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Coherent response of the Hodgkin-Huxley neuron in the high-input regime
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We analyze the response of the Hodgkin-Huxley neuron to a large number of uncorrelated stochas-
tic inhibitory and excitatory post-synaptic spike trains. In order to clarify the various mechanisms
responsible for noise-induced spike triggering we examine the model in its silent regime. We report
the coexistence of two distinct coherence resonances: the first one at low noise is due to the stimula-
tion of correlated subthreshold oscillations; the second one at intermediate noise variances is instead
related to the regularization of the emitted spike trains.
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A. Introduction

In the last decades a large number of studies have been
devoted to the characterization of the response of simple
and more elaborated neuronal models under the influ-
ence of a large variety of stochastic inputs [4, 6, 26]. One
of the main reasons justifying the interest of neurosci-
entists for this subject resides in the observation that
in vivo neocortical neurons are subjected to a constant
bombardment of excitatory and inhibitory post-synaptic
potentials (EPSPs and IPSPs), somehow resembling a
background noise [3].
Among the many proposed biophysical models the

Hodgkin-Huxley model [5] can still be considered as a
reasonably valid framework for exploring the main fea-
tures of neural dynamics [16]. In order to understand
the origin of the variability observed in the distribution of
spikes emitted by cortical neurons [23] the response of the
Hodgkin-Huxley (HH) model has recently been studied
under the influence of additive noise [1, 20, 25] and sub-
jected to trains of post-synaptic potentials [2, 9, 20, 25].
One of the most interesting phenomena observed ex-

perimentally and numerically for excitable neuronal sys-
tems driven by noise is coherence resonance (CR) [8, 17]:
it refers to the regularization of noise-induced oscillations
occuring for finite (not zero) noise intensity in the ab-
sence of any external injected signal (for a comprehensive
review see [11]). Evidences of CR have been reported ex-
perimentally for the cat’s spinal and cortical neural en-
sembles [15] and theoretically for various neuronal mod-
els [11]. In particular, CR has been observed for the HH
model [10, 27], but these results mainly refer to additive
continuous noise.
Our aim is to perform a detailed analysis of the re-

sponse of the HH model in the silent regime when it
is subjected to many (hundreds or thousands) stochas-
tic trains of post-synaptic potentials (PSPs) per emit-
ted spike (i.e. the system is in the so-called high-input

regime [3, 23]).
The different mechanisms responsible for noise-induced
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neuronal firing are analyzed in terms of statistical in-
dicators (interspike-interval distributions and their first
moments) as well as of dynamical indicators (autocorre-
lation functions). The analysis of the correlation time
reveals a CR associated to the stimulations of coherent
subthreshold oscillations around the rest state. This new
type of CR coexists with standard CR related to the reg-
ularization of spike sequences [11].

B. Model and methods

The HH model describes the dynamical evolution of
the membrane potential V (t). It can be written as

C
dV

dt
= gNam

3h(ENa − V ) + gKn4(EK − V ) + (1)

+ gL(EL − V ) + I(t) ,

where I(t) represents the synaptic current and the evo-
lution of the gating variables X = m,n, h is ruled by
three ordinary differential equations of the form dX/dt =
αX(V )(1 − X) − βX(V )X . The parameters entering in
Eq. (1) and the expressions of the nonlinear functions
αX(V ) and βX(V ) are reported in [12].
In this study we consider the response of the single HH

model to Ne (resp. Ni) uncorrelated trains of EPSPs
(resp. IPSPs) with Ne(Ni) ranging from 10 to 10,000.
By following Refs. [2, 7], each PSP is schematized as an
instantaneous variation of the membrane potential by a
positive (resp. negative) amount ∆V for excitatory (resp.
inhibitory) synapses. The amplitude of each voltage kick
is assumed to be 0.5 mV, i.e. reasonably small (≈ 7 %)
with respect to the distance between the ”threshold” for
spike initiation for rapid EPSPs and the resting potential
(≈ 6−7 mV) estimated for the HH model [13, 26]. More-
over, amplitudes ≈ 0.5 mV are comparable with average
EPSPs experimentally measured for pyramidal neurons
in the visual cortex of rats [6]. This amounts to exciting
the neuron (1) with an impulsive current

I(t) = Q
[

Ne
∑

k=1

∑

l

δ(t− tlk)−

Ni
∑

m=1

∑

n

δ(t− tnm)
]

(2)
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where tlk (resp. tnm) are the arrival times of the EPSPs
(resp. IPSPs) and Q = C∆V is the charge associated to
each kick. In order to mimic the inputs received by corti-
cal neurons, for each afferent (excitatory and inhibitory)
synapse the time interval distribution between PSP in-
puts is chosen to be Poissonian with an average frequency
ν0 = 100 Hz [23] 1.
The stochastic input can be characterized in terms of

the average and the variance of the net spike count within
a temporal window ∆T

N(∆T ) =

Ne
∑

k=1

nE
k (∆T )−

Ni
∑

m=1

nI
m(∆T ) (3)

where nE
k (∆T ) (resp. nI

m(∆T )) represents the number
of afferent EPSPs (resp. IPSPs) received from neuron k
(resp. m) in the interval ∆T . In the high input regime,
by assuming uncorrelated input spike trains, N(∆T ) fol-
lows a Gaussian distribution (cf. [12]), with average and
variance derivable within the shot noise formalism as

< N(∆T ) >= (Ne −Ni)∆Tν0 (4)

and

V ar[N(∆T )] = (Ne +Ni)∆Tν0 = σ2∆Tν0. (5)

The parameter σ =
√

(Ne +Ni) measures the standard
deviation of the stochastic input process.
The average current stimulating the neuron is given by

Ī =
C∆V < N(∆T ) >

∆T
= C∆V ν0(Ne −Ni). (6)

Ī represents the bifurcation parameter ruling the dy-
namics of the deterministic HH model; for Ī < ISN ≃

6.27µA/cm2 the model is in the silent regime, i.e., in the
absence of noise the dynamics is attracted towards a sta-
ble fixed point and the neuron does not fire. However,
since the fixed point is a focus the relaxation towards the
rest state occurs via damped oscillations (subthreshold
oscillations) [19]. Periodic firing is observed for the HH
model only above ISN and it is associated to frequencies
in the range 50− 80 Hz.
We have verified that in the high input regime the re-

sponse of the neuron (for fixed ν0) is determined once
fixed Ī and σ, therefore it does not depend separately on
Ne and Ni, but only on their difference (Ne − Ni) ∝ Ī
and sum (Ne +Ni) ∝ σ2 [12].
In order to characterize the output of the neuron and

to examine the coherence effects in the response we have
employed the following indicators: the distribution of the
output interspike intervals PISI(t) and its first moments;

1 It should be stressed that the model here analyzed is driven by
impulsive post-synaptic currents and it should not be confused
with conductance-driven models [20, 25].

the coefficient of variation of the output interpike inter-
vals distribution (PISI(t)) defined as R = SISI/AISI ,
where AISI is the average and SISI the standard devia-
tion of the PISI(t) (for a perfectly periodic response we
have R = 0 and R = 1 for Poissonian output; the nor-
malized autocorrelation function C(t) for the membrane
potential and the correlation time [17] defined as

τc =

∫

∞

0

C2(t) dt . (7)

CR is usually identified by a minimum (resp. a max-
imum) in the coefficient of variation R (resp. in τc) oc-
curring at finite noise variance [11].

C. Results

The HH neuron subjected to stochastic input exhibits
a noise-induced (irregular) spiking behaviour with an av-
erage firing rate νout = 1/AISI . For fixed Ī the firing
rate increases with the standard deviation of the noise
(cf. Fig. 1).
The noise-induced firing activity becomes more and

more pronounced by approaching the repetetive firing bi-
furcation ISN for the deterministic HH. The HH model
is a type II neuron, therefore the onset of oscillation at
I ≃ ISN is associated with a finite frequency (≃ 50 Hz),
however, in presence of noise, arbitrarily low spike rates
can be observed even in the silent regime.
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FIG. 1: Silent regime: average firing rate νout as a function
of σ for increasing values of Ī (from the bottom to the top
Ī=-1,0,1,2,3,4,5,6.15 µA/cm2).

1. Response of the HH model in the low and high noise

limit

Let us now examine more in detail the origin of noise-
induced spiking in the low and high noise limits. For low
noise we observe the coexistence of multi-peaks and an
exponential tail in the PISI(t) (cf. Fig. 2). As explained
in the following the multi-peak structure is related to
the relaxation dynamics of the membrane potential V (t)
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following a spike emission, while the exponential tail is
associated with noise induced activation processes.
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FIG. 2: PISI(t) obtained for the stochastic input (2) with
σ = 4.6 (continuous curve) and the relaxation dynamics of
the membrane potential V (t) following a step current stimu-
lation (dashed line). The position of the output spike has been
shifted to t = 0 and the action potential has been rescaled to
better reveal the relaxation oscillations. In the inset the ex-
ponential tail due to the activation mechanism is shown. The
data refer to Ī = 6.15µA/cm2 .

To better understand the first mechanism we have
studied the evolution of V (t) following a step current of
amplitude Ī, i.e.,

I(t) =

{

0 if t ≤ 0
Ī if t > 0

. (8)

As shown in Fig.2 (dashed line) V (t) exhibits one spike
followed by damped oscillations. This suggests that the
probability of eliciting a second spike is enhanced in cor-
respondence the maxima of the relaxation oscillations,
where V (t) is nearest to the firing threshold. Moreover,
it is possible to show that the period Tnl of the first os-
cillation has a clear nonlinear origin, while the period of
successives oscillations Tl can be explained by a linear
stability analysis around the fixed point. Indeed we have
verified that the first peak (Tfp) observed in the distribu-
tion PISI(t) (continuous curve in Fig.2) is related to Tnl,
while the successives peaks in the PISI(t) correspond to
the linear oscillations of period Tl [12].
The second firing mechanism responsible for the ex-

ponential tail in the PISI(t) is due to the competition
between two effects, on one side the tendency of the dy-
namics to relax towards its stable fixed point and on the
other side noise fluctuations that instead lead the sys-
tem towards the firing threshold. In this framework the
dynamics of V (t) can be described as the overdamped
dynamics of a particle in a potential well under the in-
fluence of thermal fluctuations [14] and the average firing
time, or activation time Ta, can be expressed in terms of
the Kramers expression [14] for sufficiently small noise:

Ta ∝ eW/σ2

, (9)

where σ2 plays the role of an effective temperature andW
of an energy barrier. For σ2 < W , i.e., in the low noise

limit, the dynamics can be characterized as an activation
process: PISI(t) resembles a Poissonian distribution with
R ≈ 1. For σ2 > W , i.e., in the high noise limit, the
multi-peak structure and the exponential tail disappear
and PISI(t) reduces to an inverse Gaussian corresponding
to the distribution of the first passage times for a diffusive
process plus drift [26].
As a further indicator we have estimated the spike trig-

gered average potential (STAP) [18], that gives the aver-
age shape of V (t) preceding the emission of a spike, for
sufficiently long ISIs and for small σ. As shown in Fig. 3,
V (t) oscillates with period ≈ Tl before firing; therefore
the emission of a spike (for long ISIs) is triggered by the
excitation of linear subthreshold oscillations around the
fixed point. Thus the HH neuron nearby the rest state
acts as a sort of selective filter since it responds (by emit-
ting a spike) with higher probability when it is stimulated
with a specific input frequency (≈ 1/Tl = 61− 88 Hz for
0 ≤ Ī ≤ ISN ). This result agrees with the analysis of [27]
where it has been shown that a silent HH neuron sub-
jected to a sinusoidal current optimally resonates when
forced with a frequency linearly correlated with 1/Tl.
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FIG. 3: Ī = 5µA/cm2 and σ = 5.7. STAP preceding the
emission of a spike. At time t = 0 the potential overcomes
the spike detection threshold (fixed at −5 mV). STAP has
been calculated by averaging only over ISIs longer than 150
ms.

2. Coherent response of the Hodgkin-Huxley neuron

In the silent regime we have found the coexistence of
two CRs: one is related to the regularization of the emit-
ted spike trains at intermediate noise levels and has previ-
ously been reported in [10, 27]; the second one, observed
for the first time, occurs at very low noise and is associ-
ated to the coherence of subthreshold oscillations.
The first CR can be explained by noticing that the

dynamics of excitable systems can be characterized in
terms of two characteristic times [17]: an activation time
Ta, representing the time needed to excite the system,
and an excursion time Te, indicating the duration of the
spike (i.e., the time spent in the excited state). An ISI is
given by the sum of these two times and therefore R can
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be (formally) expressed as the sum of two parts depend-
ing separately on Ta and Te. These two contributions
vary in an opposite way when the noise is increased and
the competition of these two tendencies leads to the max-
imal coherence (associated to a minimum in R) for finite
noise [11, 17]. So there is an initial range of σ-values
where by increasing the noise the spike emission is facil-
itated (Ta reduces accordingly to Eq. (9)) and this ren-
ders the response of the neuron more and more regular.
On the other side at high σ-values the response becomes
again more irregular, because the noise induces firing
even during the relative refractory period thus modifying
even the duration Te of the spike itself. To summarize,
the activation process responsible for firing is gradually
substituted by a diffusive process with drift and at the
transition from one mechanism to the other a regulariza-
tion of the output signal is observed. As shown in Fig. 4,
for different values of Ī, both the coefficient of variation
R and the signal correlation time τc were able to identify
clearly the first kind of coherence in the silent regime.
We can also see that τc increases and R decreases when
Ī → ISN , i.e., the coherence of the emitted spike trains
increases by approaching the repetetive firing regime.

100
σ

10 100
σ

1

1.2

1.4

τ
c
 (ms)
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0.5

0.2

(a) (b)

FIG. 4: Coherence of the emitted spike trains for increasing
values of Ī in the silent regime. (a) τc (from bottom to top
Ī=-1,0,1,2,3,4,5 µA/cm2). (b) R (from top to bottom Ī=-
1,0,1,2,3,4,5 µA/cm2 ).

The second kind of resonance could only be detected by
τc. In fact this property is not related to spike emission
(suprathreshold dynamics) but to the behaviour of the
signal below the firing threshold. In Fig.5a the behaviour
of τc for Ī = 4µA/cm2 is shown in a wider range of
noise with respect to Fig. 4a. In this range τc exhibits
indeed two maxima: the first and higher maximum at low
noise (σ ≈ 3) is related to the coherence of subthreshold
oscillations, while the second one at intermediate noise
(σ ≈ 33) is due to the CR just discussed above.
Let us now gain deeper insight about the origin of these

two maxima. For extremely low noise (σ < 3) the neuron
rarely fires, i.e., Ta → ∞; increasing the noise the sub-
threshold oscillations generated by the input kicks are

1 10 100
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FIG. 5: Ī = 4µA/cm2: (a) correlation time τc (empty circles)
as a function of the standard deviation of the input noise σ:
(b) autocorrelation function C(t) for three increasing noise
values σ = 2.9 (continuous line), 4.5 (dotted line) and 9.7
(dashed line); the vertical dot-dashed lines indicates the pe-
riod Tl and the period Tfp for σ = 9.7.

more and more correlated. For σ > 3 the occurrence
of rare spikes tends to decorrelate the signal leading to
a decrease of τc. With a further increase of the noise
V (t) becomes essentially a sequence of spikes and C(t)
represents the correlation between them; a second peak
appears in τc indicating the maximal coherence of the
spike sequence.
To investigate the transition from one to the other

behaviour let us analyze the autocorrelation function of
V (t) for increasing value of σ, as shown in Fig. 5b. For
σ ≈ 3 the autocorrelation function C(t) oscillates with
a period ≈ Tl (see Sec. C 1), while at σ ≈ 9.7 the max-
ima of C(t) correspond to multiples of Tfp, i.e., the first
peak of PISI(t). In between these two values there is a
transition where the course of V (t), initially consisting
of mere subthreshold oscillations, is dominated by the
spikes. The transition is observed for σ ≈ 4.5, where in
correspondence to the first oscillation C(t) reveals two
maxima, one located at t ≈ Tl and another at t ≈ Tfp.

D. Conclusions

We have presented an analysis of the response of the
silent HH model in the high-input regime. In this regime
the HH neuron displays a large variety of dynamical be-
haviors and its response is completely determined by the
average and the variance of the stochastic input. Our
main result is the coexistence of two different coherence
resonances: the first one, at intermediate noise levels, as-
sociated with the regularization of the spikes emitted by
the neuron; the second one, at very low noise, related
to the coherence of subthreshold oscillations around the
fixed point. The first one can be revealed using both the
ISI coefficent of variation R and the autocorrelation time
of the signal τc. The second type of resonance, observed
for the first time, is not related to spike emission and can
thus only be detected by means of τc.
Moreover, we have examined the behaviour of the HH

neuron for low and high input noise variance. The rich-
ness of the HH dynamics is particularly pronounced for
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low input noise where we have found the coexistence of
a multimodal structure and an exponential tail in the
PISI(t). The peaks in the PISI(t) suggests that the sys-
tem, under the influence of stochastic inputs, can res-
onate when forced with specific frequencies: the first peak
is associated to frequencies in the γ-range [24] (namely,
from 40 to 66 Hz for Ī ∈ [0 : 9] µA/cm2), and the second
one to lower frequencies (namely, from 30 to 37 Hz for
the same interval of currents) [12].
In the silent regime the responsiveness of the single

neuron is enhanced by stochastic stimulations, in partic-
ular the regularity of the emitted spike trains is maximal
in correspondence to an optimal noise level. Moreover,
we expect that a population of such neuronal elements
will have the capability to exhibit coherent and corre-
lated activity over different time scales (mainly in the

γ and β-ranges [24]), a property that is believed to be
important for information encoding for cortical process-
ing [22]. Indeed it has been found [27] that for suffi-
ciently strong synaptic coupling a globally coupled HH
network subjected to stochastic inputs reveals a collec-
tive synchronized rhythmic firing in a range of 40 − 60
Hz, induced via CR.

To proceed in the direction of more realistic situations
the present analysis performed for a current-driven model
should be extended by considering conductance-based
synaptic inputs [20, 25]. It is surely worth to address
this issue in forthcoming studies, because the response
of these two classes of models to noise fluctuations can
sometimes be even opposite, as shown in [25] for the out-
put firing rate.
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