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ABSTRACT

A procedure for in-field nondestructive evaluation of lapideous materials is described.
A portable instrument has been developed to evaluate the average permittivity of the probed
volume. This is based on measuring the resonance frequency of a microstrip patch sensor.
Once this hardware is enabled to perform coherent measurements, the optimization of an
edge-preserving energy functional can yield high-resolution permittivity range profiles.

1 INTRODUCTION

Portability, user-friendliness and unexpensiveness are among the most important
requirements of any nondestructive evaluation system to be used outside a laboratory by non-
specialist personnel. These requirements hold true for both the probing-measurement
hardware and any possible online imaging-display software. In particular, these issues are
relevant in characterizing lapideous materials, with applications, e.g., in diagnostics of
architectural elements or online quality control of building materials. A complete dielectric
characterization of an object should be a 3D map of its complex permittivity. Although
microwaves are sensitive to permittivity, to the state of the art, this would require complicated
scanning systems and expensive software procedures (see [1] for a collection of papers also
dealing with experimental issues). For this reason, we split the problem in different subtasks,
whose outputs carry useful pieces of information for practical nondestructive diagnosis. In
particular, we are able to build 2D maps of volume-averaged permittivities by only measuring
the resonance frequencies of suitable structures loaded by the material under test. To this
purpose, we developed a dedicated microwave sensor and a simplified scalar network
analyzer by which we can probe lapideous materials, typically with permittivities in the range
4-12 and possible inclusions of air or other etherogeneous materials. An inhomogeneity in one
of these 2D maps reveals an anomaly in the mean permittivity, but does not give any other
information on the  physical-geometrical features of the object. A modification in our
hardware can enable us to measure the complex reflection coefficients within a certain band,
instead of the resonance frequency. From such data sets, by applying a specific genetic
algorithm, we can reconstruct high-resolution permittivity range profiles. Besides being able
to treat high-contrast objects, our algorithm assures a fairly accurate location of the interfaces
between strongly etherogeneous material layers.
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Fig. 1: Monostatic measurement setup

Fig. 2: Resonance frequency measurements on an inhomogeneous concrete block

2 A PORTABLE SENSOR FOR VOLUME DIELECTRIC CHARACTERIZATION

Let us suppose we have a lossless dielectric wall probed as shown in Figure 1. The
voltage-controlled oscillator produces a swept-frequency signal, which is split to obtain a
reference signal and a test signal sent to the probe/sensor through a circulator. The circulator
also separates the test signal and the signal reflected by the sensor. The reference and the
reflected signals are then sent to a pair of crystal detectors and digitized. A software
procedure evaluates the resonant frequency as the minimizer of the reflection coefficient. The
sensor is a microstrip square patch with air substrate, with resonance frequency determined by
the patch size, the substrate permittivity and, when loaded by the material under test, by the
mean permittivity εmat  of the probed volume. In formulas, we have [2]:
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where f  is the resonance frequency, A is a constant, t is the substrate thickness, W is the patch
size, and it has been considered that the microstrip substrate is air. The resonance frequencies
measured by scanning the surface of a 26×26×14 cm3 concrete block on a regular grid are
reported in Figure 2. Apparently, the resonance frequency is quite sensitive to the typical
inhomogeneities found in concrete. If the material is thick enough to be considered infinite in



z direction, (1) and (2) can be used to evaluate εmat . If the material is a two-phase mixture
[3], the volume percentages of the mixture components can be obtained. For example, air
content (porosity) can be evaluated after suitable calibration. If the material is not so thick, the
resonance frequency can be used to estimate thickness. Absolute measurements can be
obtained by calibration with known samples.

Fig. 3: Simulated concrete wall with relative permittivity 10, with two air inclusions
0.833 cm apart. Number of layers assumed: 12. Simulated noisy data with 25 dB SNR.

Solid line: original permittivity profile. Dotted line: reconstructed profile.

3 RECONSTRUCTING THE RANGE PROFILE

Let us assume now that the wall in Figure 1 has a permittivity that only depends on the z
coordinate, and is composed of a finite number M of homogeneous layers. If coherent
reflection measurements are available for N frequencies within the working range, nonlinear
inverse scattering procedures can be applied to evaluate a permittivity range profile at each
sensor location. The measurement system can be modified accordingly: as an example, the
crystal detectors could be replaced by a phase-quadrature detector. Our reconstruction
algorithm estimates the range profile by minimizing the functional [4]:
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which contains a data fit term and an edge-preserving regularization term [5]. In (3), ε  is a
real M-vector, whose elements are the mean permittivities of the different layers, Γmeas  is the
complex measurement N-vector, Γest  is the measurement vector evaluated numerically from
the current permittivity profile, and d is a distance that gives a data fit measure. A good data
fit alone, however, does not guarantee e stable solution, since the problem is heavily ill posed.
The summation over m is an edge-preserving stabilizer, which forces a locally smooth
solution. It penalizes large discontinuities between adjacent layers where the binary variables
lm  (line elements) are equal to zero. Conversely, if a sensible discontinuity is likely to occur
between layers m and m+1, lm  assumes value 1 thus breaking the smoothness constraint. The
number of discontinuities introduced is controlled by the terms α lm. The regularization
parameter, λ , establishes a compromise between data fit and smoothness. We minimize this
functional by a genetic algorithm, characterized by uniform crossover, simple elitism and
adaptive mutation probability [4,6]. From simulated experiments, we have found that high
contrast values can be reconstructed, and the discontinuities can be located very accurately,
thus providing a good spatial resolution. A representative example of our results is shown in



Figure 3. Two air inclusions located 0.833 cm from each other in a 10 cm-thick wall with
permittivity 10 can be clearly distinguished. Of course, the resolution achievable is a function
of the SNR. We are now about to complete the simulations in order to evaluate the
performance of the technique in the cases of our interest. After assessing the method with real
experimental data obtained by general-purpose laboratory equipment, we will move to the
problem of extending our dedicated hardware. The computational cost of the reconstruction
algorithm is a major inconvenience. The 2D maps of Section 2, however, can also be obtained
readily from coherent measurements. Range profiles can then be reconstructed offline for the
areas where significant inhomogeneities are detected. If quasi-real-time performance will be
obtained, a high-resolution online analysis will also be feasible.

4 CONCLUSIONS

We described a step-by-step approach to build a portable system for in-field
nondestructive diagnosis applications. The simple dedicated system we already developed is
able to provide the volume-averaged permittivities of the material. The data acquisition,
processing and display in this case can be made in quasi-real time. This is not the case, at
present, with our range profile reconstruction procedure. Even in this case, however, the data
acquisition is very fast, and the same data can be used to evaluate the mean permittivity map.
Thus, the equipment can be used for both an immediate diagnosis and an offline
reconstruction of high-resolution profiles. The system can be used for either absolute or
relative measurements. For example, in quality control applications, the mean permittivity can
be obtained by comparison with a set of reference samples. A problem that is still to be
addressed is the application of this technique to sensibly lossy materials.
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