Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Mater. Interfaces, DOI: 10.1002/admi.202000164

Toward an All-Ceramic Cathode–Electrolyte Interface with Low-Temperature Pressed NASICON $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ Electrolyte

Andrea Paolella, Wen Zhu, Giovanni Bertoni, Alexis Perea, Hendrix Demers, Sylvio Savoie, Gabriel Girard, Nicolas Delaporte, Abdelbast Guerfi, Mathias Rumpel, Henning Lorrmann, George P. Demopoulos, and Karim Zaghib*

Toward an all-ceramic cathode-electrolyte interface with lowtemperature pressed NASICON Li1+xAlxGe2-x(PO4)3 electrolyte

Andrea Paolella^a, Wen Zhu^a, Giovanni Bertoni^{b,c}, Alexis Perea^a, Hendrix Demers^a, Sylvio Savoie^a, Gabriel Girard^a, Nicolas Delaporte^a, Abdelbast Guerfi^a, Mathias Rumpel^d, Henning Lorrmann^d, George P. Demopoulos^e, and Karim Zaghib^{a,*}

^aHydro-Québec, Center of Excellence in Transportation Electrification and Energy Storage, Varennes, Québec JOL 1N0, Canada

^bIMEM–CNR, Istituto dei Materiali per l'Elettronica e il Magnetismo, Parco Area delle Scienze 37/A, I-43124 Parma, Italy

[°]CNR–Istituto Nanoscienze, Via Campi 213/A, I-41125 Modena, Italy

^dFraunhofer-Institut of Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany

^eMcGill University, Materials Engineering Department, 3610 Rue University, Montréal, QC H3A 0C5, Canada

*Corresponding author: zaghib.karim@ireq.ca

SUPPORTING INFORMATION

Figure S1: SEM image of LAGP powder before hot pressing sintering

Figure S2: *a)* STEM images of LAGP annealed at 650 °C and 56 MPa and at 750 °C and 56 MPA; *b)* STEM-EDXS quantification of ratios of Ge, Al cations, and P atoms with respect to oxygen for two samples compared with expected values from pure stoichiometric $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ (LAGP). Mean values were obtained from several crystals (>10) and errors are given as standard deviations. The sample at 650 °C shows very good agreement with the expected values, while the sample at 750 °C shows higher ratios due to a lower amount of oxygen, in agreement with the oxidation-state reduction noticed from the XPS results.

Figure S3: *a*) cycling performance of LiFePO4-LAGP-graphite//LAGP//Li metal at C-rate of C/24; *b*) CT-scan of the cell before and after cycling at C-rate of C/24