
Physical Biology
     

PAPER • OPEN ACCESS

DCA for genome-wide epistasis analysis: the statistical genetics
perspective
To cite this article: Chen-Yi Gao et al 2019 Phys. Biol. 16 026002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 130.192.10.10 on 06/08/2019 at 09:32

https://doi.org/10.1088/1478-3975/aafbe0
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/945017722/Middle/IOPP/IOPs-Mid-PB-pdf/IOPs-Mid-PB-pdf.jpg/1?


© 2019 IOP Publishing Ltd

1. Introduction

Direct coupling analysis (DCA) is a collective term 
for a number of related techniques to learn the 
parameters in Ising/Potts models from data and to use 
these inferred parameters in biological data analysis 
[1]. DCA has led to a breakthrough in identifying 
epistatically linked sites in proteins from protein 
sequence data [2–6], which in turn has been used to 
predict spatial contacts from the sequence data [7–9].  
DCA has also been used to identify nucleotide–
nucleotide contacts of RNAs [10], multiple-scale 
protein–protein interactions [11, 12], amino acid–
nucleotide interaction in RNA-protein complexes [13] 
and synergistic effects not necessarily related to spatial 
contacts [14–17], particularly in describing HIV and 
its interaction with the host immune system [18–20].

Skwark et al applied a version of DCA to whole-
genome sequencing data of a population of Strep-
toccoccus pneumoniae [21], and were able to retrieve  
interactions between members of the penicillin-
binding protein (PBP) family of proteins, as well as 
other predictions. S. pneumoniae (pneumococcus) 

is an important human pathogen where resistance 
to antibiotics in the β-lactam family of compounds 
are associated to alterations in their target enzymes, 
which are the PBPs [22]. Further results were recently 
given in [23] showing robustness by using sequencing 
data from a pneumococcal population from another 
continent, and identifying a novel seasonal pheno-
type signal. Three of the authors of the current article 
additionally recently showed that DCA analysis on the 
bacterial genome scale does not need supercomputing 
resources, but can be carried out in a reasonable time 
(hours) on a standard desktop computer [24].

These advances raise the question why DCA works 
at all, and if one can identify from the outset when that 
is the case. One of us has argued that ‘max-entropy’ 
reasoning often evoked in the DCA literature is not 
pertinent to this issue [25], for an opposite view see 
[26]. Regardless of one’s view on DCA in general, we 
will here argue that at least for genome-scale data the 
answer to why it works lies in a very different direc-
tion. We will show that the quasi-linkage equilibrium 
(QLE) of Kimura [27–29], as extended by Neher and 
Shraiman to statistical genetics on the genome scale 
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Abstract
Direct coupling analysis (DCA) is a now widely used method to leverage statistical information from 
many similar biological systems to draw meaningful conclusions on each system separately. DCA 
has been applied with great success to sequences of homologous proteins, and also more recently 
to whole-genome population-wide sequencing data. We here argue that the use of DCA on the 
genome scale is contingent on fundamental issues of population genetics. DCA can be expected to 
yield meaningful results when a population is in the quasi-linkage equilibrium (QLE) phase studied 
by Kimura and others, but not, for instance, in a phase of clonal competition. We discuss how the 
exponential (Potts model) distributions emerge in QLE, and compare couplings to correlations 
obtained in a study of about 3000 genomes of the human pathogen Streptococcus pneumoniae.
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[30, 31], provides a natural and rational basis for DCA. 
According to this theory a population evolving with 
sufficient amount of exchange of genetic material 
(recombination, or any form of sex) will settle down to 
a dynamic equilibrium where the distribution of geno-
types is of the form assumed by DCA. In the opposite 
case of little exchange of genetic material (little sex) 
the distribution over genotypes is different and domi-
nated by clones, identical or very similar individuals 
descended from common ancestors. In such a setting 
straight-forward application of DCA is not an appro-
priate approach, and is likely to yield nonsense results.

We will also discuss the inference task of DCA in 
the context of QLE as realistically applied to biologi-
cal data. We will first show that DCA can give a much 
sparser representation of the data than correlations 
(covariances). This is in line with the intended mean-
ing of the acronym DCA: the parameters in a Potts or 
an Ising model can be considered ‘direct couplings’, 
and while these are typically reflected in correla-
tions (covariances), the latter also includes combined 
effects, or ‘indirect couplings’. Second, the authors 
of [30, 31] assumed that a genotype can be described 
by a Boolean vector i.e. a string of 0s and 1s. This is 
almost never the case for population-wide whole-
genome sequencing data due to varying gene content, 
which have to be represented as gaps. We have there-
fore generalized the theory to categorical data and to a 
model of bacterial recombination. Third, as surveyed 
in [1], DCA as a methodology has matured consider-
ably over the last decade. For the mathematical task of 
inferring parameters in a Potts or Ising model from 
data which was generated from such a model, the 
small-interaction expansion (SIE) used in [30, 31] 
is inferior to many other inference methods. We will 
show that it is also inferior when applied to real data 
in the sense of yielding much less sparse results, and 
would also have specific problems when applied to 
simulation data. For convenience we include a deriva-
tion of SIE as applied to categorical data in appendix 
A. A conclusion of this work is hence that when QLE is 
combined with DCA on the genome scale, it should be 
combined with one of the modern and more powerful 
versions of DCA.

The paper is organized as follows. Sections 2–5 
reformulate the theory of [31] in a way suitable to our 
presentation and for categorical data. Section 2 hence 
contains a non-mathematical overview, while sec-
tions 3 and 4 contain the specific changes needed for 
categorical data and our model of bacterial recombi-
nation. In section 2 we also define what we mean by 
‘statistical genetics’, and give further background ref-
erences. Section 5 formulates the dynamics of Potts 
model parameters in QLE phase, which is a central 
result of the theory. Section 6 presents results for real 
sequence data and section 7 for simulation data. Sec-
tion 8 contains discussion and outlook for future work. 
Technical details such as a derivation of SIE for cate-
gorical data (referred to above), a detailed derivation 

of the central result in (25), and sequence and code 
availability are given in appendices.

2. Statistical genetics and quasi-linkage 
equilibrium

Statistical genetics is the term advanced in [31] 
to emphasize the formal similarities between the 
dynamics of genomes in a population and entities 
(spins) in statistical physics. Such analogies have in 
fact a long history: Fokker–Planck equations were 
introduced to describe the change of probability 
distributions over genotypes by Fisher [32, 33], 
and Kolmogorov [34]; for more recent physical 
perspectives see [35] and [36], and references therein. 
Modern notions of non-equilibrium statistical physics 
such as entropy production and fluctuation relations 
have also been shown to have analogies in the theory of 
biological fitness [37]. Central to the discussion in [30] 
and [31] is the inclusion of recombination, formally 
similar to a collision operator, which therefore leads 
beyond the level of linear models (Fokker–Planck 
equations). We will in the following use the term 
statistical genetics in this more restricted sense to 
emphasize effects of recombination (analogous to 
non-zero collision rates and the dynamics of non-ideal 
gases) and present key concepts and results in a mostly 
non-mathematical manner.

The driving forces of evolution are assumed to be 
genetic drift, mutations, recombination, and fitness 
variations. The first refers to the element of chance; in a 
finite population it is not certain which genotypes will 
reproduce and leave descendants in later generations. 
In an infinite population, the latter three are deter-
ministic, describing the expected success or failure 
of different genotypes. Mutations are hence random 
genome changes described by mean rates.

Recombination (or sex) is the mixing of genetic 
material between different individuals. In diploid 
organisms every individual inherits half of its genetic 
material from the mother, and half from the father. 
This material is also before that mixed up in the pro-
cess called cross-over so that a chromosome of the 
child inherited from one parent typically consists of 
segments alternately taken from the two chromosomes 
of that parent. By sequencing the parents and children 
in a single family the per generation mutation rate and 
number of cross-over segments in human has been 
measured to be about 30 and 100 [38], numbers that 
are in line with previous estimates. By this measure 
recombination is hence in human about three times 
faster than mutations. In bacteria recombination 
happens by transformation (ability to take up DNA 
from the surroundings), transduction (transfer of 
genetic material by the intermediary of viruses), and 
conjugation (direct transfer of DNA from a donor to 
a recipient). The ratio of recombination to mutations 
differ greatly between different bacterial species and 
can also differ between different strains and differ-
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ent environments of the same species. In this work we 
use data from S. pneumoniae where this ratio has been 
estimated from less than one to over forty, but with an 
average close to nine [39]. Similarly to the analysis in 
[31] we will for the most part here assume that recom-
bination is a faster and stronger effect than mutations.

Fitness means in statistical genetics a propen-
sity for a given genotype to propagate its genomic 
material to the next generation. Like mutation and 
recombination fitness is hence here a rate, meas-
ured in units (time)−1. Fitness variations refer to the 
variations of these rates. Consider then the effects of 
recombination and fitness on correlated variations in 
a population, ignoring mutations and genetic drift. 
The correlation between alleles α and β at loci i and 
j  is Mij(α,β) = fij(α,β)− fi(α) fj(β) where fi(α) is 
the frequency of allele α at locus i and similarly fj(β), 
and where fij(α,β) is the frequency of simultaneously 
finding alleles α and β at loci i and j . If there is recom-
bination between i and j  but are no fitness variations at 
all, then it is trivial to see that Mij(α,β) must decay to 
zero. This state is called linkage equilibrium (LE).

If now instead fitness variations are small but non-
zero, then non-zero correlations may persist. We will 
assume that the fitness of genotype g which carries 
allele gi on locus i depends on single-locus variations 
and pair-wise co-variations, that is

F(g) = F0 +
∑

i

Fi(gi) +
∑

ij

Fij(gi, gj). 
(1)

If so, the first central result of statistical genetics is 
that when recombination is sufficiently strong, the 
distribution of genotypes will have the form

P(g) =
1

Z
exp


∑

i

hi(gi) +
∑

ij

Jij(gi, gj)


 . (2)

The above distribution is also the Gibbs–Boltzmann 
distribution over variables g with energy terms hi 
and Jij, and where Z (the partition function) is the 
normalization. The second central result is that

Jij(α,β) =
Fij(α,β)

rcij
 (3)

where r is an overall recombination rate and cij is the 
probability that alleles at loci i and j  are inherited from 
different parents. Recombination in real organisms will 
typically have structure and around ‘recombination 
hotspots’ (positions where recombination is more 

likely), cij will increase to its asymptotic value 1
2 at a 

faster rate. A method to infer recombination hotspots 
in bacterial genomes was discussed in [40], and the 
issue was also discussed in the first publication on 
the ‘Maela’ data set [41]. For the most part we will 

in the following assume that cij equals 1
2, appropriate 

if recombination is sufficiently strong and loci i and 
j  are sufficiently far apart on the genome. Note that 
the right-hand side of (3) is the ratio of two rates, and 
therefore dimension-less. For the distribution (2) the 

parameters Jij(α,β) carry the same information as 
the correlations Mij(α,β) but in a de-convoluted or 
‘direct’ manner.

Inferring Jij(α,β) from data is what the methods 
known as DCA achieve [1]. From (3) this gives fitness 
parameters Fij(α,β) up to a proportionality (the overall 
rate r), and for pairs of loci sufficiently far apart on the 
genome so that cij is approximately constant. Recom-
bination does not change single-locus frequencies; in a 
stationary state parameters hi(α) instead result from a 
dynamic equilibrium between fitness and mutations. 
In the absence of mutations QLE in an infinite popula-
tion is in fact only a long-lived transient while the hi(α) 
change slowly in time as the population drifts towards 
fixation. Non-zero mutations are therefore necessary to 
maintain the quasi-linkage equilibrium state itself, but 
are not necessary to describe the properties of that state 
that we are mainly interested in (the Jijs). In a finite pop-
ulation both hi(α) and Jij(α,β) also fluctuate in time, 
and the prediction (3) does not apply directly. All these 
aspects have to be taken into account when applying 
DCA techniques to analyze a QLE phase.

The third central prediction of statistical genetics 
is that when fitness variations still have the form (1) 
but are not small compared to recombination, then the 
distributions will not be of the form (2). In that phase, 
in [30, 31] called clonal competition (CC), the distribu-
tion is instead better described as

P(g) =
∑

c

µcPc(g) (4)

where the sum goes over clones, µc is the weight of 
clone c, and Pc(g) is some distribution peaked around 
clone center gc. Statistical genetics hence predicts a 
parameter-dependent transition between the two 
canonical distribution families in high-dimensional 
statistics, namely the exponential model (2) and the 
mixture model (4). A further difference between 
QLE and CC is that in QLE the joint distribution over 
more than one genotype approximately factorizes, 
P(g1, . . . , gN) ≈ P(g1) · · · P(gN). In CC phase this 
is not so; genomes related by descent do not vary 
independently. The structure of the CC phase was 
studied in [42], but the problem of inferring fitness 
parameters in that phase has to our knowledge not 
been addressed. Although interesting we will have to 
leave that to future work. We note that even if each of 
clone distributions Pc(g) is a Potts model distribution, 
the total distribution P(g) is then a mixture of 
Potts distribution for which the inference task is 
computationally considerably more difficult. The only 
approach we are aware of [43] would likely be difficult 
to apply on the genome scale.

3. Statistical genetics for categorical data

In this section we summarize statistical genetics as 
formulated in [30, 31] in a more technical manner, and 
generalize the theory to categorical data, i.e. to when 
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there can be more than two alleles per locus. Let there 
be Ai alleles at locus i and let the allele be indicated by a 
variable li that takes values 1, 2, . . . , Ai . The frequency 
of allele α at locus i is

fi(α) = 〈1li,α〉, (5)

where 1i,j  is the Kronecker delta. These quantities 

satisfy 
∑Ai

α=1 fi(α) = 1. The covariance matrix 
between loci i and j  is

Mij(α,β) = 〈1li,α1lj ,β〉 − fi(α) fj(β). (6)

These quantities satisfy 
∑Ai

α=1 Mij(α,β) =  ∑Aj

β=1 Mij(α,β) = 0.  A non-zero norm of a 

covariance matrix (scalar value) is termed linkage 
disequilibrium (LD) in population genetics [46]; 
here we deviate from this conventional notation as we 
are also interested in the individual matrix elements, 
as well as the formally similar variance matrix at one 
locus. This variance matrix is

Mii(α,β) = 1α,β fi(α)− fi(α) fj(β) (7)

and satisfies 
∑Ai

α=1 Mii(α,β) =
∑Aj

β=1 Mii(α,β) = 0.
Statistical genetics are evolution equations for the 

distributions over genotypes

d

dt
P(g) =

d

dt
|mutP(g) +

d

dt
|fitnessP(g) +

d

dt
|recombP(g)

 (8)

where the three terms on the right-hand side represent 
the changes due to mutations, fitness variations and 
recombination. The mechanisms of mutations and 
fitness are classical in population genetics, and referred 
to as Wright–Fisher or Wright–Fisher-like models 
[36].

Single-locus mutations are hence modelled by 

matrices µ
(i)
α,β which give the rate at which allele α 

on locus i changes to allele β. Let F
(i)
α,β be the operator 

which if the allele at locus i is α changes it to β, and 
otherwise does nothing. In the dynamic equation for 
probability mutations hence enter as

d

dt
|mutP (g) =

∑
i

∑
αβ

1gi,α

(
µ
(i)
β,αP

(
F(i)
α,βg

)
− µ

(i)
α,βP (g)

)
.

 (9)

This gives contributions to the dynamic equations for 
the frequencies and correlations as

d

dt
|mutfi(α) =

∑
γ

µ(i)
γ,αfi(γ)−

∑
γ

µ(i)
α,γ fi(α) (10)

d

dt
|mutMij(α,β) =

∑
γ

µ(i)
γ,αMij(γ,β)−

∑
γ

µ(i)
α,γMij(α,β)

+
∑
δ

µ
( j)
δ,βMij(α, δ)−

∑
δ

µ
( j)
β,δMij(α,β).

 (11)

In the simulations reported below all transition rates 

µ
(i)
α,β are the same. As discussed previously it is often 

a reasonable assumption to take mutations a weaker 
effect than fitness variations and recombination.

Fitness variations, such as (1), act on the distribu-
tions over genotypes as

d

dt
|fitnessP (g) = (F(g)− 〈F〉) P (g) (12)

where 〈F〉 =
∑

g F(g)P (g) is the instantaneous 
average of fitness over the population.

Potts models were introduced above in (2). As 
written that model over-parametrized since the same 
distribution is found by shifting all hi(α) by a constant 
ci or all Ji,j(α,β) by a vector cij(β), or a vector cij(α). 
In the DCA literature it is customary to go to the Ising 
gauge [2, 47] given by
∑
α

hi(α) =
∑
α

Ji,j(α,β) =
∑
β

Ji,j(α,β) = 0.
 

(13)

The fitness function (1) also has this kind of invariance, 
and we will also use the Ising gauge for this quantity.

4. Bacterial recombination in statistical 
genetics

Recombination (or sex) takes many different forms 
depending on if the organism is haploid or diploid and 
the type of recombination. The mechanism formulated 
in [30, 31] is specifically for sexual reproduction in 
haploid yeast, where two parents each produce a 
mating body (copy of parent genome), and these two 
mating bodies merge and produce one new genome 
while the other half of the genetic material of the two 
mating bodies is discarded. As closer to our data we 
consider instead a form of bacterial recombination, for 
which however the evolution essentially turns out to be 
the same, modulo a Stosszahlansatz.

Recombination is thus (we assume) distinguished 
by two genomes merging and forming two new 
genomes. This does not directly model conjugation 
where one bacterium gives genetic material to the 
other, but can model transformation and transduc-
tion over time where material can go both ways. In  
S. pneumoniae recombination happens by transforma-
tion and homologous recombination. In an elemen-
tary step two genotypes are hence lost (the parents) 
and two genotypes are gained (the offspring). Let 
Eg1,g2→g′1,g′2

 be the event that two individuals with geno-
types g1 and g2 recombine and give two individuals g′1 
and g′2. To describe the kinetics of the individual pro-
cess we assume that recombination between the two 
parents happen with rate rQ(g1, g2) where r an overall 
rate of recombination and Q(g1, g2) a relative rate. The 
two new genotypes g′1 and g′2 are specified by an indica-
tor variable ξ:

g′1 : g(1)′

i = ξig
(1)
i + (1 − ξi)g

(2)
i (14)

g′2 : g(2)′

i = (1 − ξi)g
(1)
i + ξig

(2)
i (15)

Phys. Biol. 16 (2019) 026002
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and this outcome of the recombination happens with 
probability C(ξ). The total rate of the individual event 
is hence rQ(g1, g2)C(ξ). The change of the distribution 
over genotypes due to recombination is given by

d

dt
|recP(g) = r

∑
ξ,g′

C(ξ)
[
Q(g1, g2)P2(g1, g2)

− Q(g, g′)P2(g, g′)
]
.

 

(16)

This equation is of a type familiar from non-ideal 
gas theory: the change in a one-particle distribution 
(one-genome distribution) depends on the two-
particle distributions (two-genome distributions). 
In practice it is hard to use (16) without a closure, 
such as assuming that the pair probabilities factorize. 
Note that the sum on the right-hand side is over one 
of the parents (g′) and the indicator variable ξ which 
together give the child g. We assume for simplicity also 
that Q depends only on the overlap q between the two 
genotypes g and g′:

q(g, g′) =
1

L

L∑
i=1

1gi,g′i
. (17)

Recombination as modelled above does not change 
the overlap. This can be seen as follows: q(g1, g2) = 

1 − 1
L

∑L
i=1 1

l(1)
i ,l(2)

i

 and 1
l(1)
i ,l(2)

i
= ξi(1 − ξi)1li,li + ξ2

i 1li,l′i
+   

(1 − ξi)
21l′i ,li + (1 − ξi)ξi1l′i ,l′i

. As the indicator 
variable takes values zero and one this gives 
1

l(1)
i ,l(2)

i
= 1li,l′i

.
Let us now assume that the two-genome distri-

bution factorizes, that the one-genome distribution 
is of the Potts type and that all quadratic Potts model 
parameters Jij are small. These assumptions will be 
seen to be self-consistent when the recombination rate 
r is high. By a perturbative calculation, which we give in 
appendix B (essentially the same as found in appendix 
B of [31]) the right-hand side of (16) simplifies to:

r
∑
ξ,g′

C(ξ)P(g′)Q(g, g′)
∑

i,j,α,β

Ji,j(α,β)
(

1
g(1)

i ,α
1

g(1)
j ,β

+ 1
g(2)

i ,α
1

g(2)
j ,β

− 1gi,α1gj ,β − 1g′i ,α1g′j ,β

)

=
∑

i,j,α,β

cijJi,j(α,β)
(

1gi,αEQ

[
1g′j ,β

]
+ EQ

[
1g′i ,α

]
1gj ,β

− 〈Q〉1gi,α1gj ,β − EQ

[
1g′i ,α1g′j ,β

] )

 
(18)

where we have used the abbreviations

cij =
∑
ξ

C(ξ)
(
ξi(1 − ξj) + (1 − ξi)ξj

)
 (19)

〈Q〉 =
∑

g′

Q(g, g′)P(g′)
 (20)

EQ

[
1g′i ,α

]
=

∑
g′

1g′i ,αQ(g, g′)P(g′)
 (21)

EQ

[
1g′i ,α1g′j ,β

]
=

∑
g′

1g′i ,α1g′j ,βQ(g, g′)P(g′). (22)

The first of these is the probability that two loci are 
inherited from the same parent and does not (for 
this model) depend on the genotype g. The last three 
averages on the other hand depend on g. However, if the 
function Q is not too sharply focused the dependence 
can be taken weak. In particular, we assume that 〈Q〉 is 
self-averaging, and essentially does not depend on g. In 
spin glass physics language [44, 45], we hence assume 

that 〈Q〉, 〈Q1l′i ,α〉 and 〈Q1l′i ,α1l′j ,β〉 are self-averaging 

in the ‘paramagnetic’ phase where QLE is expected to 
hold.

5. Evolution equation for log-probability 
in QLE

In QLE the evolution equation can conveniently be 
written for the logarithmic probability

d

dt
log P(g) = − Ż

Z
+

∑
i,α

ḣi(α)1gi,α +
∑

i,j,α,β

J̇i,j(α,β)1gi,α1gj ,β

 (23)

and the various terms identified. Fitness enters (23) as

d

dt
|fitnesshi(α) = Fi(α)

d

dt
|fitnessJi,j(α,β) = Fi,j(α,β)

 (24)

and if there were higher-order terms in fitness (more 
than pair-wise dependencies) they would enter higher 
than quadratic terms in the QLE distribution in the 
same way. Ignoring mutations and genetic drift we 
have for the pair-wise dependencies

J̇i,j(α,β) = Fi,j(α,β)− r〈Q〉cijJi,j(α,β) (25)

where the contribution from recombination can be 
read off from (18), for more detail see appendix B. 
Equation (25) is a relaxation equation which pushes 
the Potts model parameter Ji,j(α,β) to be the ratio 
of two rates, (3) above. When the data is from one 
population in a stationary state the average relative 
rate 〈Q〉 can be subsumed in the overall rate r. When 
genotypes are Boolean vectors this gives the same 
result as equation (25) in [31].

As observed above recombination does not change 
single-locus frequencies, and without mutations the 
fi(α) will drift towards fixation (taking values 0 or 
1). Once the population has reached fixation at locus 
i there can no longer be any non-zero correlation of 
Potts parameter involving i, and in such a setting QLE 
is therefore only a long-lived quasi-stationary state (for 
the correlations, and for the Ji,j(α,β)’s). Note that by 
(18) recombination terms enter in the evolution equa-
tions of hi(α), in combination with the quantities 
Ji,j(α,β). This is no contradiction, because when cor-
relations are non-zero there is not a one-to-one rela-
tion between single-locus frequencies ( fi(α)) and Potts 
model magnetization parameters (hi(α)); recombina-
tion can influence the latter but not the former.

The break-down of the relaxational equation (25) 
when the single-locus frequencies go to fixation can be 
understood as follows. In such a setting the Ji,j(α,β)’s 
would first remain small while the hi(α)’s would tend 
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to ±∞. When the hi(α)’s become large enough that 
the minor alleles in a finite-N population are likely to 
be present only in a few copies, a few random events 
can remove all of the remaining ones at once, which 
sets the correlation and the Ji,j(α,β) to zero in one go.

6. DCA for whole-genome sequencing data

A set of whole-genome sequences of the human 
pathogen S. pneumoniae obtained in the Maela 
collaboration (see appendix C) can be represented 
as about 3000 genotypes of about 100 000 loci each. 
Correlations and Potts model terms obtained from 
this data have qualitatively different distributions, as 
shown in figures 1 and 2.

The number of correlations larger than a cut-off 
c grows quickly when c decreases below its maximum 
value, while the cumulative distribution of inferred 
Potts model couplings has a much more pronounced 
tail. This implies that the set of largest DCA couplings 
is better separated than the largest correlations from 
the unavoidable background due to under-sampling 
[48, 49]. Correlations also generally have a more uni-
form distribution across genomic distance, while the 
representation as a Potts model is sparser (figures 2(a) 
and (b)). The first-order perturbative version of DCA 
employed in [30, 31], which is here called SIE and 
briefly reviewed in appendix A, gives in both instances 
results closer to correlations (see figures 1(c) and 2(c)).

Figure 3 shows pair-wise density-plots of cor-
relations and DCA terms obtained by PLM and SIE.
Because there are too many points, we divide the area 
inside each frame into 300 × 300 cells and the colour 
indicates log10(count) inside each cell. In all three cases 
the scatter-plots are ‘clouds of points’, indicating that 
DCA and correlations measure different properties 
of the data. Figure 3(a) shows a weak trend, such that 
larger PLM scores are associated to larger correlations. 
Such trends are absent in figures 3(b) and (c), and SIE 
values are also numerically large. In fact, the correla-
tion matrix is under-sampled, hence smaller correla-
tions reflect sampling noise and this is also an issue for 
SIE, as well as the sensitive dependence on almost fixed 
alleles in this procedure. PLM scores and correlations 
were compared graphically for this data in [24], with a 
cut-off excluding short-range interactions.

7. The QLE phase is obscured by genetic 
drift

In a finite population statistical genetics as described 
above only holds on the average; when following one 
population in time fluctuations of order N− 1

2 appear 
for observables such as single-locus frequencies and 
pair-wise loci–loci correlations. Figure 4 reports 
simulations using the FFPopSim software showing 
that these fluctuations can in practice be quite large, 
even for populations that are not small.

Figure 1. Cumulative distributions of (a) correlations; (b) pseudo-likelihood maximization (PLM); (c) small-interaction 
expansion (SIE); semi-logarithmic scale visualizing the distributions of of approximately 1010 elements. The scalar value associated 
to each pair of loci i and j  is the Frobenius norm of the 3 × 3-correlation matrix (case a) or the Frobenius norm of the inferred Potts 
model 3 × 3-matrix element (cases b and c).

Figure 2. Distributions as functions of genomic distance: (a) correlations; (b) pseudo-likelihood maximization (PLM). (c) Small-
interaction expansion (SIE). Same data and same norms as in figure 1. Figures show averages in windows of genomic distance. Blue: 
maximum, red: top-1%, yellow: top-5%, violet: top-10%, green: mean, all in window. The curves in (b) show a sharp initial decrease 
with genomic distance, which generally much lower values beyond genomic distance 103 where recombination can be expected to 
act effectively.
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According to the theory developed in [31] (appen-
dix C) dynamics of correlations is relaxational and the 
curves of correlations versus time hence should fluctu-
ate around an equilibrium value, which is the one given 
in (3). The fluctuations in figure 4 are however large 
compared to the pair-wise fitness values, and DCA 
inference from instantaneous values of the ensemble 
correlations cannot be expected to be good predictors 
for pairwise fitness. The dynamics of frequencies is not 
relaxational, and one may hence observe large changes 
where the population at one locus changes from one 
allele to another.

8. Discussion

The main question addressed in this work is if and 
when DCA can be expected to work for genome-
scale epistasis analysis. We have given an answer in 
the context of statistical genetics: for a population 
evolving under recombination, mutations and fitness 
variations this is so when recombination is sufficiently 
fast. The joint distribution of the population over 
genotypes then approximately factorizes into a 
product of identical Potts distributions (2). Treating 
a set of genomes as independent samples from such 
a distribution allows to infer fitness parameters (Fij) 

from Potts model parameters (Jij) by inverting (3), and 
this is essentially what using DCA on genome-scale 
pneumococcal data means [21, 23, 24, 50]. We now 
discuss limits to the analysis, and further directions.

A first limitation is that straight-forward applica-
tion of DCA cannot be expected to yield meaning-
ful results when recombination is weak. One exam-
ple of such an effect was already given in [21] where 
also data from Streptococcus pyogenes was presented  
(figure 6 of [21]). Another example was recently given 
on Vibrio parahaemolyticus, a human gastrointestinal 
pathogen in panmixia, i.e. where all strains are able to 
recombine, but having a very low overall recombina-
tion rate [51]. In contrast, a recent paper reports good 
results for DCA on Neisseria gonorrhoeae [17], a bac-
terium which also has a high rate of recombination. 
Similarly, results reported on the one-gene level in 
HIV [18–20, 52–54] are also explainable by the con-
siderable rate of recombination in the virus when a 
host is infected by more than one strain [55, 56]. The 
problem of inferring fitness from data on popula-
tions that are in the CC phase or that have only a few 
large epistatic fitness parameters for which the ratios 
Fij

rcij
 are not small appears to be both conceptually and 

practically important. We hope to be able to return to 
such questions in future work.

Figure 3. Pair-wise density plot of coupling strength quantified by correlations, PLM scores and SIE scores: (a) PLM scores versus 
correlations; (b) SIE scores versus correlations; (c) SIE scores versus PLM scores. The area inside axes is divided into 300 × 300 cells 
and the colour indicates log10(count) inside each cell. Same data and same norms as in figures 1 and 2. The numerical scale in each 
direction depends on the details of the norms and inference procedure, e.g. PLM scores depend on �2 regularization parameters. 
Correlations and PLM scores are numerically similar while SIE scores are not, as discussed in text.

Figure 4. Temporal behavior of (a) all magnetizations defined as χi = fi(2)− fi(1) and ((b) and (c)) two selected correlations 
defined as χij = fij(1, 1)− fij(1, 2)− fij(2, 1) + fij(2, 2) in a simulation of a population of Ising genomes (two alleles per locus). 
Number of loci L of the genotypes is 256, number of genotypes N in the population is 50 000, other simulation parameters as 
reported in table F1. Data is taken every five generations, total simulation time is 2500 generations.
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A second limitation concerns finite populations, 
particularly simulated data, where the population 
has to be of moderate size. According to the theory 
developed for Ising genomes in [31] (appendix C) and 
qualitatively confirmed above in figure 4, frequencies 
and correlations follow stochastic differential equa-
tions with noise strength scaling as N− 1

2. In principle 
Potts model parameters (hi(α) and Jij(α,β)) for cat-
egorical data also follow stochastic differential equa-
tions, but of a more complicated form due to the 
inverse Ising/Potts relations. Applying the DCA proce-
dure to finite-N data thus requires parameter inference 
from a high-dimensional stochastic time series with 
a complicated deterministic part. This may not be an 
easy task.

A third limitation is the neglect of spatial and 
environ mental separation. Bacteria such as the human 
pathogen Helicobacter pylori readily recombine if they 
meet, but can only do so when their human host popu-
lations overlap [57]. Allele frequencies may be differ-
ent for different bacterial populations, reflecting dif-
ferences in the host populations and environments. If 
data from the different populations is pooled, this will 
be a confounding factor for some flavors of DCA e.g. 
for PLM and SIE, these types of issues appear to merit 
further study.
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Appendix A. The small-interaction 
expansion (SIE) for categorical data

The small-interaction expansion (SIE) is introduced 
for Boolean data in [30, 31]. Here we give a derivation 

of SIE for categorical data. We need the solution of the 

matrix equation uα =
∑

β Mii(α,β)vβ in the space 
of vectors orthogonal to (1, 1, . . . , 1), where the one-
locus allele correlation matrix Mii(α,β) is defined in 
(7). That is given by

vα =
uα

fi(α)
− 1

Ai

Ai∑
β=1

uβ

fi(β)
. (A.1)

Consider now the Potts model when all the interac-
tion parameters Jij(α,β) are small. One frequency can 
be estimated to zeroth and first order as

fi(α) =
ehi(α)

Ni
+
∑
j,β

Ji,j(α,β)
ehi(α)

Ni

ehj(β)

Nj

−
∑
j,β,γ

Ji,j(γ,β)
ehi(α)

Ni

ehi(γ)

Ni

ehj(β)

Nj

 
(A.2)

where we have used the abbreviation Ni =
∑

α ehi(α).  
The fluctuation–dissipation relations for the Potts 
model read

Mij(α,β) =
∂fi(α)

∂hj(β)
 (A.3)

and therefore, comparing (7),

Mij(α,β) =
∑
γ,δ

Ji,j(γ, δ)Mii(α, γ)Mjj(β, δ).
 

(A.4)

Since the Potts parameters are in the Ising gauge   
[2, 47] the matrix multiplications in (A.4) can be 
inverted using (A.1):

Ji,j(α,β) =
Mij(α,β)

fi(α) fj(β)
− 1

fj(β)

∑
γ

Mij(γ,β)

fi(γ)

− 1

fi(α)

∑
δ

Mij(α, δ)

fj(δ)
+

∑
γ,δ

Mij(γ, δ)

fi(γ) fj(δ)
.

 (A.5)

This can be interpreted as an inference algorithm where 
the interaction parameters Jij(α,β) are determined 
from the single-locus frequencies fi(α) and pair-
wise locus–locus correlations Mij(α,β). Since it is a 
first-order perturbative solution to naive mean-field 
inference, SIE can be expected to be a comparatively 
weak inference procedure. Figure A1 confirms that this 
is the case for the Sherrington–Kirkpatrick spin glass 
model. An implementation of SIE for categorical data 
can be found at www.github.com/gaochenyi/DCA-
QLE.

Appendix B. Perturbative calculation of 
recombination in QLE phase

This appendix contains a detailed derivation of 
(18) in the main text. The derivation is analogous 
to the derivation of equation (B4 b) in [31], with 
modifications due to categorical data and our model 
for the recombination process.

The starting point is the right hand side of (16) 
which we repeat here up to the overall factor r:

Expr. =
∑
ξ,g′

C(ξ)
[
Q(g1, g2)P2(g1, g2)

− Q(g, g′)P2(g, g′)
]
.

 
(B.1)

It is understood in (B.1) g1 and g2 are two parent 
genomes that give rise to two child genomes g and 
g′ related to the parent genomes by the indicator 
variable ξ.

Let us now assume that (i) the two-genome distri-
bution functions factorize and (ii) the one-genome 
distribution functions are of the Potts type. Then

P2(g1, g2) =
1

Z2
exp

(∑
i

(
hi(g

(1)
i ) + hi(g

(2)
i )

))

· exp


∑

ij

(
Jij(g

(1)
i , g(1)

j ) + Jij(g
(2)
i , g(2)

j )
)
 .

Phys. Biol. 16 (2019) 026002

http://www.github.com/gaochenyi/DCA-QLE
http://www.github.com/gaochenyi/DCA-QLE


9

C-Y Gao et al

According to the indicator function ξ the value of gi is 

g(1)
i  or g(2)

i , the other value taken by g′i . Hence

hi(g
(1)
i ) + hi(g

(2)
i ) = hi(gi) + hi(g

′
i ) (B.2)

the same effect that recombination does not change 
single-locus frequencies. We can therefore write

P2(g1, g2) = P2(g, g′) exp


∑

ij

(
Jij(g

(1)
i , g(1)

j ) + Jij(g
(2)
i , g(2)

j )
)



· exp


∑

ij

(
−Jij(gi, gj)− Jij(g

′
i , g′j )

)

 .

 

(B.3)

If we now assume (iii) that all the quadratic Potts terms 
are small we can expand the exponential in (B.3) to 
zeroth and first order in the quantities Jij.

Using that Q by assumption only depends on the 
overlap and that overlap is preserved by recombina-
tion the zeroth order contribution to (B.1) is

Expr. = P(g)
∑
ξ,g′

C(ξ)
[
Q(g, g′)P(g′)

− Q(g, g′)P(g′)
]

 
(B.4)

which vanishes. The first order contributions on the 
other hand give (18) in the main text.

Appendix C. S. pneumoniae sequence data

Whole-genome sequences of carriage isolates from 
two birth cohorts of infants and their mothers in the 
Maela refugee camp (Thailand) [58, 59] were reported 
in [41]. This data was filtered for positions (loci) that 
carry at most two alleles and a moderate amount of 
gaps, as described previously [21, 24]. This procedure 
results in 3145 genotypes each containing 81 506 
loci, where the alleles at each locus can take three 
values (major, minor, gap). The original MSA data 
can be found in [21], while the filtered MSA can be 

retrieved by the pipeline function in www.github.com/
gaochenyi/DCA-QLE.

Appendix D. Correlation matrix 
computations

Correlation matrices were computed using the 
MATLAB implementation available at [60] (www.
github.com/gaochenyi/CC-PLM). On the Maela data 
set (L  =  105) the compute time was approximately 30 
core-hours using a 56-core server with four Intel Xeon 
E7-4850 v3 processors. The run-time memory used is 
about 70 GB storing all correlations in memory.

Appendix E. Direct coupling analyses

Potts model parameters were inferred by the asymmetric 
�2-regularized pseudo-likelihood maximization 
method [47] using the software PLM at [60] (www.
github.com/gaochenyi/CC-PLM). On the same data 
set and in the same compute environment as above, the 
total compute time was about 20 000 core-hours. The 
implementation of naive mean-field inference (NMFI) 
for Boolean data used in the paper can be found at www.
github.com/gaochenyi/DCA-QLE.

Appendix F. Simulations of Wright–Fisher 
model with pairwise fitness function  
and recombination

Simulations of the Wright–Fisher model with 
recombination were done with the FFPopSim 
simulation package [61] with parameter settings as 

given in table F1.
In the simulations reported in figure 4 single-locus 

contributions to fitness (parameters Fi) are zero, while 
pair-wise loci–loci contributions (parameters Fij) are 
random and small (±7.8 × 10−5).

Figure A1. Root mean square error of three inference algorithms on Sherrington–Kirkpatrick (SK) spin glass. Abscissa (x-axis): 
temperature. Ordinate (y -axis): pseudo-likelihood maximization (PLM), naive mean-field inversion (NMFI) and small-interaction 
expansion (SIE). The SK model is a widely studied test case in the DCA literature; performance of other inference algorithms can be 
found in see [1], and references cited therein.
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Table F1. Parameter settings for the simulations reported as 
figure 4 in main text.

Parameter Setting

Number of loci (L) 256

Circular Yes

Number of traits 1

Population size 126 641

Carrying capacity (N) 50 000

Generation 0

Outcrossing rate (r) 1.0

Crossover rate (ρ) 0.05

Recombination model CROSSOVERS

Mutation rate (µ) 0.01

Participation ratio Y 0.0022

Number of non-empty clones (N) 500
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