow distribution on the shell side can be
achieved using cross-flow modules that reduce the temperature polarization.
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module for flat sheet membrane. Open access. Reprinted from ref. [52] (Open access).

The plate and frame module (Figure 2b) is suitable for flat sheet membranes and can
be used in DCMD, AGMD, VMD, and SGMD configurations [52]. This setup is easy to carry
out and the effective area can be increased using multiple layers of flat sheet membranes.
Flow dynamics can be improved by the use of spacers and baffles in order to increase
turbulence and homogenize the temperature distribution inside the channels [36].

2.3. Mass and Heat Transfer
2.3.1. Mass Transfer

Water vapour flux is influenced by several factors, including feed and cold solution
temperatures, and hot and cold stream velocities. A high operating temperature is generally
preferred in MD processes. In MD system the water vapour flux J across the membrane is
given by:

J = C·∆P (1)

where ∆P is the vapour pressure difference among the warm and cold sides of the mem-
brane and C is a membrane distillation coefficient associated whit the membrane structure
and flow parameters of the aqueous solution. This equation establishes a direct relationship
between the water vapour flux and the driving force for mass transfer [38]. During this
process, heat is also transferred, thus heat and mass transfer are closely linked with the
consequent development of concentration and temperature profiles [38]. Mass transfer
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is also induced by temperature differences across the membrane, which create a thermal
gradient in the fluid phase, due to the Soret effect [53,54].

Figure 3a shows the possible mass transfer resistances in MD process with an electrical
analogy. This approach considers the mass transfer in MD in terms of serial resistances
upon the transfer between the bulks of two phases in contact with the membrane [28].
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The mass balance across the feed side boundary layer yields the relationship be-
tween molar flux N, the mass transfer coefficient kx, the solution density ρ, and the solute
concentrations cm and cb at the membrane surface and in the bulk, respectively [55]:

N
ρ

= kxln
cm

cb
(2)

The mass transfer coefficient is usually determined using empirical relations that can
be expressed in the form

Sh = αReβScγ (3)

where:

• Sh is the Sherwood number, Sh = kd/D (d: hydraulic number, D: diffusion coefficient)
• Re is the Reynolds number, Re = (ρνd)/µ (ρ: fluid density; ν: fluid velocity, µ: fluid

viscosity)
• Sc is the Schmidt number, Sc = µ/ρD

more details are available in Refs. [56,57].
Due to the solvent flux through the membrane, the concentration of the non-volatile

solutes at the membrane surface becomes higher than that at the bulk solution. To quantify
the mass transport resistance within the boundary layer at the feed side, it is generally used
the concentration polarization coefficient (CPC) given by the following equation:

CPC =
Cm

Cb
(4)

Regarding the mass transport across the porous membrane, it is affected by:

• Knudsen diffusion resistance (due to collisions among the molecules and the mem-
brane walls) [28]

• viscous resistance (due to the momentum transferred to the membrane) [28]
• molecular resistance (due to collisions between diffusing molecules) [28].

For mass transport through porous media, the dusty gas model (DGM) [58,59] is a
useful general model

ND
i

Dk
ie
+

n

∑
j=1 6=i

pjND
i − pi ND

j

D0
ije

= − 1
RT
∇pi (5)

Nv
i = − εr2 pi

8RTτµ
∇P (6)
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Dk
ie =

2εr
3τ

√
8RT
πMi

(7)

D0
ije =

ε

τ
D0

ij (8)

where ND is the diffusive flux, Nv is the viscous flux, Dk is the Knudsen diffusion coeffi-
cient, D0 is the ordinary diffusion coefficient, pi is the partial pressure of the component i,
P is the total pressure, Mi is the molecular weight of component i, r is the membrane pore
radius, ε is the membrane porosity, µ is the fluid viscosity, and τ is the membrane tortuosity.
Underscript e indicates the “effective” diffusion coefficient.

The Knudsen-molecular diffusion transition for DCMD can be expressed as [58]:

Ni =
−1
RT

[
1

Dk
1e

+
pair

D0
ije

]−1

∇pi (9)

The DGM applied to VMD configuration, gives [60]:

Ni =
2εr

3τRT

(
8 RT
πMi

)1/2
∆pi. (10)

2.3.2. Heat Transfer

The heat transfer in MD process (Figure 3b) can be summarized in three steps:

(1) convection from the feed bulk to the vapour–liquid interface at the membrane sur-
face [61]

Q f = h f ·
(

Tf − Tf m

)
(11)

(2) evaporation and conduction through the microporous membrane

Qv = hv·
(

Tf m − Tpm

)
= N∆Hv (12)

Qc =
kg·ε + km(1− ε)

δm
·
(

Tf m − Tpm

)
(13)

(3) convection from the vapour–liquid interface at the membrane surface to the permeate
side [61]

Qp = hp·
(
Tpm − Tp

)
(14)

where Qv is the heat transferred across the membrane due to the liquid evaporation at the
surface of the membrane, Qc is the heat transferred across the membrane material and
via the vapour which fills the pores, N is the rate of mass transfer, ∆Hv is the latent heat
of vapourisation, kg is thermal conductivity of the vapour within the membrane, km is the
thermal conductivity of the solid membrane material, ε is the membrane porosity, δm is the
membrane thickness, Tf m is the temperature of the feed at the membrane surface, Tpm is the
temperature of the permeate at the membrane surface, and Tf and Tp are the temperatures
of the feed and permeate in the bulk, respectively.

The total heat (QT) transferred across the membrane is expressed by the following
equation [60]:

QT = Qv + Qc = U∆Tb (15)
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where ∆Tb is bulk temperature difference among the feed and permeate sides and U is the
overall heat transfer coefficient given by:

U =
1
h f

+
1(

kg ·ε+km(1−ε)
δm

)
+
(

N∆Hv
Tf m−Tpm

) +
1
hp

(16)

Based on Equation (16), it is important to minimize boundary layer resistances maxi-
mizing boundary layer heat transfer coefficients. In order to quantify the extent of boundary
layer resistance over total heat transfer resistance, a temperature polarization coefficient
(TPC) is used [60]:

TPC =
Tf m − Tpm

Tf − Tp
(17)

The boundary layer heat transfer coefficients are commonly evaluated using empirical
correlations expressed as follows:

Nu = αReβPrγ (18)

where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, and
α, β, γ are the correlation coefficients dependent upon specific hydrodynamic conditions.

3. Membrane Properties

Obtaining high performance for MD process requires membranes with a specific
structure and chemistry. The properties of membranes suitable for MD should include:

(i) An adequate thickness, based on a compromise between increased membrane perme-
ability and reduced thermal resistance as the membrane becomes thinner [52].

(ii) Reasonably large pore size and narrow pore size distribution, limited by the minimum
Liquid Entry Pressure (LEP) of the membrane [52].

The Liquid Entry Pressure is defined as the minimum transmembrane pressure that a
feed solution requires to penetrate the hydrophobic membrane. LEP is a very important
parameter for MD membranes, where the desired property of the membrane is to avoid the
wetting of the pores.

In MD, the hydrostatic pressure must be lower than LEP to avoid membrane wet-
ting [52]. This can be quantified by the following Laplace (Cantor) [62,63]

LEPW = −2Bγl cos θ

rmax
< Pprocess − Ppore (19)

where B is a geometric factor determined by pore structure (for instance, B = 1 for cylindrical
pore), γl is the liquid surface tension, θ is the liquid/solid contact angle between water
and the membrane surface, rmax is the maximum pore size, Pprocess is the liquid pressure on
either side of the membrane, and Ppore is the air pressure in the membrane pore.

Wetting occurs when the hydrostatic pressure on the feed side of the membrane ex-
ceeds LEP. The contact angle θ that gives information on the hydrophobicity of a membrane:
a drop of water deposited on a hydrophobic surface gives a contact angle greater than 90◦.
In its simplest form, the wettability (Figure 4a) of a liquid droplet on a flat smooth surface
is commonly determined by Young’s equation [64]:

γLVcosθ = γSV − γSL (20)

where γLV, γSV, and γSL are the surface tension of liquid–vapour, polymer, and of solid-
liquid, respectively.
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However, real membranes are not homogeneous and smooth. Therefore, the Young
model is not applicable to them. The topography of roughness structure is taken into
account by the Wenzel model [60] and the Cassie–Baxter model [61]:

cos θW = r cos θ (21)

cos θC = fs(cos θ + 1)− 1 (22)

where r is the roughness factor in the Wenzel model, θC and fs are, respectively, the apparent
contact angle and the area fraction of the solid phase in the Cassie model, and θ is the ideal
contact angle.

The Wenzel model considers a homogeneous wetting process where liquid fills in the
grooves of a rough surface, increasing the liquid–solid interface surface area geometrically,
as shown in Figure 4b. Instead, in Cassie–Baxter’s model, droplets sit partially on air
trapped in asperity valleys, indicating a heterogeneous wetting state (Figure 4c).

(iii) Low surface free energy. Surface-free energy can provide useful information about
wetting potential of the feed solution with surface tension.

(iv) Low thermal conductivity. High thermal conductivities reduce vapour flux increasing
heat transfer.

(v) High porosity. Membrane porosity is the volume fraction of the pores of the membrane.
Membranes with greater porosity have a larger surface area for evaporation. So, a
membrane with high porosity has higher permeate flux and lower conductive heat
loss. Nevertheless, high-porosity membranes tend to break because of their low
mechanical resistance. This results in a loss of membrane performance [52].

Membrane porosity (ε) can be determined by gravimetric method, measuring the
weight of liquid contained in the membrane pores [65]

ε =
(W1 −W2)/ρk

(W1 −W2)/ρk + W2/ρP
·100% (23)

where W1 is the weight of the wet membrane, W2 the weight of the dry membrane, ρk the
density of the liquid, and ρP the polymer density.

In general, membranes used in MD systems have a porosity as high as 70–80%.

4. Advances on MD Membrane Materials
4.1. Polymeric Membranes

As previously mentioned, MD technology requires the use of hydrophobic membranes.
Over the past few decades, among hydrophobic materials, fluoropolymers have attracted
significant attention due to their high thermal stability, low surface tension, and good
chemical resistance [66,67].

An important fluoropolymer used for fabricating MD membranes is Poly(Vinylidene
Fluoride) (PVDF). PVDF is a semicrystalline polymer with typical crystallinity between
35% and 70% [68]. The crystalline phase of PVDF has five distinct crystal polymorphs: α
(phase II), β (phase I), γ (phase III), δ, and ε. The α-form is the most common non-polar
phase formed of (CH2–CF2)n chains in a monoclinic crystallographic form whereas the
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polar β-phase is the most thermodynamically stable form. This latter is of special interest
due to its pyro- and piezoelectric properties.

PVDF shows a good thermal stability, mechanical, and chemical resistance, and it
can be dissolved in mostly common solvents such as N-methyl-2-pyrrolidone (NMP),
N,N–dimethyl acetamide (DMAc), and N,N–dimethyl formamide (DMF) [68]. It has a
glass transition temperature (Tg) in the range from −40 ◦C to −30 ◦C and a melting point
between 155 ◦C and 192 ◦C.

As regards the synthesis processes, nonsolvent-induced phase separation (NIPS)
technique is mainly used for the production of PVDF membranes for MD applications. In
the membrane-preparation process via NIPS, polymer solution is immersed in a nonsolvent
bath, inducing phase separation of solution into a polymer-rich (membrane matrix) phase
and a polymer-poor phase (membrane pores) [69].

Other techniques used to synthesize PVDF membranes are thermally induced phase
separation (TIPS) and electrospinning. In the TIPS process, the membrane formation is
induced by cooling the polymer solution. Some of the advantages of TIPS are the simplicity
of the method, high porosity, and the capability to form narrow pore size distribution [70].
Recently, the electrospinning process has also attracted considerable attention mainly
due to the fact that it is a simple process to produce submicron and nano-scale fibers.
In comparison to the membrane produced by NIPS, the electrospun membranes exhibit
superior porosity, a high-specific surface area, and a high strength-to-weight ratio [68,71].

To reduce fouling or increase wetting resistance, various modifications have been
suggested such as surface coating, blending and pore filling [72].

The mechanical stability of PVDF membranes can be enhanced by using PVDF-Hyflon
AD super-hydrophobic membranes [73]. The fluorinated polymer Hyflon AD, with its
excellent mechanical and hydrophobic properties, is ideal for producing PVDF-Hyflon
composite membranes. Wet chemical treatment and dry-wet phase inversion can be used
to design these membranes.

PVDF mixed matrix membranes incorporating Cloisite15A were tested in DCMD for
the treatment of rubber processing effluents [74]. MD tests showed a significant reduction
in flux over time. However, high removal efficiencies have been achieved.

Mokhtar et al. [75] prepared PVDF HF membranes blended with ethylene glycol (EG)
and investigated their performance in DCMD tests on the treatment of dye solution system.
The membranes were prepared by dry-jet wet spinning method. The results showed that
the modified PVDF membrane was able to produce consistent flux (9.71 kg m−2 h−1 after 6
h-experiment at 60 ◦C) throughout the experiment while maintaining excellent dye rejection
(>99.75%).

Another polymer widely used for the MD membrane production is Polytetrafluo-
roethylene (PTFE), better known by the trade name Teflon. It is a thermoplastic polymer
and it is formed by carbon chains having two fluorine atoms for each carbon atom. The
most important properties of PTFE (such as high chemical stability, high heat resistance,
and strong hydrophobicity) derive from the strong C-C and C-F bonds and the carbon
backbone. The latter is protected against chemical attacks by a uniform and continuous
coverage consisting of fluorine atoms. PTFE is electrically inertness, so volume and surface
resistivity are high. It is insoluble in common solvents at room temperature. Additionally,
PTFE is highly crystalline (92–98% crystallinity) and the crystallites have a high melting
point (342 ◦C) which makes the processability of PTFE difficult. Therefore, the commonly
used phase inversion or melt spinning techniques for membrane synthesis cannot be ex-
ploited for PTFE. Currently PTFE membranes are prepared using complicated extrusion,
rolling, stretching and sintering methods which make difficult the control of the porous
structure [76].

Properties such as low-cost, good thermal stability, chemical resistance and mechanical
strength make the polypropylene (PP) suitable for membrane applications. PP consists
of a repeating unit, –CH2CH(CH3) monomer. It exists in both semi-crystalline and amor-
phous forms but the Isostatic PP, a semicrystalline form, is the most commonly used for
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commercial-scale membrane preparation. Moreover, as compared to PVDF, PP has low
hydrophobicity due to its high surface energy.

PP membrane is fabricated using the following three main techniques: TIPS, stretching,
and track-etching. The stretching method is a solvent free technique and is applicable
for the semicrystalline polymers. It consists of four fundamental processes: the molten
polymer film is extruded into a film (1) which is subsequently annealed (2); annealing is
followed by cold and hot stretching (3) that generated and enlarges the pore size; to avoid
pore closure, heat setting is performed as the last step (4). The track-etching technique is
mainly based on the use of heavy-ion accelerators.

With this technique, the pore size and density can be controlled to produce membranes
having the required transport properties.

Future research is expected to be directed towards investigating novel preparation
methods for PP membranes using, in particular, less-explored techniques such as electro-
spinning. Furthermore, the use of fillers such as carbon nanotubes (CNTs) can also be
investigated to create membranes having specific properties [77].

New fluoropolymers have recently received attention for improving MD membrane
performance.

One example of this is poly(ethylenechlorotrifluoroethylene) (ECTFE) [66,78], often
referred to as HALAR by Solvay Specialty Chemicals, a very appealing candidate for MD
applications due to its high hydrophobicity. It is mechanically stable under a wide range
of temperatures. In addition, it has excellent solvent and chemical resistance properties
that make it suitable for applications under harsh conditions. The major disadvantage
of ECTFE-based membranes is the need to fabricate the membranes at extremely high
temperatures.

Hyflon AD from Solvay Specialty Polymers and Cytop from Asahi Glass are also inter-
esting polymers examples for MD systems [66,79,80]. These polymers are highly soluble in
fluorinated solvents and have a low solution viscosity, making them potential membrane
synthesis candidates. Hyflon-coated PVDF membranes also show high hydrophobicity,
narrow pore sizes, and high mechanical strength [80].

4.2. Ceramic Membranes

PVDF, PTFE, and PP membranes demonstrate some drawbacks in terms of thermal
and chemical stabilities that can limit their lifetime [81]. As a result, hydrophobic ceramic
membranes have attracted considerable interest because of their exceptional characteristics
that allow long-term operation without significant performance degradation.

Alumina, iron, silica, titania, and zirconia metal oxides are widely used to produce ce-
ramic membranes. Depending on the pore size of the bulk material, the ceramic membranes
can be intrinsically selective or may consist of a thin layer supported by a porous alumina
substrate [52]. Ceramic membranes usually exhibit a more homogeneous morphology
than polymeric membranes. Although the majority of the work uses commercial support
materials, additional research has explored the use of natural clay to treat thin membranes,
such as aluminum phyllosilicates. Compared with the competing organic membranes,
ceramic membranes perform better in harsh environments, e.g., at temperatures above
200 ◦C or during solvent separation, due to the superior thermal, chemical, and mechanical
stabilities of ceramics. Furthermore, unlike polymeric membranes, ceramic membranes are
resistant to chemically aggressive feeds. In fact, ceramic membranes can be used with a
wide variety of organic solvents, without significant degradation [52].

For specific purification fields, such as filtering, extraction, desalination, crystallization,
and gas separation, functionalized ceramic membranes have become more attractive than
intrinsically hydrophilic ceramic membranes.

The surface characteristics of membranes directly influence their properties, such
as hydrophobicity, oleophobicity, adhesion, scaling behaviour, and surface charges. Due
to their abundance of hydroxyl groups (-OH), ceramic membranes exhibit hydrophilic
behaviour [82,83], making them unsuitable for MD. As a result, many strategies have been
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investigated for changing the membrane surface from hydrophilic to hydrophobic, includ-
ing fluorination, electrospun nanofibers, growth of silica gels, and nanostructuring [84].

Few studies have been conducted on ceramic membranes for MD. The first work was
realized in 2004 [85], in which the possibility of applying ceramic membranes to MD was
demonstrated by grafting the metal oxides Al2O3 and ZrO2 with fluoroalkylsilanes, which
were subsequently applied to DCMD.

To improve membrane ceramic performance, hydrophobic Al2O3 ceramic HFs for
VMD were developed [86]. Furthermore, the use of ceramic membranes in MCr was
demonstrated for the first time in 2018 [87].

4.3. Omniphobic Ceramic Membranes

Conventional hydrophobic membranes are susceptible to wetting by low- surface-
tension contaminants in the feed solution. The wetted membrane pores result in higher
mass transfer resistance to water vapour diffusion during MD. To overcome this problem,
omniphobic surfaces with re-entrant structures that are resistant to being wetted by low-
surface tension liquids can be fabricated.

Ceramic membranes have recently been prepared as substrates [88,89]. By depositing
nanostructures on ceramic membrane surfaces, surface roughness was increased, and a
re-entrant structure was created.

Chen et al. [90] prepared omniphobic alumina HF membranes by depositing ZnO
nanostructures on HF membranes through chemical bath deposition methods. In the
DCMD tests, the HF membranes deposited by ZnO nanoparticles showed greater wetting
resistance compared to the pristine HF membrane. This result suggests the promising use
of these membranes for the desalination of low-surface-tension wastewater.

4.4. New Materials
4.4.1. Graphene

Graphene-based nanomaterials such as graphene oxide (GO) and reduced graphene
oxide (rGO) offer new possibilities for MD membrane production. Due to their unique
features such as high hydrophobicity, high mechanical resistance, large surface area, and
high chemical stability, the use of graphene and its derivates in MD membranes allows for
achieving greater flow and strength, lower energy consumption, and enhanced antifouling
capabilities. In mixed matrix membrane fabrication, graphene-based nanomaterials can be
effectively used as a filler [91]. Recently, mixed matrix graphene oxide polysulphone (GO-
PSF) membranes were prepared with variable GO content using the wet phase inversion
method [92]. In DCMD experiments, the membrane containing 1.0 wt.% GO offered the
highest salt rejection (99.85%) with an average flux of 20.8 L m−2 h−1 [92] and a permeate
conductivity of 85.20 mS/cm [92]. In comparison with the pristine PSF membrane, the
GO/PSF membrane exhibits higher mechanical properties.

PVDF/GO and PVDF/3-(aminopropyl)triethoxysilane (APTS)-functionalized GO
mixed matrix membranes were prepared via the inversion phase method and used to
desalinate artificial seawater with AGMD [93]. As a result of adding GO and GO-APTS,
the permeate flux increased by 52% and 86%, respectively, compared to pure PVDF. The
best-performing membrane contained 0.3 wt.% GO-APTS (with respect to PVDF) and had
a flux of 6.2 LMH (L m−2 h−1) whilst maintaining perfect salt rejection (>99.9%) [93].

Reducing the membrane thickness is one of the key methods for increasing membrane
flux. Composite membranes provide this condition. A composite membrane usually con-
sists of a porous support and a permselective thin layer deposited on it. In MD applications,
the composite membrane should have at least one hydrophobic layer. Grafting (functional-
ization), coating, surface polymerization, and co-extrusion dry/wet jet spinning [52,94] are
some of the most common methods of fabricating composite membranes.

A PVDF-HFP/GO hollow fiber membrane was fabricated using the dry/wet jet
spinning method and functionalized with hydrophobic octadecyltrichlorosilane (ODS) for
desalination using DCMD [95]. The incorporation of GO in the membrane matrix induces
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the hierarchy roughness on the membrane surface and provides reactive hydroxyl sites for
further chemical modification. Desalination of Caspian Sea water (CSW) was conducted
using prepared membranes through DCMD. Modified membranes showed partial salt
precipitation and permeation flux reduction after 10 days [95].

The main disadvantage of graphene is its high thermal conductivity which limits its
use in MD applications. Gontarek et al. [96] investigated the effects of confinement of
multilayer graphene platelets in hydrophobic microporous polymeric membranes. Despite
the filler exhibits ultrahigh thermal conductivity, no thermal polarization was observed.
In contrast, improved wetting resistance and mechanical strength, represent the essential
requirements for MD applications.

The improvement of the flux-selectivity trade-off is considered one of the main chal-
lenges for membrane processes. Frappa et al. [97] proposed advanced PVDF membranes
incorporating few-layer graphene for water treatment by MD. The membranes were pre-
pared by the innovative wet-jet milling technique [98]. An increase of 99.7% in flux have
been observed for the PVDF membrane filled with few-layer graphene compared to the
virgin PVDF membrane [97]. Additionally, a comparison between membranes based on
PVDF enhanced with different fillers shows a significant enhancement of the productivity–
efficiency trade-off for PVDF membrane graphene-based produced via wet-jet milling
(Figure 5).
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4.4.2. Two-Dimensional Materials beyond Graphene

The exotic properties and atomic thickness of two-dimensional (2D) materials allowed
for the development of a new generation of membrane materials with extraordinarily
high permeabilities. MXenes [103], zeolites [31,104], and metal–organic framework [105]
nanosheets have emerged as promising 2D materials for high-performance membranes.
Two dimensional-material membranes, due to their well-defined transport channels and
ultra-low thickness offer an ultra-low resistance to mass transport. Specifically, 2D mem-
branes have been shown to perform exceptionally well in liquid and gas separation appli-
cations.

Recently, a dichalcogenide material (Bi2Te3) has been proposed for desalination of
water by MD, for the first time [106]. The authors demonstrated that the use of Bi2Te3 (exfo-
liated and included in PVDF membranes) increases the freshwater production, contrasting
the loose of conductive heat.

Scale-up of the 2D materials-based membranes is compromised by the limited available
exfoliation techniques. In recent times, an important patent has been deposited related
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the production of a nanocomposite membrane with 2D crystals obtained through the
exfoliation of layered materials by wet-jet milling technique [98].

4.5. Carbon Nanotubes

Due to their exceptional mechanical strength, chemical resistance, and thermal prop-
erties, carbon nanotubes (CNTs) have gained significant attention. The structure of CNTs
consists of an enrolled cylindrical graphitic sheet. The main features which make CNT
an emerging nanomaterial in water desalination are their large specific surface area, high
aspect ratio, ease of functionalization, high transport of water molecules, and the possibility
to change the water–membrane interaction favouring the preferential transport of vapours
through the pores [89,107–109]. Furthermore, CNT-based membranes exhibit outstanding
porosity and hydrophobicity, basic requisites for MD applications. CNTs used as fillers
have proven to significantly improve membrane performance in terms of strength, rejection,
and permeability. In 2010, the first evidence was provided regarding the potential of CNT
membranes for desalination by MD [110]. A significant increase in flow enhancement is
observed when CNTs-based membranes are used in MD applications.

The main disadvantages are related to the long-term operation, synthesis, processing
of CNTs, and scale-up approaches [111].

4.6. Hydrophilic/Hydrophobic Membranes

Hydrophilic-hydrophobic membranes can be used to enhance the flux in MD processes.
These composite membranes were patented in 1982 by Cheng and Wiersma as an alterna-
tive approach for desalination applications. They modified a cellulose acetate membrane
via radiation graft polymerization of styrene onto the membrane surface [112]. They also
modified a cellulose nitrate membrane via plasma polymerization of both vinyltrimethyl-
silicon/carbon tetrafluoride and octafluoro-cyclobutane [94].

Zuo et al. [113] developed a dual-layer hydrophilic-hydrophobic HF using polyether-
imide as the inner layer due to its good mechanical properties. As a result, the membrane
exhibited good mechanical strength and higher water flux in VMD.

Recently, crosslinked PVDF-based hydrophilic-hydrophobic dual-layer HF membranes
were fabricated for DCMD [114]. The water flux reached a value of 97.6 kg m−2 h−1 for
seawater desalination and the membrane showed stable DCMD performance [114].

5. Photothermal Membrane for Membrane Distillation

In order to provide high-quality freshwater, solar energy combined with MD can
be deemed a valid low-cost option [115–119]. Research on light-to-heat conversion in
nanomaterials has opened up unprecedented prospects for solar energy-based MD applica-
tions. Recently, it has been demonstrated that the integration of photothermal nanofillers
within membranes allows a significant reduction of thermal polarization, improving the
energy efficiency of the process. Specifically, it has been proved that thermoplasmon-
ics (the light-to-heat conversion associated with optically plasmonic excitations in metal
nanoparticles) facilitates water vapourisation at photothermal interfaces [120–122]. Many
classes of nanomaterials have emerged as potential candidates for converting light into
heat [115]. In particular, photothermal materials can be divided into four main groups:
metal nanostructures, semiconductors, carbon-based nanomaterials, and polymers.

Silver [123–125] and gold [126–128] are the most common photothermal materials due
to their tunable absorption properties and chemical stability. In a pioneering study on
photothermal VMD, Politano et al. [129] reported that Ag nanoparticles (NPs), immobilized
in PVDF membranes by NIPS, notably increase the feed temperature at the membrane
surface under UV light, so as to reduce temperature polaritation. An enhancement until
11-fold of the transmembrane flux was observed at the highest NP concentration. [129].

Other metallic (Cu [130], Al [131], Fe [131]) and bimetallic NPs (Fe–Au [132], Ag–
Au [133] and Pd–Au [134]) also exhibited interesting thermoplasmonic properties.
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Inorganic semiconductors, such as black TiOx [135], TiN [136], Cu2–yX (X = S, Se,
Te) [137], and MoS2 [138], have emerged as promising thermoplasmonic materials due to
their capability to tune plasmon surface responses via chemical doping and their flexibility
to post-synthetically tune the plasmon surface characteristics. For instance, TiN photother-
mal membranes were prepared using a TiN NP/PVA-doped solution, spray-coated onto a
hydrophobic PVDF membrane surface [136]. As a result of the absorption of broadband
light and the superior heat conversion properties of plasmonic TiN NPs, the TiN photother-
mal membrane showed a permeate flux of 1.01 L m−2 h−1, with a solar efficiency of 66.7%
under 1 sun in the photothermal DCMD process.

Graphene, GO, rGO, CNT, carbon black (CB), and carbonized natural products [139–143]
are also potential photothermal materials. In the same way as a black body, carbon-based
materials absorb light and convert it into heat. The advantages of these materials include
their low cost, their physico-chemical properties, and their environmental stability.

Evaporation method was employed to deposit CB NPs on a PVDF membrane and
its performance was compared with SiO2/Au anchored to the PVDF surface using poly-
dopamine as a binder [142]. In photothermal DCMD, CB-PVDF membranes showed a flux
of 0.5 kg m−2 h−1, a much higher value compared to SiO2/Au-PVDF membranes.

The possible use of polymers as photothermal materials was investigated for conju-
gated polymers including polyaniline (PANi) and polypyrrole (PPy) [144,145].

Recently, Peng et al. [146] reported a bio-inspired design of a photothermal membrane
for solar-drivenMD, which is composed of a vertically-aligned PANi nanofiber layer on
the surface of a PVDF microfiltration membrane. The photothermal membrane exhibited a
distillation flux of 1.09 kg m−2 h−1 and a corresponding solar energy-to-collected water
efficiency as high as 74.15% under one sun irradiation [146].

6. Conclusions and Outlook

Membrane distillation can provide new opportunities to design and optimize innova-
tive productions. Some of the most exciting developments concern the ability to integrate
new membrane devices with traditional membrane systems, with significant advantages
connected to a synergic integration between them.

Notwithstanding its high potential, the industrial-scale MD operativity has been to
date hindered by severe limitations associated with low thermal efficiency mainly due to
temperature polarization. In order to overcome the existing limits, it is necessary to carry
out an increasingly systematic analysis of the possible advantages or disadvantages con-
cerning the introduction of an innovative membrane system, an increasingly appropriate
choice of materials and operating conditions, as well as easier modelling for a facilitated
scale-up. Therefore, the preparation of new and specific membranes with high hydropho-
bicity and stability, with a narrow pore distribution and better morphological properties,
represents a crucial aspect to improve MD performances.

This review described the membrane materials and the most favourable membrane
characteristics for the MD processes. Because of their intrinsic hydrophobic characteris-
tics, ease of fabrication, and low cost, polymeric membranes are the most widely used in
MD applications. Recently, two-dimensional materials, CNTs, ceramic and photothermal
membranes have attracted much attention due to their unique properties that make them
potential candidates for MD applications. However, the development of advanced mem-
branes for MD applications is still in the early stages. Many efforts are still required to
make them fully suitable for MD processes.
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