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Abstract: Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the
risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of
schizophrenia. Here, we hypothesized that peripubertal ∆9-tetrahydrocannabinol (aTHC) may affect
the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure
in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group
(CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal
and cognitive impairment, as revealed by social interaction test and novel object recognition test,
respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1)
and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult
MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory
gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive
performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor
dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and
Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure
may depend on individual differences related to dopaminergic neurotransmission.

Keywords: ∆9-tetrahydrocannabinol; methylazoxymethanol acetate; dopamine D2/D3 receptors;
psychopathology

1. Introduction

It is well accepted that exposure of the immature brain to several insults (such as pre-
natal infection, drugs of abuse, environmental pollutants, etc.) combined with genetic risk
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factors could lead to aberrant neurodevelopment, emerging psychopathology in adulthood
including schizophrenia (SCZ), autism or obsessive–compulsive disorders [1–5]. Cannabis
is the most common illicit drug used during pregnancy in Western countries, and its use
is constantly increased in recent decades, irrespective of its detrimental health effects,
which have long been documented [6]. Brain development begins in utero and extends
through late adolescence [7], when it undergoes remodeling in the form of synaptic prun-
ing, myelinization, and changes in neurotransmitter systems [8–10]. Indeed, prenatal age
and adolescence are both crucial periods when exposure to drug abuse affects the central
nervous system (CNS) development, leading to cognitive, emotional, and social alterations
in adulthood, which are common hallmarks of psychopathology [11]. This is the corner-
stone of the two-hit hypothesis of SCZ, stating that genetic and/or environmental factors
might alter early CNS development producing long-term vulnerability to a “second hit”
which would lead to the onset of SCZ symptoms. Therefore, gestational and/or adolescent
exposure to ∆9-tetrahydrocannabinol (THC), the main psychoactive component of Cannabis
sativa, might alter the normal activity of the endocannabinoid system (ECS) due to its high
affinity for the cannabinoid CB1 receptor (Cnr1) gene [12,13], the overstimulation of which
contribute to dysregulate the neurodevelopmental processes leading to neuroanatomical
and functional alterations during neurogenesis [6,14]. A functional interaction between
the dopaminergic (DAergic) system and the ECS due to the coexpression of Cnr1 and
dopamine D2 receptors (Drd2) genes [15] and to their signal transduction convergence [16]
has been suggested both at the level of the prefrontal cortex (PFC) and in several limbic
structures as possible neuroanatomical loci for neurodevelopmental disorders [11]. Thus, it
appears to be likely that altered DAergic neurotransmission at the PFC level may also play
a role in the long-lasting detrimental effects induced by perinatal insult per se or combined
with peripubertal THC (aTHC) exposure. However, whether the potential effects of aTHC
exposure as a “second hit” may be specifically related to the kind of pre/perinatal insult as
a “first hit” is still debated.

Based on this background, the present study aimed to investigate if aTHC expo-
sure could modify the effects of pre/perinatal insult induced by gestational methyla-
zoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure, two well-validated
neurodevelopmental models of psychopathology [13,17,18], which are characterized by
behavioral and molecular alterations similar to those described in subjects with neurodevel-
opmental disorders, further supporting their translational value [13,19]. More specifically,
in adulthood, we assessed whether the cognitive deficits and social impairment typically
described in the pTHC and MAM offspring and usually paralleled by changes in the ECS
and/or DAergic system at the PFC level [13,17], might be modified by aTHC exposure
(Figure 1).
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Figure 1. Timeline and experimental design used to investigate the effects of peripubertal THC 
(aTHC) exposure in two neurodevelopmental models of psychopathology. MAM model: pregnant 
rats were intraperitoneally (i.p.) treated with methylazoxymethanol (MAM) acetate (22 mg/kg) or 
saline (CNT: 1 mL/kg) on gestational day (GD) 17. From postnatal day (PND) 19 to PND 39, resulting 
male offspring were i.p. treated twice/day with increasing doses of THC (aTHC) or respective 
vehicle (aVEH). Behavioral tests (open field test, novel object recognition test and social interaction 
test) were conducted in adulthood from PND 100. After completion, the neurochemical analyses 
(quantitative real-time PCR and DNA methylation by pyrosequencing) were performed in the 
prefrontal cortex of rats. THC model: Pregnant rats were treated with THC (pTHC, 5 mg/kg/day; 
per os) or vehicle (CNT; 1 mL/kg/day; per os) from gestational day (GD) 15 to postnatal day (PND) 
9. From PND 19 to PND 39, the resulting male offspring were i.p. treated twice/day with increasing 
doses of THC (aTHC) or respective vehicle (aVEH). Behavioral tests (open field test, novel object 
recognition test and social interaction test) were conducted in adulthood from PND 100. After 
completion, the neurochemical analyses (quantitative real-time PCR and DNA methylation by 
pyrosequencing) were performed in the prefrontal cortex of rats. 

2. Results 
2.1. Peripubertal THC Exposure in Prenatally MAM-Exposed Rats 
2.1.1. Behavioral Effects 

Prenatal MAM exposure alone or combined with aTHC treatment did not affect the 
spontaneous horizontal [number of crossings, factor MAM: F(1,45) = 3.379, p = 0.0727; 
factor aTHC: F(1,45) = 0.4158, p = 0.5223; MAM × aTHC interaction: F(1,45) = 0.4142, p = 
0.5231] or vertical [number of rearings, factor MAM: F(1,45) = 2.657, p = 0.1101; factor 
aTHC: F(1,45) = 0.07309, p = 0.7881; and MAM × aTHC interaction: F(1,45) = 0.1337, p = 
0.7163] locomotor activity in a novel environment (Figure 2A,B). 

As shown in Figure 2C,D, prenatal MAM exposure impaired the social activity of 
adult offspring as revealed by the reduced time of interaction [p < 0.01 vs. CNT/aVEH 
group; two-way ANOVA, factor MAM: F(1,22) = 4.1999, p = 0.0526; factor aTHC: F(1,22) = 
14.56, p = 0.0009; and factor MAM × aTHC interaction: F(1,22) = 8.410, p = 0.0083]. aTHC 
exposure alone or combined with prenatal MAM exposure affected social behavior as 
compared to CNT/aVEH group (p < 0.001; p < 0.01). No difference was detected in the 
number of interactions among the groups as an index of locomotor activity [two-way 
ANOVA, factor MAM: F(1,22) = 0.4513, p = 0.5087; factor aTHC: F(1,22) = 11.18, p = 0.0029; 
factor MAM × aTHC interaction: F(1,22) = 0.05968, p = 0.8093]. As depicted in Figure 2E, 
prenatal MAM exposure impaired the cognitive performance of adult rats, as described 
by reduced discrimination index in the novel object recognition test [two-way ANOVA, 
factor MAM: F(1,42) = 7.598, p = 0.0086; factor aTHC: F(1,42) = 1.261, p = 0.2679; factor 

Figure 1. Timeline and experimental design used to investigate the effects of peripubertal THC
(aTHC) exposure in two neurodevelopmental models of psychopathology. MAM model: pregnant
rats were intraperitoneally (i.p.) treated with methylazoxymethanol (MAM) acetate (22 mg/kg) or
saline (CNT: 1 mL/kg) on gestational day (GD) 17. From postnatal day (PND) 19 to PND 39, resulting
male offspring were i.p. treated twice/day with increasing doses of THC (aTHC) or respective vehicle
(aVEH). Behavioral tests (open field test, novel object recognition test and social interaction test) were
conducted in adulthood from PND 100. After completion, the neurochemical analyses (quantitative
real-time PCR and DNA methylation by pyrosequencing) were performed in the prefrontal cortex
of rats. THC model: Pregnant rats were treated with THC (pTHC, 5 mg/kg/day; per os) or vehicle
(CNT; 1 mL/kg/day; per os) from gestational day (GD) 15 to postnatal day (PND) 9. From PND
19 to PND 39, the resulting male offspring were i.p. treated twice/day with increasing doses of
THC (aTHC) or respective vehicle (aVEH). Behavioral tests (open field test, novel object recognition
test and social interaction test) were conducted in adulthood from PND 100. After completion, the
neurochemical analyses (quantitative real-time PCR and DNA methylation by pyrosequencing) were
performed in the prefrontal cortex of rats.

2. Results
2.1. Peripubertal THC Exposure in Prenatally MAM-Exposed Rats
2.1.1. Behavioral Effects

Prenatal MAM exposure alone or combined with aTHC treatment did not affect the
spontaneous horizontal [number of crossings, factor MAM: F(1,45) = 3.379, p = 0.0727; factor
aTHC: F(1,45) = 0.4158, p = 0.5223; MAM × aTHC interaction: F(1,45) = 0.4142, p = 0.5231]
or vertical [number of rearings, factor MAM: F(1,45) = 2.657, p = 0.1101; factor aTHC:
F(1,45) = 0.07309, p = 0.7881; and MAM × aTHC interaction: F(1,45) = 0.1337, p = 0.7163]
locomotor activity in a novel environment (Figure 2A,B).

As shown in Figure 2C,D, prenatal MAM exposure impaired the social activity of
adult offspring as revealed by the reduced time of interaction [p < 0.01 vs. CNT/aVEH
group; two-way ANOVA, factor MAM: F(1,22) = 4.1999, p = 0.0526; factor aTHC: F(1,22)
= 14.56, p = 0.0009; and factor MAM × aTHC interaction: F(1,22) = 8.410, p = 0.0083].
aTHC exposure alone or combined with prenatal MAM exposure affected social behavior
as compared to CNT/aVEH group (p < 0.001; p < 0.01). No difference was detected in
the number of interactions among the groups as an index of locomotor activity [two-
way ANOVA, factor MAM: F(1,22) = 0.4513, p = 0.5087; factor aTHC: F(1,22) = 11.18,
p = 0.0029; factor MAM × aTHC interaction: F(1,22) = 0.05968, p = 0.8093]. As depicted in
Figure 2E, prenatal MAM exposure impaired the cognitive performance of adult rats, as
described by reduced discrimination index in the novel object recognition test [two-way
ANOVA, factor MAM: F(1,42) = 7.598, p = 0.0086; factor aTHC: F(1,42) = 1.261, p = 0.2679;
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factor MAM × aTHC interaction: F(1,42) = 14.17, p = 0.0005] as compared to CNT/aVEH
group (p < 0.001). aTHC treatment reversed the cognitive deficit in MAM rats (p < 0.01 vs.
MAM/aVEH), while it did not significantly affect the cognitive performance of CNT/aTHC
(p > 0.05 vs. CNT/aVEH).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 15 
 

 

MAM × aTHC interaction: F(1,42) = 14.17, p = 0.0005] as compared to CNT/aVEH group (p 
< 0.001). aTHC treatment reversed the cognitive deficit in MAM rats (p < 0.01 vs. 
MAM/aVEH), while it did not significantly affect the cognitive performance of 
CNT/aTHC (p > 0.05 vs. CNT/aVEH). 

 
Figure 2. Effects of peripubertal treatment with THC (aTHC) on the behavioral phenotype of 
prenatally MAM-exposed rats in the open field test (A: number of crossings; B: number of rearings), 
in the social interaction test (C: time of interaction; D: number of interactions) and in the novel object 
recognition test (E: discrimination index) in adulthood. Data are presented as means ± S.E.M. (n = 
5–14 rats/group). ** p < 0.01 and *** p < 0.001 vs. CNT/aVEH; ## p < 0.01 vs. MAM/aVEH, Tukey’s 
post hoc test. 

2.1.2. Molecular Effects 
Consistent with the increase in CB1 mRNA receptor expression [p < 0.05 vs. 

CNT/aVEH, t-test; two-way ANOVA, factor MAM: F(1,17) = 24.63 p = 0.0001; factor aTHC: 
F(1,17) = 0.4591 p = 0.5072; and factor MAM × aTHC interaction: F(1,17) = 0.2076, p = 0.6544, 
Figure 3B], we observed a significant reduction in DNA methylation of the CB1 (Cnr1) 
gene regulatory region in the four CpG average investigated in the PFC of MAM/aVEH 
group [p < 0.001 vs. CNT/aVEH; two-way ANOVA, factor MAM: F(1,17) = 31.10, p < 0.001; 
factor aTHC: F(1,17) = 37.90, p < 0.001; and factor MAM × aTHC interaction: F(1,17) = 19.68, 
p < 0.001, Figure 3A). Interestingly, in prenatally MAM-exposed rats, aTHC exposure 
reversed the DNA methylation of the CB1 (Cnr1) gene regulatory region (p < 0.001 vs. 
MAM/aVEH), but not the CB1 mRNA expression (p > 0.05 vs. MAM/aVEH). Prenatal 
MAM exposure also significantly upregulated the mRNA expression of dopamine D2 
receptor in the PFC of adult rats [two-way ANOVA, MAM effect: F(1,15) = 7.950 p = 0.0129; 
aTHC effect: F(1,15) = 5.656 p = 0.0311; and MAM × aTHC interaction: F(1,15) = 11.18, p = 
0.0044) as compared to CNT/aVEH group (p < 0.01), which was reversed by aTHC (p < 
0.01, Figure 3D). Neither the prenatal MAM exposure nor the aTHC treatment affected 
the DNA methylation of the D2 (Drd2) gene regulatory region in the average of the six 
CpG sites investigated in the PFC of adult rats [two-way ANOVA, MAM effect: F(1,12) = 
2.463 p = 0.1425; aTHC effect: F(1,12) = 1.709 p = 0.2156; MAM × aTHC interaction: F(1,12) 
= 0.6917, p = 0.4218, Figure 3C]. A significant inverse correlation between gene expression 
and discrimination index was observed for Drd2 (Spearman r = −0.6978, p = 0.0101; Figure 
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Figure 2. Effects of peripubertal treatment with THC (aTHC) on the behavioral phenotype of
prenatally MAM-exposed rats in the open field test ((A): number of crossings; (B): number of
rearings), in the social interaction test ((C): time of interaction; (D): number of interactions) and in
the novel object recognition test ((E): discrimination index) in adulthood. Data are presented as
means ± S.E.M. (n = 5–14 rats/group). ** p < 0.01 and *** p < 0.001 vs. CNT/aVEH; ## p < 0.01 vs.
MAM/aVEH, Tukey’s post hoc test.

2.1.2. Molecular Effects

Consistent with the increase in CB1 mRNA receptor expression [p < 0.05 vs. CNT/aVEH,
t-test; two-way ANOVA, factor MAM: F(1,17) = 24.63, p = 0.0001; factor aTHC: F(1,17) = 0.4591,
p = 0.5072; and factor MAM × aTHC interaction: F(1,17) = 0.2076, p = 0.6544, Figure 3B],
we observed a significant reduction in DNA methylation of the CB1 (Cnr1) gene regulatory
region in the four CpG average investigated in the PFC of MAM/aVEH group [p < 0.001
vs. CNT/aVEH; two-way ANOVA, factor MAM: F(1,17) = 31.10, p < 0.001; factor aTHC:
F(1,17) = 37.90, p < 0.001; and factor MAM × aTHC interaction: F(1,17) = 19.68, p < 0.001,
Figure 3A). Interestingly, in prenatally MAM-exposed rats, aTHC exposure reversed the
DNA methylation of the CB1 (Cnr1) gene regulatory region (p < 0.001 vs. MAM/aVEH), but
not the CB1 mRNA expression (p > 0.05 vs. MAM/aVEH). Prenatal MAM exposure also sig-
nificantly upregulated the mRNA expression of dopamine D2 receptor in the PFC of adult
rats [two-way ANOVA, MAM effect: F(1,15) = 7.950, p = 0.0129; aTHC effect: F(1,15) = 5.656,
p = 0.0311; and MAM × aTHC interaction: F(1,15) = 11.18, p = 0.0044) as compared to
CNT/aVEH group (p < 0.01), which was reversed by aTHC (p < 0.01, Figure 3D). Neither
the prenatal MAM exposure nor the aTHC treatment affected the DNA methylation of
the D2 (Drd2) gene regulatory region in the average of the six CpG sites investigated in
the PFC of adult rats [two-way ANOVA, MAM effect: F(1,12) = 2.463, p = 0.1425; aTHC
effect: F(1,12) = 1.709, p = 0.2156; MAM × aTHC interaction: F(1,12) = 0.6917, p = 0.4218,
Figure 3C]. A significant inverse correlation between gene expression and discrimination
index was observed for Drd2 (Spearman r = −0.6978, p = 0.0101; Figure S1A) but not for
Cnr1 (Spearman r = −0.1403, p = 0.6460; Figure S1B). As depicted in Figure 3E, MAM insult
increased the mRNA expression of dopamine D3 receptor in the PFC of adult rats [two-way
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ANOVA, MAM effect: F(1,16) = 5.871, p = 0.0281; aTHC effect: F(1,16) = 10.13, p = 0.0058;
and MAM × aTHC interaction: F(1,16) = 4.557, p = 0.0486] as compared to CNT/aVEH
group (p < 0.05), which was reversed by aTHC treatment (p < 0.01). aTHC failed to modify
the dopamine D3 receptor expression in the CNT group (p > 0.05 vs. CNT/aVEH).
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Figure 3. Effects of peripubertal treatment with THC (aTHC) on cannabinoid CB1 (Cnr1), dopamine
D2 (Drd2) and D3 (Drd3) receptor genes in the prefrontal cortex of prenatally MAM-exposed rats
in adulthood. Data are presented as means ± S.E.M. (n = 3–6 rats/group) of (A) DNA methylation
of Cnr1 gene (average 4 CpG sites), (B) Cnr1 mRNA expression, (C) DNA methylation of Drd2
gene (average 6 CpG sites), (D) Drd2 mRNA expression and (E) Drd3 mRNA expression. * p < 0.05,
** p < 0.01 and *** p < 0.001 vs. CNT/aVEH; ## p < 0.01 and ### p < 0.001 vs. MAM/aVEH, Tukey’s
post hoc test; $ p < 0.05, unpaired-t test.

2.2. Peripubertal THC Exposure in Perinatally THC-Exposed Rats
2.2.1. Behavioral Effects

Neither pTHC exposure nor aTHC treatment affected the spontaneous horizontal
[number of crossings, two-way ANOVA, factor pTHC: F(1,38) = 0.1466, p = 0.7039; factor
aTHC: F(1,38) = 0.03608, p = 0.5517; and pTHC × aTHC interaction: F(1,38) = 0.9920,
p = 0.3255] or vertical [number of rearings, two-way ANOVA, factor pTHC: F(1,38) = 1.315,
p = 0.2587; factor aTHC: F(1,38) = 0.6133, p = 0.4384; and pTHC × aTHC interaction:
F(1,38) = 0.3950, p = 0.5334] locomotor activity in a novel environment (Figure 4A,B). The
effect of aTHC treatment alone or combined with pTHC on behavioral performance in the
social interaction test is shown in Figure 4C,D. Two-way ANOVA revealed for the time
of interaction a main effect of pTHC [F(1,22) = 9.039, p = 0.0065], a main effect of aTHC
[F(1,22) = 21.34, p = 0.0001), and a significant pTHC × aTHC interaction [F(1,22) = 8.989,
p = 0.0066]. Post hoc analysis revealed that the pTHC/aVEH group spent less time in social
interaction as compared to CNT/aVEH rats (p < 0.001), indicating impaired social behavior.
aTHC affected the social performance in CNT/aTHC group (p < 0.001 vs. CNT/aVEH),
but it did not modify it in the pTHC/aTHC group (p < 0.001 vs. CNT/aVEH). Neither
pTHC exposure [F(1,22) = 0.6265, p = 0.4371] nor aTHC [F(1,22) = 4.258, p = 0.0511] affected
the number of interactions [pTHC × aTHC interaction: F(1,22) = 0.02005, p = 0.8887], as
an index of locomotor activity. In rats tested in the novel object recognition test, two-
way ANOVA revealed a main effect of pTHC [F(1, 35) = 6.207, p = 0.0176), a significant
pTHC × aTHC interaction [F(1,35) = 4.240, p = 0.0470], but not a main effect of aTHC
[F(1, 35) = 3.142, p = 0.0850] for the discrimination index. Post hoc analysis revealed that
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pTHC exposure affected the recognition memory as described by the significant reduction
in the discrimination index during the test phase (p < 0.05 vs. CNT/aVEH), which was not
modified by aTHC treatment (p < 0.05 vs. CNT/aVEH). Furthermore, in the CNT group,
aTHC did not significantly affect the cognitive performance of rats (p > 0.05 vs. CNT/aVEH;
Figure 4E).
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Figure 4. Effects of peripubertal treatment with THC (aTHC) on the behavioral phenotype of
perinatally THC-exposed (pTHC) rats in the open field test ((A): number of crossings; (B): number
of rearings), in the social interaction test ((C): time of interaction; (D): number of interactions) and
in the novel object recognition test ((E): discrimination index) in adulthood. Data are presented as
means ± S.E.M. (n = 5–13 rats/group). * p < 0.05 and *** p < 0.001 vs. CNT/aVEH, Tukey’s post hoc
test.

2.2.2. Molecular Effects

Neither the pTHC exposure nor the aTHC treatment affected the DNA methylation of
the CB1 (Cnr1) gene regulatory region in the average of the four CpG sites investigated in the
PFC of adult rats [two-way ANOVA, pTHC effect: F(1,15) = 0.09692, p = 0.7598; aTHC effect:
F(1,15) = 3.180, p = 0.0948; and pTHC × aTHC interaction F(1,15) = 0.003071, p = 0.9565;
Figure 5A]. In the PFC of pTHC-exposed rats, there was a significant CB1 mRNA up-
regulation [p < 0.01, vs. CNT/aVEH; two-way ANOVA, factor pTHC: F(1,15) = 6.901;
p = 0.0190; factor aTHC: F(1,15) = 14.92, p = 0.0015; and pTHC × aTHC interaction:
F(1,15) = 5.442, p = 0.0340] which was reversed by aTHC (p < 0.01). In the CNT group,
the peripubertal exposure to THC did not modify CB1 mRNA expression (p > 0.05 vs.
CNT/aVEH; Figure 5B).

The effect of aTHC exposure alone or combined with pTHC on mRNA expression
of dopamine D2 receptors in PFC is depicted in Figure 5D. Two-way ANOVA revealed
a significant pTHC × aTHC interaction [F(1,16) = 6.606, p = 0.0205], but neither a main
effect of pTHC [F(1,16) = 3.848, p = 0.0674] nor a main effect of aTHC [F(1,16) = 0.8581,
p = 0.3680]. Post hoc analysis revealed that pTHC exposure increased the dopamine D2
mRNA expression (p < 0.05 vs. CNT/aVEH), which was not significantly modified by aTHC
(p > 0.05 vs. pTHC/aVEH). Furthermore, in the CNT group, aTHC did not significantly
affect the D2 mRNA expression (p > 0.05 vs. CNT/aVEH). The pTHC exposure reduced
the DNA methylation of the D2 (Drd2) gene regulatory region in the average of the six
CpG sites investigated in the PFC of adult rats (p < 0.001 vs. CNT/aVEH, t-test), which
was further reduced by aTHC (p < 0.01 vs. pTHC/aVEH, t-test). In the CNT group, aTHC
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did not significantly affect the DNA methylation of the D2 (Drd2) gene regulatory region
[p > 0.05 vs. CNT/aVEH; two-way ANOVA, pTHC effect: F(1,13) = 28.09, p = 0.0001;
aTHC effect: F(1,13) = 18.05, p = 0.0009; and pTHC × aTHC interaction: F(1,13) = 0.09454,
p = 0.7634; Figure 5C). pTHC alone or combined with aTHC exposure failed to affect the
mRNA expression of dopamine D3 receptor in the PFC of adult rats [two-way ANOVA,
pTHC effect: F(1,16) = 4.268, p = 0.0554; aTHC effect: F(1,16) = 7.086, p = 0.0170; and
pTHC × aTHC interaction: F(1,16) = 0.3213, p = 0.5787; Figure 5E].
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Figure 5. Effects of peripubertal treatment with THC (aTHC) on cannabinoid CB1 (Cnr1), dopamine
D2 (Drd2), and D3 (Drd3) receptor genes in the prefrontal cortex of perinatally THC (pTHC)-exposed
rats in adulthood. Data are presented as means± S.E.M. (n = 3–8 rats/group) of (A) DNA methylation
of Cnr1 gene (average 4 CpG sites), (B) Cnr1 mRNA expression, (C) DNA methylation of Drd2 gene
(average 6 CpG sites), (D) Drd2 mRNA expression and (E) Drd3 mRNA expression. * p < 0.05 and
** p < 0.01 vs. CNT/aVEH; ## p < 0.01 vs. pTHC/aVEH, Tukey’s post hoc test; $$ p < 0.01 and
$$$ p < 0.001, unpaired-t test.

3. Discussion

The findings of the present study confirm that pre/perinatal insult in rats evoked by
maternal MAM or THC exposure causes harmful effects in offspring, namely (a) SCZ-like
phenotype, (b) altered DAergic and/or cannabinoid neurotransmission, in a manner similar
to that previously described both in preclinical studies and in SCZ subjects, thus further sup-
porting the translational value of these two models of psychopathology [13,14,19–22]. More
specifically, MAM or pTHC adult rats showed social and cognitive deficits, as described by
the reduced time of interaction (as an index of social withdrawal) in the social interaction
test and impaired short-term recognition memory in the novel object recognition test, which
are often considered to be SCZ-like symptoms [11,23]. Furthermore, no difference was
found in the number of interactions, as well as no spontaneous locomotor hyperactivity was
described, in agreement with previous results [14]. The locomotor performance paradigms
served as an internal control for possible unspecific stimulant effects; thus, our study
reinforces the original findings that cognitive impairment in the novel object recognition
test and social deficit in the social interaction test are robust phenotypes in pTHC or MAM
rats, as valuable models of neurodevelopmental disorders.

MAM or pTHC exposure also induced alterations in the transcriptional regulation of
the genes encoding for cannabinoid CB1 (Cnr1), dopamine D2 (Drd2) or D3 (Drd3) receptors
at the level of PFC of adult rats, further confirming the hypothesis of DA–cannabinoid
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interaction as a molecular substrate of neurodevelopmental disorders [24]. However,
MAM or pTHC exposure differentially affected the DNA methylation at Cnr1 or Drd2
gene regulatory regions, which were not always followed by significant alterations in gene
expression. Thus, these findings suggest that alterations in dopamine D2 and cannabinoid
CB1 mRNA levels evoked by pre/perinatal insults, which seem to be involved in the
altered phenotype of adult rats, might also be regulated by other mechanisms at epigenetic
levels, such as histone modifications, or most likely at post-transcriptional levels, e.g., via
microRNAs [25]. Further investigations are indeed warranted to clarify these issues. We
also observed a significant correlation between Drd2, but not Cnr1 receptor gene expression
and cognitive impairment in MAM rats in agreement with the hypothesis that altered
DAergic neurotransmission at the PFC level may play a role in the cognitive deficits of
SCZ as a neurodevelopmental disorder [26]. We cannot exclude that the hippocampus
may also play a role in the cognitive performance of MAM or pTHC rats, since it is
becoming increasingly clear that neurodevelopmental disorders are not only due to a
circumscribed deficit in the PFC and/or hippocampus, but also represent a distributed
impairment involving hippocampal–PFC connectivity [27]. However, in post-mortem
studies, contradictory results have been found since decreased [23,28–30], increased [31],
or unchanged [30,32] cannabinoid CB1 and/or dopamine D2 receptor brain expression has
been detected. Conflicting data may be due to differences in patient symptom severity,
amount of THC exposure, co-pharmacological treatments, or diagnostic methods in studies.

In addition to the well-documented detrimental effects of perinatal THC exposure,
Cannabis use during adolescence is often associated with an increased risk of develop-
ing neuropsychiatric disorders in later life, due to changes at the level of GABAergic,
glutamatergic, serotonergic, DAergic neurotransmission, and/or endocannabinoid signal-
ing [6,33]. Evidence from animal studies consistently indicates that adolescent treatment
with cannabinoid agonists induces lasting behavioral and molecular changes in adulthood,
mimicking psychopathology [14]. In our experimental conditions, aTHC exposure signifi-
cantly affected social activity, while it failed to induce a significant cognitive impairment in
adult rats, partially in line with previous observations [6,14]. These discrepancies may be
due to several factors, such as heterogeneity in Cannabis types (phytocannabinoid “THC”
vs. synthetic cannabinoids “HU-210”, “CP-55940”, “WIN55,212-2”), doses, and timing of
treatment (peripubertal vs. postpubertal), as well as to gender difference and to different
cognitive tasks. At the PFC level, neither the cannabinoid CB1 nor the dopamine D2/D3
receptor gene expression was affected, suggesting that aTHC exposure may lead to so-
cial withdrawal by the involvement of different neurotransmitter systems, as previously
suggested [14,33].

Based on the two-hit hypothesis, it has been suggested that SCZ, as a neurodevel-
opmental disorder, may be related to the combination of early prenatal and, likely en-
vironmental, postnatal insult. Consistently, combining exposure to prenatal insults and
peripubertal stress in rodents may induce synergistic detrimental effects in adulthood [34].
Indeed, Cannabis exposure during adolescence which, per se, seems to be associated with
an increased risk of developing psychopathology in adulthood [14], may induce more
pronounced behavioral and molecular alterations in pre/perinatal stressed rodents. In
pTHC rats, aTHC exposure did not further impair the social and cognitive deficits induced
by pTHC exposure, suggesting that pTHC exposure at the dose of 5 mg/kg may induce
strong detrimental effects, which cannot be further exacerbated by aTHC insult. At the
molecular level, aTHC exposure significantly reversed the cannabinoid CB1 but not the
dopamine D2 mRNA receptor overexpression induced by pTHC, suggesting a different
impact of aTHC exposure on cannabinoid/DAergic system alteration induced by pTHC.
Interestingly, aTHC exposure further reduced the dopamine D2 DNA methylation in pTHC,
suggesting that THC exposure in adolescence may differentially impact epigenetic marks
based on prenatal insult. As also mentioned above, we cannot exclude that another epige-
netic mechanism, such as histone modifications and/or microRNAs, may also be involved
in the effects elicited by aTHC exposure [25]. Overall, these findings indicate that aTHC
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exposure seems to solely revert the cannabinoid CB1 gene overexpression in the PFC of
pTHC rats, whose reduction, in turn, does not impact the behavioral performances of
pTHC/aTHC rats. Similarly, in MAM offspring, aTHC insult did not induce additive or
synergistic detrimental effects at the level of social behavior. Although it may reflect a
ceiling effect, the social withdrawal elicited by the aTHC exposure may be related to the
involvement of different neurotransmitter systems, as recently suggested [14,25].

Contrary to our expectation, aTHC exposure improved the cognitive deficit of MAM
rats in the novel object recognition test. How aTHC might reverse the cognitive impairment
remains to be fully clarified. Based on the molecular findings, we assume that it may
be due to the reduced dopamine D2/D3 receptor mRNA overexpression in the PFC of
MAM rats, in agreement with previous studies showing that altered dopamine D2/D3
receptor expression may be involved in the cognitive deficits of neurodevelopmental
disorders [13,21]. Notably, contrary to the pTHC model, aTHC did not revert the CB1
overexpression; thus, we could just speculate that in the neurodevelopmental MAM model,
a pivotal role in the better cognitive performance induced by aTHC may be related to the
changes in dopamine D2/D3 receptors more than the cannabinoid CB1 receptors. Further
studies should clarify the involvement of different DAergic neurotransmission elements,
such as dopamine D1-like receptors or dopamine transporter, both in the altered phenotype
induced by pre/perinatal insults and in response to adolescent Cannabis exposure. To
the best of our knowledge, this is the first study carried out in the MAM model of SCZ
with peripubertal exposure to phytocannabinoid THC and not synthetic cannabinoids [35].
Specifically, adolescent exposure to the synthetic cannabinoid WIN55,212-2 attenuated
the enhanced locomotor response to amphetamine in MAM rats, without impacting DA
neuron activity at the level of the ventral tegmental area [35]. On the other hand, Aguilar
et al., 2018 [36] showed that adolescent exposure to synthetic cannabinoids such as the CB1
agonist WIN55,212-2 or the FAAH inhibitor URB597 significantly increased the proportion
of susceptible rats that developed an SCZ-like hyper-DAergic phenotype. Interestingly,
our results are also in agreement with Lecca et al. (2019) [37], showing that adolescent
THC intake attenuates the disruption of DAergic signaling in prenatal Poly I:C-exposed
rats, a well-validated neurodevelopmental model of SCZ based on maternal immune acti-
vation [11]. The discrepancies with our results may be due to the different experimental
designs, such as the pharmacology of the cannabinoids used (phytocannabinoid vs. syn-
thetic; full vs. partial agonist; direct vs. indirect agonist), the adolescent cannabinoid
protocol treatment (11 vs. 25 days), the generation of MAM offspring (first vs. second), and
the brain region (PFC vs. ventral tegmental area).

In conclusion, our data confirm that different gestational insults such as MAM or
THC exposure may lead at least to alteration of the DAergic (in terms of dopamine D2/D3
receptor expression) and endocannabinoid signaling (through the cannabinoid CB1 receptor
altered expression), similarly to the changes previously described in SCZ subjects [13,19],
further supporting the translational value of gestational MAM or pTHC exposure as
neurodevelopmental animal models (Table 1). Although we just limited our study to assess
the cannabinoid CB1 and dopamine D2/D3 receptor, we cannot exclude that the altered
phenotype of MAM or pTHC rats, as neurodevelopmental animal models, may also be
due to neuroimmune dysfunctions, as previously suggested [2–5]. On the contrary, the
impact of aTHC exposure per se or combined with pre/perinatal insults is more complex
than expected, and the combination of gestational and postnatal insults, as the main
mechanism of the two-hit hypothesis of SCZ [34], needs to be further assessed. In this
scenario, behavioral tasks for evaluating different cognitive and social aspects, as well as
molecular analysis for assessing further potential neurochemical anomalies (i.e., immune
cell dysfunction), should be helpful to better understand the effects of pre/perinatal insult
alone or combined with postnatal insult.
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Table 1. Summary of the behavioral and molecular effects of peripubertal treatment with THC (aTHC)
or vehicle (aVEH) in MAM or perinatally THC (pTHC)-exposed rats in adulthood.

Experimental
Groups

Behavioral Effects Molecular Effects (PFC)

OFT SI NOR CB1 Gene CB1 Meth D2 Gene D2 Meth D3 Gene

CNT + aVEH ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
MAM + aVEH ↔ ↓ ↓ ↑ ↓ ↑ ↔ ↑
MAM + aTHC ↔ ↓ ↑ ↔ ↑ ↓ ↔ ↓
CNT + aTHC ↔ ↓ ↔ ↔ ↔ ↔ ↔ ↔

pTHC + aVEH ↔ ↓ ↓ ↑ ↔ ↑ ↓ ↔
pTHC + aTHC ↔ ↓ ↓ ↓ ↔ ↔ ↓ ↔

↑, increase; ↓, decrease;↔, no change.

4. Materials and Methods
4.1. Animals

Pregnant Sprague Dawley rats were obtained from Charles River (Germany) at gesta-
tional day (GD) 13 and housed individually. Environmental conditions during the whole
study were constant: relative humidity 50–60%, temperature 23 ◦C ± 1 ◦C, normal 12 h
light–dark cycle (light on 7 a.m. to 7 p.m.). Food and water were available ad libitum.
All procedures were performed in accordance with EU Directive No. 2010/63/EU and
approved by the Animal Care Committee of the Faculty of Medicine, Masaryk University,
Czech Republic, and the Czech Governmental Animal Care Committee, in compliance with
Czech Animal Protection Act No. 246/1992.

4.2. Drugs and Experimental Design

Methylazoxymethanol acetate (MAM; Midwest Research Institute, Kansas City, MO,
USA) was dissolved in saline and administered intraperitoneally (i.p.) at dose of 22 mg/kg
in 1 mL/kg volume on GD 17 with saline solution as a control (CNT), as previously
described [17,18,38–41] (Figure 1, MAM model. THC (10 mg/mL in ethanol solution)
obtained from the University of Chemistry and Technology, Prague, was prepared as
previously described [42,43] (Figure 1, THC model). For perinatal administration, pregnant
rats received daily oral gavage of THC (pTHC, 5 mg/kg/day) or sesame oil in control group
(CNT) from GD 15 to postnatal day (PND) 9 [13]. The administered dose is equivalent to
the current estimates of moderate exposure to THC in humans, correcting for differences
in the route of administration and the body surface area [44]. No cross-fostering was
used; the mothers were regularly weighed, and no differences in the body weight gains
were observed among THC, MAM, or CNT-treated dams. The offspring were weaned
on PND 22 and housed in groups of 2–3. For the peripubertal administration, THC was
dissolved in vehicle solution (1% ethanol, 2% Tween 80, and saline). From PND 29 to
PND 39, different groups of male CNT-, pTHC- or MAM-exposed rats (n = 12–15) were
treated twice/day with increasing doses of THC (aTHC) or vehicle (aVEH), according to
the following treatment schedule: 2.5 mg/kg/day (PND 29–31, i.p.), 5 mg/kg/day (PND
32–35, i.p.) and 10 mg/kg/day (PND 36–39, i.p.) as previously described [45]. Male rats
were randomly assigned to the experimental procedures, and care was taken to avoid
assigning more than two animals from the same litter to the same experimental group.

The drug treatment period in rats was carried out at the equivalent time of the child-
hood/periadolescent phase in humans [10], and it was also based on previous results both
in MAM and pTHC [13,20] models. The adult (from PND 100) rats were subjected to be-
havioral tests with 5 days in between two consecutive tests, as previously described [46–49].
Immediately thereafter, they were decapitated in short ether anesthesia, and their brains
were harvested. The PFC (corresponding to an area that included the rostral pole of the
brain and delimited medially by the interhemispheric fissure, laterally by the corpus callo-
sum, and caudally extended to AP + 2.7, according to Paxinos and Watson (1998) [50]) was
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dissected on ice by hand under microscopic control within 2 min, immediately frozen on
liquid nitrogen, and stored at −80 ◦C until analysis.

4.3. Behavioral Testing
4.3.1. Spontaneous Locomotor Activity in the Open Field Test (OFT)

The exploratory activity was assessed in moderately illuminated (80 lx) cubic metal
arena (60 × 60 × 60 cm), as previously described [51–55]. Rats were placed gently in the
center of the arena and allowed to explore. The vertical (number of rearing episodes) and
the horizontal (number of squares crossed with all paws) exploratory activity was counted
in 30 min sessions, recorded, and then scored offline by 2 observers blinded to the treatment
groups. The arena was cleaned with 0.1% acetic acid and dried after each trial.

4.3.2. Social Interaction (SI) Test

The test was carried out in a moderately illuminated room (120 lx), as previously
described [17,43,46,47]. Each animal was allowed to freely explore an unfamiliar congener
in a metal arena (60 × 60 × 60 cm) for 10 min. The arena was cleaned with 0.1% acetic acid
and dried after each trial. Social behaviors were defined as sniffing, following, grooming,
mounting, and nosing. The whole testing phase was recorded and analyzed by two
observers blinded to the treatment groups. The time spent on social behaviors and the
number of interactions were evaluated.

4.3.3. Novel Object Recognition (NOR) Test

The experimental apparatus used for the NOR test was an arena (43 × 43 × 32 cm)
made of plexiglass situated in a moderately illuminated room (120 lx). Each animal was
placed in the arena and allowed to explore two identical, previously unseen objects for
5 min (familiarization phase). After an inter-trial interval of 3 min, one of the two familiar
objects was replaced by a novel, previously unseen object, and rats were returned to the
arena for the 5 min test phase [13,17,20]. Each phase was recorded and analyzed separately
by two observers blinded to the treatment groups. The time spent exploring the familiar
object (Tf) and the novel object (Tn) were scored. The discrimination index (DI) was
calculated as DI = (Tn − Tf)/(Tn + Tf). The arena and all objects were cleaned with 0.1%
acetic acid and dried after each trial.

4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from rat dissected brain areas using TRIzol® Reagent (Thermo
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The concentration
of each purified RNA was detected by NanoDrop 2000c UV-Vis Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). The ratio of optical density at 260 and 280 nm was
used to assess protein contamination: a value of 1.8–2.1 was considered acceptable. Starting
with 0.5 µg of total RNA, complementary DNA (cDNA) was obtained with a mix of
random hexamers and oligo-dT primers for mRNA using the RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA). Diluted cDNAs were
then used to assess the relative abundance of each mRNA species by qRT-PCR, using the
SensiFASTTM SYBR®Lo-ROX Kit (Bioline, London, UK) on a 7500 Fast Real-Time PCR
system (Thermo Fisher Scientific, Waltham, MA, USA). Each reaction mix was prepared
with 2 µL of diluted cDNA, 7.5 µL of SensiFAST SYBR, and 10 pmol of each primer with
a final volume of 15 µL. Sequences of the primers used for the amplification are reported
in Supplementary Table S1. To provide an accurate quantification of the initial target in
each PCR reaction, the amplification plot was examined, and the point of early log phase of
product accumulation was defined by assigning a fluorescence threshold above background,
defined as the threshold cycle number or Ct, as previously described [19]. Differences
in threshold cycle number were used to quantify the relative amount of the PCR targets
contained within each tube. After PCR, a dissociation curve (melting curve) was constructed
in the range of 60 to 95 ◦C [56] to evaluate the specificity of the amplification products. The
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relative expression of different amplicons was calculated by the Delta–Delta Ct (∆∆CT)
method and converted to 2−∆∆Ct for statistical analysis [57]. All data were normalized to
two endogenous reference genes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and beta-actin (β-ACT).

4.5. DNA Methylation Analysis by Pyrosequencing

Methylation status of Cnr1 and Drd2 genes was determined using pyrosequencing of
bisulfite-converted DNA [13,19,20]. After extraction, DNA concentrations were estimated
by measuring the absorbance at 260 nm, whereas sample purities were by considering the
ratios of the absorbance values of 260 vs. 280 nm (A260/280 = 1.8). Each purified DNA
was subjected to bisulfite modification by means of the EZ DNA Methylation-GoldTM

Kit (Zymo Research, Orange, CA, USA), according to the manufacturer’s protocol. DNA
methylation status at each CpG site under study in the regulatory region of the genes
(see Supplementary Figure S2 for gene details) was then assessed using a pyrosequencing
assay. Bisulfite-treated DNA was first amplified by PyroMark PCR Kit (Qiagen, Hilden,
Germany) with a biotin-labeled primer according to the manufacturer’s recommendations.
PCR conditions were as follows: 95 ◦C for 15 min, followed by 45 cycles of 94 ◦C for 30 s,
56 ◦C for 30 s, 72 ◦C for 30 s, and, finally, 72 ◦C for 10 min. PCR products were then verified
by agarose electrophoresis, immobilized to Streptavidin Sepharose High-Performance
(GE Healthcare, Chicago, IL, USA) beads via biotin affinity, and denatured to allow the
annealing with the sequencing primers. The sequencing was performed on a PyroMark
Q24 ID using Pyro Mark Gold reagents (Qiagen). Rat Cnr1 primers for PCR amplification
and sequencing were generated according to PyroMark Assay Design software version
2.0 (Qiagen, Hilden, Germany) to analyze 4 CpG sites within the gene regulatory region.
A specific PyroMark CpG assay (Qiagen, Hilden, Germany) was instead used to analyze
the rat Drd2 regulatory region, targeting 6 CpG sites. Details of the sequences under study
and primers and assays employed are shown in Supplementary Table S2. Methylation’s
level was analyzed using the PyroMark Q24 ID version 1.0.9 software, which calculates
the methylation percentage mC/(mC + C) (mC = methylated cytosine, C = unmethylated
cytosine) for each CpG site, allowing quantitative comparisons. Quantitative methylation
results were expressed as the average methylation percentage of all the investigated CpG
sites.

4.6. Statistical Analysis

The results are presented as group mean ± SEM. Behavioral data were first tested for
normality distribution using the Shapiro–Wilk test. As normality tests have little power to
detect non-Gaussian distributions with small data sets, we did not explicitly test for the
normality of our biochemical data sets. Data were analyzed using two-way ANOVA (factor
1: model “MAM or pTHC”; factor 2: peripubertal THC treatment “aTHC”) followed by
Tukey’s post hoc if appropriate. Unpaired t-test was used to analyze independent data.
For correlation analysis, Spearman’s coefficient was used. Statistical evaluations were
performed using specialized software (Graph-Pad Prism 9.0). A p level of 0.05 or less was
considered indicative of a significant difference.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms24043907/s1.
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