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Abstract In this paper, a model for nonlinear fer-
rite power inductors based on the αNet neural network
is proposed. The model is able to reproduce the fer-
rite power inductors inductor behavior up to satura-
tion, considering the core temperature. The αNet neu-
ral network was used for its generalization capability
considering a hybrid approach encompassing a classi-
cal weighted interpolation. The model’s effectiveness
was experimentally verified by calculating the current
flowing through two inductors in an electric circuit
in different operating conditions, and has been com-
pared with the two main models found in literature to
show the improvement both in terms of the maximum
value of the estimated current and the root mean square
error. The modeling procedure can be easily extended
to inductors with different sizes and core materials due
to the features of the αNet network and the hybrid
approach to retrieve data.
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1 Introduction

The dynamics of power converters are of deep inter-
est for scientists dealing with power electronics since
they show many aspects related to nonlinear behavior;
among these aspects are bifurcation [1] and chaos [2],
while others affect control systems [3,4]. Finally, issues
are related to circuit models [5,6]. It is noteworthy that
most of the published papers dealing with power con-
verters are based on traditional inductors, i.e., they con-
sider its inductance as a constant value. Recently, non-
linear power inductors have been used in electronics
applications [7] dealing with electrical vehicles [8] or
in switched mode power supplies (SMPSs) [9]. Recent
reports have shown that the operating range of a power
inductor can be extended up to the saturation value,
indicating that the operating current can be raised up to
the value at which the inductance is halved; this allows
saving cost and weight of the inductor [8]. This oper-
ating mode improves the power density; hence, it is
of great interest in practical applications, particularly
concerning SMPSs either for grid-connected applica-
tions [10], or for DC/DC conversion [11,12]. On the
other hand, the theoretical analysis ismore complicated
since, by increasing the current, the inductor exhibits a
nonlinearity that depends on the core magnetic mate-
rial [13]; consequently, the inductance is not constant, it
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shows an abrupt fall and tends to an asymptotic behav-
ior up to the deep saturation value. Simulation analysis
of the current through the inductor is essential because
this current also affects other devices connected with
the inductor (power switch and diode) [14]; toward this
end, a reliable model for calculating the inductor cur-
rent for any given applied voltage up to saturation and
considering the core temperature is needed. In addi-
tion, during the design phase, it is necessary to use
such a model to predict the electromagnetic interfer-
ence (EMI) generated by the circuit system and mini-
mize it by suitable filters facing issues related to compo-
nents search [15], traditional design [16] and optimized
techniques [17]. Finally, a proper inductor model must
show good performance in terms of accuracy and a low
computation time.

Different solutions for modeling issues have been
proposed in the literature. A survey on models for
nonlinear inductors has been recently published [7].
Twodifferent approaches are possible: the “external” or
“behavioral” representation and the “physical” model
inwhich each component of themodel has a correspon-
dence with a physical phenomenon. It is noteworthy
that [7] addresses power electronics applications and
takes into consideration behavioral models giving the
representation of the inductor by the inductance versus
current relationship (eventually including temperature
as a parameter). Among the behavioral models, two
analytical approaches have been proposed in the litera-
ture; they are both based on mathematical functions
with a shape similar to the curve of the inductance
to be reproduced. The first model, named the arctan
model, uses the arctangent curve to retrieve a model of
the inductor in bidirectional DC/DC converters [8], or
in general for DC/DC converter applications [11,12];
differently, the latter exploits a third-order polynomial
[18]. Both models consider the temperature [19–21].
This parameter is crucial; indeed, in the nonlinear zone,
the inductance shows a variation with the current. Both
the temperature and the current affect the inductance in
steady state [22], and in dynamic conditions [23,24];
in addition, when operated near saturation, the inductor
temperature increases, and its peak is enhanced, poten-
tially leading to thermal runaway [19]. Bothmodels are
able to reproduce the inductance curve up to saturation
with different performances. The polynomial model
better reproduces the slight increase in the inductance
for small currents; however, after the deep saturation
point, it does not reproduce the asymptotic behavior.

Instead, the arctan model shows a slightly decreasing
trend for small currents, and this deep saturation behav-
ior is better reproduced for higher currents (even if the
asymptote is reached when the current tends to infin-
ity). This feature is helpful in the simulation when high
current peaks can be reached; instead, the inductance
calculation employing the polynomial model from the
point of view of the computation time is faster [22].
The literature considered the use of neural networks to
design inductors [25,26]; an application to the design
of power inductors is given by, [27] that exploits a
hybrid method, which combines the accuracy of the
3D finite element method (FEM) and the low compu-
tational cost of artificial neural networks (ANNs) to
optimize an inductor for a 2 kW converter. Neural net-
works were applied in [28] to retrieve loss maps for
inductors and transformers. In contrast, [29] is focused
on the same issue as is considered here; however, it
employs a feedforward neural model to represent the
behavior of power inductors. The network proposed by
[29] is relatively simple, but the learning is performed
only at environmental temperature. No other relevant
contributions dealingwith inductormodeling by neural
networks are given in literature.

This paper presents the application of a well-
established feedforward neural architecture with auto-
matic learning of the activation functions of its hid-
den units. The architecture was first proposed in [30],
and it has since been optimized [31,32], and suc-
cessfully applied in challenging applications, such as
speech recognition [33], In this paper a hybrid approach
based on the neural net and the traditional interpolation
approach is performed to optimize the computational
effort. The αNet trained on a suitable dataset is able
to reproduce any value of the inductance for a given
current and temperature in the whole operating range.

Concerning the motivation of this paper: it seeks to
advance studies on the dynamics of nonlinear systems
byproposing an inductormodel that is based on a neural
network. Our approach aims to model the curves that
are representative of the inductance behaviour, includ-
ing saturation and temperature. Accordingly, the αNet
network is optimized for curves (in the inductance vs.
current plane) that start at a nonzero initial level (called
the nominal value at zero current) and then decrease,
showing asymptotic behavior at saturation. This is the
underlying working hypothesis. The novelty of this
paper consists of devising the αNet neural network and
using it to model a nonlinear inductor including the
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temperature as a parameter. This enhanced model is
named E-αNet. Besides, instead of learning a surface
in the three-dimensional space, the learning phase is
based on 2-dimensional curves with the temperature as
a parameter. The production exploits a weighted inter-
polation to retrieve intermediate points. This hybrid
approach makes the E-αNet operation straightforward.

The proposed architecture E-αNet exploits Her-
mite’s polynomials, allowing a smoothed curve with
a reduced number of neurons. To the authors’ knowl-
edge, no similar approach has been presented until now,
and this study presents the first model based on a neural
network that considers temperature; consequently, this
is the main contribution of the paper.

The remainder of this paper is organized as follows:
Sect. 2 explains the problem definition and the main
motivation of this work, Sect. 3 presents the αNET net-
work, and Sect. 4 describes the nonlinear behavior of
an inductor when it is operated up to saturation and
presents the two inductors under study. The training
set is described in Sect. 5, and the results are given in
Sect. 6, where the current flowing through two induc-
tors in different operating conditions is compared to the
one experimentally obtained, including a comparison
with the two main models proposed in the literature.

2 Problem definition and motivation

This paper aims to contribute to the field of modeling
nonlinear curves and related applications to compute a
parameter that varies dynamicallywith such curves.We
chose to model the nonlinear behavior of an inductor
as a function of the current flowing through it because
this scenario is of practical interest in the design of
DC/DC converters. These converters exploit the induc-
tor as a reservoir of energy that is charged and dis-
charged depending on the applied voltage.Because cur-
rent flowing in an inductor indicates an increase in tem-
perature, the expected result is a model of the inductor
with temperature as a parameter. Two analytical mod-
els capable of representing inductance as a function of
temperature have been proposed in the literature: the
polynomial model and the model based on the arctan-
gent trigonometric function known as the arctanmodel.
Both models fit a curve with a trend that reproduces the
typical trend of a nonlinear inductor. The polynomial
model better reproduces the slight increase in the induc-

Fig. 1 comparison of experimental points and the curves
obtained by polynomial and arctan models: the zoom shows that
for small current, the polynomial model gives a better accuracy,
whereas the arctan model suitably reproduces the asymptote

tance for small currents; however, it does not reproduce
the asymptotic behavior after the deep saturation point.
Instead, the arctan model shows a slightly decreasing
trend for small currents, and the deep saturation behav-
ior is better reproduced for higher currents (even if the
asymptote is reached when the current tends to be infi-
nite). Figure1 shows a comparison between the exper-
imental data and the curves obtained with the polyno-
mial and arctan models.

Minimizing the error between the model and the
actual behavior is essential, especially when iterative
algorithms are used. For example, calculating the cur-
rent flowing through the inductor includes discretizing
the constitutive equation,whereV is the voltage applied
to the inductor, i is the current flowing through it, T is
the core temperature which can be considered constant
during a switching period and Ts is the time interval or
sampling time:

V = L(i, T )
di

dt
(1)

yields:

ik+1 = VTs
1

L(ik, T )
+ ik (2)

Then, the value at time k+1 is given by the value at time
k plus a quantity provided by the ratio of the voltage
multiplied by the sampling period to the value of the
inductance. The error is given by:
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Δik+1 = δ

δL

(
VTs

1

L(ik, T )

)
ΔL + Δik (3)

For each iteration, due to the error propagation, a
quantity that is proportional to the error on the induc-
tance is added; therefore, themodel must be accurate to
avoid an overestimation of the maximum current. The
most critical parameters to calculate the accuracy of the
modeling are the maximum value of the estimated cur-
rent and the root mean square error. The first parameter
is crucial for designing the circuit in which the inductor
is employed; in fact, knowledge of the maximum cur-
rent is essential to design the main components of the
same circuit. TheRMS error allows the curves obtained
bydifferentmodels to be compared.Weproposed a new
approach based on a neural network because in general,
neural networks show better performance in approxi-
mating curves. On the other hand, both the learning
and production phases can be cumbersome; we solved
these issues by learning five 2-dimensional curves with
the temperature as a parameter instead of training on a
surface in the 3-dimensional space defined by the core
temperature, current, and inductance. In addition, the
production exploits the interpolation described by Eq.
(16) to retrieve the intermediate points whose temper-
ature does not belong to the trained curves. The main
motivation for this work is to obtain a more accurate
model than those proposed thus far in the literature.
Such a model is able to provide the value of inductance
as a function of current and temperature, and can be
exploited for calculating the current.

3 The EαNet neural network

In this section, an enhanced version of the feed-forward
architecture previously developed in [31] (αNet) is
reported. The αNet architecture is a shallow feedfor-
ward neural network that can modify the activation
function of its hidden units using the Hermite regres-
sion formula and the conjugate gradient descent algo-
rithm [34].

The αNet architecture has been successfully applied
to address regression tasks, outperforming traditional
MLP architectures using sigmoidal or sinusoidal acti-
vation functions. Notably, it has shown very good per-
formances in various benchmark problems, including

the Add-10 Regression problem proposed by J. Fried-
man [35], the 5-parity problem [36], and the Two Spi-
rals benchmark [37]. In each case, αNet has been
employed to tackle these challenges as regression prob-
lems, demonstrating its better effectiveness than con-
ventional feed-forward neural architectures [31].

The enhanced version, which has also been used in
different contexts [30,33], also optimizes the number
of Hermite polynomials for each hidden unit with a
pruning algorithm that cuts off unnecessary Hermite
coefficients. The pruning algorithm performs a sensi-
tivity analysis of the error of approximation calculated
in the training points concerning each Hermite expan-
sion coefficient [30].

3.1 Background: quality factors

The authors of [31,32] have previously introduced
three “quality factors” to provide ana-priorimeasure of
the generalization capability of a shallow feed-forward
neural network without shortcut with I inputs, O out-
puts and H hidden units.

Learning Quality Factor QL: let K be the number ele-
ments belonging to the training set, O be the number
of output units, t (j)i be the i-th component of the j-th

training pattern, and o(j)
i be the i-th component of the

j-th output desired pattern. Then, the Learning Quality
Factor is defined as:

QL = 1

K

K−1∑
j=0

O−1∑
i=0

(
t (j)i − o(j)

i

)2
(4)

This quality factor estimates the network’s learning
ability over the training set, being simply theRMSerror
computed on the Training Set samples.

GeneralizationQuality Factor QG: letK be the number
of training set items, O be the number of output units,
tj be the j-th training item, and |∇ui|2tj be the squared
modulus of the network i-th output unit gradient when
the input item is tj. Then, the generalization quality
factor is defined as:

QG = 1

K

K−1∑
j=0

O−1∑
i=0

|∇ui|2tj (5)
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This quality factor computes the gradient of the net-
work output function in the training points thus evalu-
ating ,a priori, the network’s generalization capability.

Production Cost Quality Factor QP: The production
cost quality factor is defined as:

QP = H · (I + O) (6)

It assesses the computational cost of the network dur-
ing the production phase, measured by the quantity of
connections among the network units.

3.2 The E-αNet architecture

The E-αNet is an advanced version of the αNet feed-
forward neural architecture [31]. TheαNet has the abil-
ity to learn the activation function of its hidden units
while training, leading to significantly lower values of
both QG and QP quality factors compared to a con-
ventional feed-forward network using sigmoidal acti-
vation functions for its hidden units [31]. This feature is
achieved through the joint use of the CGDoptimization
algorithm with the Powell restart conditions [34], and
the Hermite regression formula. The Hermite regres-
sion employs the first R Hermite orthonormal func-
tions to represent the activation function of each hidden
unit. The E-αNet has the feature of selecting the most
relevant Hermite orthonormal functions for each hid-
den unit, thereby enhancing the network’s performance
[30,33].

The E-αNet architecture closely resembles a typical
shallow three-layered feed-forward network.While the
output layer units use linear activation functions, the
hidden layer units in E-αNet have a unique structure,
relying on Hermite orthonormal functions for function
approximation.

As a matter of fact, let R be the number of the first
Hermite orthonormal functions used to approximate the
activation function of the k-th hidden unit. Let hrk (x)
be the r-th Hermite orthonormal function belonging
to the k-th hidden unit. In particular, let Hr be the r-
th orthogonal Hermite polynomial, and let Φ(x) be a
Gaussian functionwith zeromean and unitary variance.
The r-th Hermite orthonormal function expression is:

hr (x) = r !− 1
2 · π

1
4 · 2− r−1

2 · Hr (x) · Φ(x) (7)

with −∞ < x < +∞. The k-th hidden unit of the E-
αNet architecture is provided with an activation func-

tion f ∗
k (x) given by:

f ∗
k (x) =

R∑
r=1

c∗
rkhrk (x) (8)

The choice of this approximation function aims to
yield a continuous, smooth, representation of the out-
put function for any unit in the output layer. Addition-
ally, Hermite polynomials can be recursively and easily
computed, including their first derivatives [38]:

d

dx
f ∗(x) =

R∑
r=1

((2r)
1
2 hr−1(x) − xhr (x)) (9)

In E-αNet, the number R of Hermite orthonormal
functions of each hidden units dynamically adapts
through a pruning algorithm. This algorithm leverages
information about the sensitivity of the QE factor to
each weight within the Hermite functions associated
with hidden units. This configuration results in a highly
adaptable neural architecture with strong generaliza-
tion capabilities [30,39].

Figure2 shows the typical unit belonging to the hid-
den layer of E-αNet: the dashed square represents the
activation function block. The architecture of the αNet
unit reflects the Eq. (8) formula. The weights c∗

rk of
each unit belonging to the hidden layer will be learned
during the training phase.

3.3 E-αNet learning

The learning algorithm effectively combines the Her-
mite regression formula with the conjugate gradi-
ent descent (CGRD) algorithm, incorporating Powell’s
restart conditions. It further integrates sensitivity anal-
ysis regarding the factor QE concerning the weights
c∗
rk . This analysis optimizes the quantity of orthonor-
mal Hermite functions required by each hidden unit to
represent its activation function.

During the training phase, the coefficients c∗
rk for

each hidden artificial neuron and the weights of con-
nections between αNet units are jointly adjusted using
the CGRD algorithm with Powell’s restart conditions
[34]. This continuous adjustment of the activation func-
tions for each hidden unit persists until the minimum
training set error is achieved [31,32].

In E-αNet, the initial training phase sets a maximum
limit of R as Rmax , followed by the application of a
pruning algorithm. This algorithm effectively reduces
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Fig. 2 The EαNet hidden
unit

the number of Hermite orthonormal functions required
to describe and calculate each hidden unit’s activation
function independently [39].

The pruning algorithm operates on the premise of
eliminating coefficients that demonstrate lower rele-
vance based on a specified network behavior criterion.
Relevance is quantified using error sensitivity [40].

To assess the feasibility of pruning the r-th connec-
tion of the k-th hidden unit in E-αNet, it is essential to
investigate the sensitivity of the training error quality
factor QE concerning the weight c∗

rk .
Let QE \c∗

rk
be the value of the learning quality factor

without considering the weight c∗
rk ; then, the sensitiv-

ity of the QE factor with respect to the weight c∗
rk ,

Srk
(
c∗
rk

)
, is defined as:

Srk
(
c∗
rk

) =
∣∣∣QE \c∗

rk
− QE

∣∣∣ (10)

Equation (10) can also be written as:

Srk
(
c∗
rk

) =
∣∣∣∣∂QE

∂c∗
rk

· c∗
rk

∣∣∣∣ (11)

Therefore, it is necessary to compute all the sensitivities
Srk

(
c∗
rk

)
to identify the unnecessary c∗

rk , i.e., to deter-
mine the weights c∗

rk that do not significantly affect the
final value of QE . The whole learning procedure of
E-αNet can be described in the following steps:

1. Initialization
2. Weights learning
3. Pruning of the unnecessary c∗

rk connections
4. End Test

In the following paragraphs, all the steps are illustrated
in detail.

Initialization In this phase, the network’s topology is
determined, including the number of inputs I, outputs
O, and hidden units H. Subsequently, all connection
weights between the I + H +O network units are ran-
domly initialized. Furthermore, the other two parame-
ters are fixed in advance:

– The starting number Rmax of the Hermite orthonor-
mal functions needed by each hidden unit of αNet
to model its own activation function.
In this starting phase, the Rmax coefficients of each
hidden unit are chosen so that they can Model a
Gaussian function.

– A threshold TSmin ∈ [0, 1]: this threshold is used
for the pruning of the unnecessary weights c∗

rk of
the hidden units of αNet

Weights learningDuring this training phase, the coeffi-
cients c∗

rk are changed together with the weights of the
connections between the units ofαNet using theCGRD
algorithm with Powell’s restart conditions [34]; hence,
each activation function of each hidden unit of αNet
is continuously changed until the minimum of QE is
reached.

The use of the conjugate gradient descent optimiza-
tion algorithm with the restart conditions of Powell is
due to its high computational speed, its optimal per-
formances for high-grade polynomial functions, and
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the reasonable amount of memory needed, where the
amount increases linearly with the number of vari-
ables. The utilization of both the CGRD algorithm and
the Hermite regression formula results in reduced QG

and QP values, thereby enhancing the neural archi-
tecture’s generalization capacity and lowering compu-
tational costs in the production phase, compared to a
conventional feed-forward architecture employing sig-
moid activation functions for its hidden units [31,32].

Pruning Algorithm After, the learning period is over,
and all the sensitivities Srk

(
c∗
rk

)
are calculated. Then,

for each hidden unit, the sensitivities Srk
(
c∗
rk

)
are nor-

malized between 0 and 1. Subsequently, those weights
whose corresponding sensitivities satisfy the following
inequality:

Srk
(
c∗
rk

)
< TSmin (12)

are disregarded and they will no longer be considered
in the learning process, since, if inequality (12) is sat-
isfied, the weight c∗

rk does not affect the final value of
QE .

End Test In this phase, a test is conducted: if in the
previous step there was at least one c∗

rk connection cut
off, then the learning algorithm will be repeated from
step 2, considering all the connection weights between
the I + H + O units of the network and all the weights
c∗
rk that did not satisfy the inequality (12). If none of
the c∗

rk parameterswas disregarded in the previous step,
the training process is over.

4 Fundamentals on nonlinear inductors

4.1 Behavior of a nonlinear inductor

An inductor is characterized by a differential equation
inwhich the voltage at its terminal is proportional to the
current derivative. In a linear inductor, the inductance
is constant; it is described by Eq. (13).

V = L
di

dt
(13)

The nonlinear behavior is characterized by an induc-
tance value that depends on the current and the temper-
ature T , as in Eq. (14):

V = Ldi f f (i, T )
di

dt
(14)

In this case, the differential inductance must be con-
sidered since the slope of the curve described by the

magnetic flux vs. the current varies (contrary to a lin-
ear inductor in which the slope is constant), as shown
in Fig. 3. The differential inductance is the slope of the
total flux linkage Φ as a function of the magnetizing
current [8]. All inductors adopting a magnetic core are
characterized by a nonlinear behavior: the inductance
exhibited at small current decreases when the current
increases, then it tends asymptotically to a constant
value representing the deep saturation. This charac-
teristic is common to any power inductor since they
exhibits the same profile with a different scale fac-
tor [41] The traditional approach considers a current
range in which the inductance remains constant; for
this reason, the inductor is also named a linear induc-
tor. Increasing the current beyond the linear zone, the
decrease in the inductance is appreciable. When a con-
stant voltage is applied to the linear inductor, its current
is linear. In contrast, in the case of a nonlinear inductor,
the current shape differs, showing a cusp. In addition,
a nonlinear inductor shows a lower minimum current
and a higher maximum compared to a linear inductor.
These aspects have practical implications because, in
switched mode power supplies, the current peak also
stresses the power switch and affects the reliability of
the circuit. For this reason, a proper model is needed to
perform the analysis, particularly to reproduce the cur-
rent shape. Usually, inductors’ manufacturers give the
rated value of the inductance. This inductance is typ-
ically assumed constant up to the rated current, with
a maximum decrease of 10%. As a consequence, to
retrieve the inductance vs. current curve, describing the
nonlinearity, laboratory testing should be done [18,42–
45]. The magnetic behavior of the inductor depends on
the core material. Ferrite is widely used in power elec-
tronics applications since it exhibits low losses and high
resistivity in a broad frequency spectrum. In addition,
the Curie temperature is approximately 700 ◦C, and
the magnetic properties are isotropic. The saturation
induction ranges from 0.25 T to 0.45 T, while the rela-
tive permeability ranges from 1×103 to 20×103 [13].

Two inductors have been considered in this paper,
and they have been characterized by a dedicated mea-
surement system [18,42,43]. This system imposes two
different voltage values on the inductor so that it is
charged and discharged across a load. Consequently,
the inductor is subjected to a current composed of a
DC part and a superimposed AC component. The cur-
rent slope is calculated based on a least squares regres-
sion performed on a set of 50 samples at a time. This
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Fig. 3 Typical magnetization characteristic of a core made of
ferrite

value of the differential inductance is associated with
the mean value of the current calculated on the same
samples, obtaining a vector with the inductance val-
ues versus the current as in Eq. (15), where VL is the
voltage applied across the inductors’ terminals. This
is the actual voltage applied to the inductor obtained
from that measured by excluding drops due to losses,
as explained in [19]. During the measurement, the core
temperature T is also acquired so that each inductance
point is associatedwith the corresponding temperature.

Ldi f f (i, T ) = VL
di
dt

(15)

4.2 The inductors under study

The two inductors studied here are the model DO
5010H 3341 and the model DO 5010H 104,2 as pro-
vided by Coilcraft. They are both ferrite inductors
wound on the same core with a different number of
turns to obtain a different value of inductance and of the
maximum operating current. The inductor DO 5010H
104 has a rated value of 100μHand amaximumcurrent
of 3 A. The inductor DO 5010H 334 has a rated value
of 330µH and a maximum current of 1.9 A. These val-
ues of themaximumcurrent, given by themanufacturer,

1 https://www.coilcraft.com/en-us/products/power/unshielded-
inductors/ferrite-drum-surface-mount/do/do5010h/do5010h-
334/.
2 https://www.coilcraft.com/en-us/products/power/unshielded-
inductors/ferrite-drum-surface-mount/do/do5010h/do5010h-
104/.

Fig. 4 The two inductors under study

correspond to a decrease of 10% of the inductance. The
manufacturer indicates this value as “saturation”; how-
ever, we adopt this term for a current corresponding to
one half of the rated value of the inductance to extend
the operating range. Figure4 shows the two inductors.

5 The training dataset

The training dataset works with a reduced set of points
because they have to be measured directly on the com-
ponent under study. Each point gives the differential
inductance versus the current at a defined tempera-
ture. The measurement system is described in detail
in [18,42,43]. This system is devised to impose a con-
stant voltage on the inductor under test and to measure
the current slope indicated as VL and di/dt in Eq. (15),
respectively. For a given temperature, some points rep-
resenting the inductance versus the current are mea-
sured according to Eq. (15). Only five temperatures
were considered for training, starting from the environ-
mental temperature to themaximumallowed, aiming to
obtain five curves by the E-αNet. As explained above,
in this way, the network is simpler, allowing a faster
learning phase.

Each feature has been normalized to a specified
range using the “MinMaxScaler”3 [46] procedure for
computational purposes. This procedure linearly trans-
forms the feature values to fit within a fixed range,
where the highest data point corresponds to the max-
imum value and the lowest data point corresponds to
the minimum value. In particular, each feature in the

3 https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html.
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measurement dataset has been individually scaled to
the real interval [0.0, 1.0].

After training the neural network, the scaling param-
eters are applied to the test set data, which are provided
as inputs to the network to obtain the desired outcomes.
The results are then inversely transformed toget the cor-
rect, physically meaningful values in the desired units
of measurement.

Since the transformation process is linear, it does not
distort the inputs or outcomes. Moreover, the learning
process remains the same, it does not depend of the
numeric values given by different measures, provided
in the dataset, which may vary according to the spe-
cific inductor component whose characteristics must
be modeled; i.e. the transformation procedure is trans-
parent to the learning process.

For a given current, the points belonging to tem-
peratures different from the training set are calculated
according to:

L(Tx ) = L2
(Tx − T1)

(T2 − T 1)
+ L1

(T2 − Tx )

(T2 − T 1)
(16)

with

T1 < Tx < T2 (17)

where Lx is the needed inductance corresponding to
the temperature Tx and T1 and T2 are the tempera-
tures corresponding to the closest temperatures given
by the learned curves. This allows us to more closely
weight the nearest temperature. Characterization was
performed for the two inductors, namely, the model
DO 5010H 334 and the model DO 5010H-104.

5.1 Characterization of inductor DO 5010H-104

The representative points used for training the neural
network are shown in Fig. 5. It can be noted that only
five temperatureswere considered (25 ◦C, 45 ◦C, 65 ◦C,
85 ◦C, 105 ◦C), and for each temperature, 18 points,
inductance vs. current, were used. The curves obtained
by the E-αNet are shown in Fig. 5. They encompass the
dataset points, as expected, and are able to describe the
inductor’s behavior from low currents up to saturation.
The architecture that has been used for E-αNet is char-
acterized by one input unit, one output unit and two
hidden units, each one with a maximum of 14 Hermite
polynomials. The slope of the linear output unit is 0.4.

Fig. 5 Training set and learned curves for inductor 104

5.2 Characterization of the inductor DO 5010H-334

The representative points adopted for training induc-
tor DO 5010H-104 and the learned curves obtained
by E-αNet are shown in Fig. 6. The architecture that
has been used for E-αNet is characterized by one input
unit, one output unit and one hidden unit with a maxi-
mum of 9 Hermite polynomials. The slope of the linear
output unit is 0.4. Additionally, in this case, five tem-
peratures were considered with 18 pairs of inductance
vs. current for each temperature. They encompass the
dataset points, as expected, and are able to describe the
inductor’s behavior from low currents up to deep sat-
uration. For both inductors, the rated inductance given
by the manufacturer is retrieved at low currents, and
this inductance does not depend on the temperature,
as shown by the superposition of the curves. In con-
trast, for higher currents, the inductance values change
as a function of the temperature up to deep saturation,
where the inductance is again constant, albeit with a
drastically reduced value.

6 Results

An indirect method was used to verify the accuracy
of fit of the proposed approach. Particularly, the cor-
respondence of the value of the inductance modeled
by the E-αNet network with the true value has been
verified by calculating the current flowing through the
inductor and comparing it with that measured at the
same applied voltage. This approach complies with
practical applications in which the knowledge of the
current flowing through an inductor is crucial. Toward
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Table 1 Test conditions and errors for the inductor DO 5010H 104

Temp [◦C] VL [V] TON [µs] n RMSE [A] %Err on max

40 24 12.5 72 0.058 0.69

60 24 12.5 72 0.0097 0.74

75 24 12.5 72 0.011 1.48

80 24 12.5 72 0.016 -1.89

Table 2 Test conditions and errors for the inductor DO 5010H 334

Temp [◦C] VL [V] TON [µs] n RMSE [A] %Err on max

40 24 12.5 57 0.0023 −0.33

60 24 12.5 55 0.0015 −0.58

75 24 12.5 54 0.0052 −0.15

80 24 12.5 53 0.0084 −0.39

Fig. 6 Training set and learned curves for inductor 334

this end, Eq. (14) was solved numerically over a time
interval in which a constant voltage VL is applied to the
inductor.

iL(k + 1) = iL(k) + VLΔT

L(iL(k))
(18)

FromEq. (18), a vector containing the current versus
time is obtained. The experimental tests were carried
out on both inductors modeled by the proposed neu-
ral network. In testing, the current profiles obtained by
Eq. (18) for a given temperature are compared with
the experimental values sampled on a power switching
converter employing these inductors. The inductor is
subjected to a constant voltage VL applied for a con-
stant time interval TON = nΔT, where n represents the
number of samples. For each inductor, the main param-
eters adopted for the tests are summarized in Tables 1

and 2. In the same tables, the percent error calculated
on themaximum current and the rootmean square error
(RMSE) and as inEqs. (19) and (20), are given. The per-
cent error is of practical importance because the maxi-
mumcurrent is a design parameter.We defined the error
with its sign to emphasize that when the calculated
current is greater than the corresponding experimen-
tal value (overestimation of the maximum), the error
gives a negative value, whereas an underestimation cor-
responds to a positive value. The RMSE is useful for
analyzing the correspondence between the experimen-
tal and calculated curves during the whole switching
period. Amore accurate estimation of the current shape
allows precise knowledge of its spectrum and a proper
filter design [47].

%error = iexp(max) − icalc(max)

iexp(max)
100 (19)

RMSE =
√

�(iexp − imeas)2

n
(20)

6.1 Analysis of the current for inductor DO
5010H-104

The current flowing through the inductor DO 5010H-
104 was calculated at four different temperatures
according to the test conditions summarized in Table 1.
A constant voltage of 24 V is applied to the inductor,
and it ismaintained for 12.5µs; the current is calculated
as in Eq. (18). The time interval of 12.5 µs is constant
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Fig. 7 Current profile comparison for inductor 104 at T=40 ◦C

Fig. 8 Current profile comparison for inductor 104 at T=60 ◦C

to demonstrate the influence of temperature. Initially,
the current always grows linearly; nonlinearity occurs
after current increases, and this nonlinearity becomes
more pronounced at higher temperatures. Such behav-
ior is common for all inductorswoundon ferromagnetic
cores. The values or the current calculated by the neural
model versus time are compared with the experimental
values in Figs. 7, 8, 9 and 10 for T=40 ◦C, T=60 ◦C,
T=75 ◦C and T=80 ◦C, respectively. The experimen-
tal curves can be readily overlaid with those obtained
by the neural model, which shows that the maxima do
not differ significantly. Considering the RMSE and the
percent error given in Table 1, in the worst condition,
the RMSE is equal to 0.058 A, and the percent error
on the maximum value of the current is 1.89%. The
higher temperature represents the worst case because a
slight deviation of the curves is recognizable for higher
currents. It is valuable to note that the error is always
less than 2%.

Fig. 9 Current profile comparison for the inductor 104 at T=75
◦C

Fig. 10 Current profile comparison for inductor 104 at T=80 ◦C

6.2 Analysis of the current for the inductor DO
5010H 334

The current flowing through the inductor DO 5010H-
334 was calculated at four different temperatures
according to the test conditions summarized in Table 2.
In this case, a constant voltage of 24 V is applied to
the inductor, and it is maintained for 12.5 µs. Because
the inductance is higher than that in the previous test,
lower currents are obtained; however, the same behav-
ior is observed: the current starts growing linearly,
and the nonlinearity is recognizable at higher currents
and is more evident at higher temperatures. The val-
ues or the current calculated by the neural model ver-
sus time are compared with the experimental values in
Figs. 11, 12, 13 and 14 for T=40 ◦C, T=60 ◦C, T=75 ◦C
and T=80 ◦C, respectively. Additionally, in this case, a
consistent overlaywith the current obtained by the neu-
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Fig. 11 Current profile comparison for inductor 334 at T=40 ◦C

Fig. 12 Current profile comparison for inductor 334 at T=60 ◦C

ral model is observed, and the maxima of both practi-
cally coincide. Considering the RMSE and the % error
given in Table 2, in the worst condition, the RMSE is
equal to 0.084 A, and the percent error on the maxi-
mum value of the current is −0.58%. It is valuable to
note that the error is always less than 1%.

6.3 Comparison with the analytical models proposed
in the literature

In this section, the results obtainedby theE-αNet-based
models are compared with the two main models pro-
posed in the literature: the arctan and the polynomial
models. Both models were implemented following the
methods described by their authors and summarized in
[22]. An example on the performance of the models is
summarized in Fig. 15 which shows the ability of the
E-αNet in following more accurately the experimental

Fig. 13 Current profile comparison for inductor 334 at T=75 ◦C

Fig. 14 Current profile comparison for inductor 334 at T=80 ◦C

pointswith respect to the othermodels. In fact, both low
current and deep saturation regions are well approxi-
mated. The comparison is performed for both tested
inductors considering the curves in which the highest
current is reached since it represents theworst case. The
comparison of the four current profiles obtained by the
neuralmodel, the polynomial and arctanmodelwith the
experimental data is represented in Figs. 16 and 17, for
inductors 104 and 334, respectively. Notably, all curves
reproduce the nonlinear effect on current; however, the
proposed neural model shows a better accuracy con-
cerning both the shape and the maximum value. The
errors in terms of percent on the maximum and RMSE
are summarized by bar diagrams in Figs. 18, 19, 20
and 21, respectively. A smaller bar corresponds to a
lower error and therefore to better modeling. The fig-
ures facilitate comparison of the error calculated based
on the experimental data, based on the currents cal-
culated by the proposed neural model and based on
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Fig. 15 Inductance profile comparison for inductor 104 with
analytical models at T=65 ◦C

Fig. 16 Comparison of the experimental profile of inductor 104
with analytical models at T=80 ◦C

the currents calculated by two analytical models taken
from literature. Notably, the proposed neural networks
provide a better approximation of the current by show-
ing lower error values both in terms of RMSE and on
the maximum current.

7 Conclusions

A neural network, E-αNet, has been devised to retrieve
the model of nonlinear power inductors; the proposed
approach combines the features of the E-αNet with
classical weighted interpolation permitting accurate
modeling of both the learning and production phases.
In fact, the learning phase exploits five 2-dimensional
curves and avoids learning a 3-dimensional surface.
The proposed architecture E-αNet exploits Hermite’s
polynomials, realizing a smoothed curvewith a reduced

Fig. 17 Comparison of the experimental profile of inductor 334
with analytical models at T=80 ◦C

Fig. 18 Percent error on the maximum current obtained with
the neural, polynomial and arctan model for the inductor 104 at
T=80 ◦C

number of neurons. The production uses a traditional
weighted interpolation to retrieve the intermediate
points. Thiswork represents the first time thatmodeling
by a neural network includes consideration of the tem-
perature of themagnetic core. E-αNet revealed suitable
for this purpose since, on the basis of a limited dataset
for learning, it can learn representative curves of an
inductor with temperature as a parameter. Verification
of the proposedmethod has been performed in dynamic
conditions by comparing the measured current flowing
through two different inductors with those calculated
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Fig. 19 RMSE obtained with the neural, polynomial and arctan
models for inductor 104 at T=80 ◦C

Fig. 20 Percent error on themaximum current obtained with the
neural, polynomial and arctan models for inductor 334 at T=80
◦C

by an existing neural model in several operating condi-
tions. Results have been compared with those obtained
by the twomain analyticalmodels proposed by the liter-
ature, considering the estimation of themaximumvalue

Fig. 21 RMSE obtained with the neural, polynomial and arctan
models for inductor 334 at T=80 ◦C

of the current and the root mean squared error; in all
cases, a lower error has been obtained, demonstrating
the accuracy of the proposed approach. The proposed
approach can be applied to all inductors wound on fer-
romagnetic cores; besides, this procedure is of practical
interest in the design of switched mode power convert-
ers.
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8 Appendix

This appendix contains the pseudo code algorithms to
retrieve the analyticalmodels proposed by the literature
based on experimental data measured on the induc-
tor. Section8.1 shows how to obtain the inductance
curve by the arctan method. This approach is based
on the shape of the arctan function suitably adapted to
the inductance curve. The identification of this model
is based on the knowledge of four coefficients: Lnom ,
L30%, L70%, and Ldeepsat . Lnom is the nominal induc-
tance of the inductor, and L30% and L70% correspond
to the drops in the nominal inductance of 30% and
70% caused by two currents labeled I30% and I70%,
respectively. Ldeepsat is the inductance value in deep
saturation. The Sect. 8.2 shows the pseudocode to cal-
culate the inductance curve by the polynomial-based
method. It exploits a third-order polynomial function.
The polynomial model can be identified based on the
same parameters: Lnom , L30%, L70%, and Ldeepsat ;
however, better results can be retrieved by increasing
the data. The coefficients of the polynomial are cal-
culated by a least-squares regression (LSR). Finally,
Sect. 8.3 describes the recursive algorithm to calculate
the current as in Eq. (18). The algorithm can be exe-
cuted based on the inductance curve retrieved by the
arctan, polynomial or E-αNet network.

8.1 Arctan model

Pseudocode 1: Estimation algorithm for calculating the
inductance through the arctangent model

%%INITIALIZATION
SET L_30; %30%

INDUCTANCE DROP TO THE
NOMINAL VALUE

SET I_30; %CURRENT AT
WHICH INDUCTANCE DROP IS
30% TO THE NOMINAL VALUE

SET L_70; %70%
INDUCTANCE DROP TO THE
NOMINAL VALUE

SET I_70; %CURRENT AT
WHICH INDUCTANCE DROP IS
70% TO THE NOMINAL VALUE

SET L_nom; %NOMINAL
INDUCTANCE

SET L_deepsat; %INDUCTANCE
VALUE FOR DEEP SATURATION

%%PARAMETER EVALUATION FOR THE
ARCTANGENT INDUCTANCE

MODEL
Gamma_30 =(L_30 -L_deepsat)/(

L_nom -L_deepsat);
Gamma_70 =(L_70 -L_deepsat)/(

L_nom -L_deepsat);
Sigma=(cot(pi*Gamma_30)-cot(pi

*Gamma_70))/(I_30 -I_70);
I_Lstar =(I_70*cot(pi*Gamma_30)

-cot(pi*Gamma_70))/(cot(pi*
Gamma_30)-cot(pi*Gamma_70))
;

%%ARCTANGENT MODEL OF THE
INDUCTANCE AS A FUNCTION OF
THE CURRENT "I"

L_arctan=L_deepsat +1/2*( L_nom -
L_deepsat)*(1-2/pi*arctan(
Sigma*(I-I_Lstar)));

8.2 Polynomial model

Pseudocode 2: Estimation algorithm for calculating the
inductance through the polynomial model

%%INITIALIZATION
SET L_30; %30%

INDUCTANCE DROP TO THE
NOMINAL VALUE

SET I_30; %CURRENT AT
WHICH INDUCTANCE DROP IS
30% TO THE NOMINAL VALUE
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SET L_70; %70%
INDUCTANCE DROP TO THE
NOMINAL VALUE

SET I_70; %CURRENT AT
WHICH INDUCTANCE DROP IS
70% TO THE NOMINAL VALUE

SET L_nom; %NOMINAL
INDUCTANCE

SET L_deepsat; %INDUCTANCE
VALUE FOR DEEP SATURATION

SET I_deepsat; %CURRENT AT
WHICH INDUCTANCE IS IN DEEP
SATURATION

SET I_data; %CURRENT RANGE
FOR THE POLYNOMIAL

REGRESSION

%%PARAMETER EVALUATION FOR THE
POLYNOMIAL INDUCTANCE

MODEL
[L_0 ,L_1 ,L_2 ,L_3]= polyfit(

I_data ,[0 L_nom;I_30 L_30;
I_70 L_70;I_deepsat

Ldeepsat ],3); %LEAST -SQUARE
REGRESSION TO ACHIEVE THE

POLYNOMIAL FIT TO THE INPUT
DATA

%%POLYNOMIAL MODEL OF THE
INDUCTANCE AS A FUNCTION OF
THE CURRENT "I"

L_poly=L_0+L_1*I+L_2*I^2+L_3*I
^3;

8.3 Current calculation

Pseudocode 3: Equation (18) discretization and calcu-
lation

%% CALCULATION OF THE CURRENT
THROUGH THE INDUCTOR

SET Ton; %
DEFINE ON TIME FOR THE
MOSFET SWITCH

SET N; %
DEFINE NUMBER OF STEPS FROM
t=0 TO t=Ton

SET i_min; %
DEFINE INITIAL CONDITION
FOR THE CURRENT

SET INDUCTOR_MODEL; %
DEFINE WHICH MODEL USE TO
EVALUATE THE INDUCTANCE (
POLY , ARCTAN , E-ALPHANET)

delta_t=Ton/(N); %
DISCRETIZATION OF THE TIME
SCALE CONSIDERING N STEPS

%INITIALIZATION
i(1)=i_min; %

INITIAL CONDITION FOR THE
CURRENT

L(1)=INDUCTOR_MODEL(i(1)); %
CALCULATE INDUCTANCE
THROUGH THE SELECTED MODEL

t(1)=0; %
INITIAL TIME

%EQ. (18) DISCRETIZATION
for k=1:N

%NEXT STEP CALCULATION
i(k+1)=i(k)+(VL -i(k)*r)*

delta_t /(L(k));
L(k+1)=INDUCTOR_MODEL(i(k+1));
t(k+1)=t(k)+delta_t;
end
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