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Recently gate-mediated supercurrent suppression in superconducting nano-bridges has been reported in many
experiments. This could be either a direct or an indirect gate effect. The microscopic understanding of this ob-
servation is not clear till now. Using the quasiclassical Green’s function method, we show that a small concen-
tration of magnetic impurities at the surface of the bridges can significantly help to suppress superconductivity
and hence the supercurrent inside the systems while applying a gate field. This is because the gate field can
enhance the depairing through the exchange interaction between the magnetic impurities at the surface and the
superconductor. We also obtain a symmetric suppression of the supercurrent with respect to the gate field, a
signature of a direct gate effect. We discuss the parameters range of applicability of our model and how it is
able to qualitatively capture the main aspects of the experimental observations. Future experiments can verify
our predictions by modifying the surface with magnetic impurities.

I. INTRODUCTION

The role of an external magnetic field in superconductors
has been thoroughly analyzed in the past. In contrast, the in-
vestigation of electric-field-mediated physics in such systems
was not popular till the last decade. Usually, the electric field’s
effect in a bulk superconducting system is insignificant due to
its small penetration depth [1–6]. However, the role of an
electric field in a thin-film superconductor can be significant
enough. Recent experiments demonstrate that a large electric
field from a gate can control the supercurrent in a supercon-
ducting nano-bridge [7–14]. Namely, at low temperatures, the
supercurrent flowing along the bridge monotonically decays
by increasing the gate field. In addition, it has been found that
the critical electric field, at which the supercurrent vanishes,
is robust with respect to experimental temperatures [7–9]. It
has been also found that the critical gate field is marginally
affected by a weak external magnetic field applied across the
bridge [7, 15].

From several experimental evidences, many distinct physi-
cal mechanisms have been proposed to describe this effect that
we call gate-controlled supercurrent (GCS) suppression [16],
a set of which suggests that the gate field could cause Cooper
pair breaking resulting in direct supercurrent suppression [7–
9]. On the other hand, several experimental reports disagree
with the suppression mechanism due to the direct field cou-
pling to the bridge by the observation of a non-vanishing leak-
age current between the gate and the bridge for large gate
fields [10–13]. The leakage current can cause supercurrent
suppression either via high-energy quasiparticle injection to
the bridge [10–12], or indirectly via phonon-induced Joule
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FIG. 1. (a) Scheme of a superconducting bridge of width w, thick-
ness L, and infinite length. A finite supercurrent, Is, flows along the
bridge (x-direction) due to a constant phase gradient, ∂xϕ. A gate
electric field Eg is applied across the bridge (z-direction). Due to
the Thomas-Fermi-like screening, the field effectively penetrates the
bridge’s surface up to length d ≪ L, ξ enhancing spin-flip scattering
at the surface magnetic impurity centers (ξ is the superconducting
coherence length). (b) The gate-mediated electron hopping between
a superconducting site i and a magnetic impurity site j in the surface
layer is hi j(Eg), which causes spin-flip scattering in the surface layer.
Electron pair repulsion at a magnetic impurity site is u. (c) (Left
panel) Schematic representation of the superconducting gap profile,
∆(z), closing across the bridge for increasing values of the gate field
and (right panel) the critical supercurrent suppression due to gate-
dependent spin-flip scattering.

heating of the system due to charge injection into the substrate
[17, 18]. The leakage current can also cause phase fluctuations
in the bridge resulting in an indirect suppression by generat-
ing a nonequilibrium phonon state at the substrate and in the
superconductor [12, 13, 19]. However, the leakage-current-
mediated indirect mechanisms can be restricted by suitable
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experimental setups [8, 9, 16]. Here, our objective is to have
a theoretical description of the direct field effect.

Earlier microscopic theoretical analyses of the direct field
effect were based on electric field-induced surface orbital po-
larization [20], Rashba-like surface effects [15, 21–23], and
excitation of a superconducting state because of Schwinger-
like effects [24]. Recent theoretical works based on the
Ginzburg-Landau paradigm also analyze a phenomenological
direct field effect [25] or predict a spin-orbit enhanced surface
barrier in combination with a magnetic insulator [26]. How-
ever, none of these analyses fully describes the GCS effect. A
fully microscopic theory, which accounts for the experimental
fact, is necessary for the complete understanding of the GCS
suppression.

In this work, we investigate the gate-field-mediated di-
rect supercurrent suppression in a long superconducting nano-
bridge [see Fig. 1(a)]. A uniform supercurrent flows along
the bridge and the gate field is applied across the bridge. We
consider the presence of a small concentration of magnetic
impurities in the surface layer of the bridge [see Fig. 1(b)].
It is known that oxide layer forming on the surface of some
superconductors upon exposure to air can host paramagnetic
impurities [27–31]. These magnetic impurities can introduce
decoherence channels [27] or increase flux noise [32], thus af-
fecting the performance of devices like superconducting res-
onators [33] or of quantum circuits [32]. Our model is based
on the assumption that a large gate field can significantly en-
hance surface depairing via spin-flip scattering processes at
the magnetic impurity centers [see Fig. 1(b)]. Using the quasi-
classical Green’s function (GF) formalism, we find that a suf-
ficiently strong gate-induced surface depairing can cause su-
perconducting gap quenching across the bridge [see Fig. 1(c)].
Consequently, the critical current decreases by increasing the
gate field [see Fig. 1(c)]. We also analyze the impact of finite
temperatures and weak magnetic fields across the bridge. Fi-
nally, we relate our model with real experimental parameters.

The rest of the paper is organized as follows. First, in
Sec. II we present our theoretical model based on micro-
scopic quasiclassical theory to describe GCS suppression.
Then, in Sec. III we discuss our main results on the super-
conducting gap quenching and supercurrent suppression by
the gate-mediated surface depairing. Finaly, we summarize
the main conclusions of this work in Sec. IV.Furthermore, in
Appendix A we present an effective Ginzburg-Landau model
based on our full microscopic theory, and in Appendix B
we discuss the external electric field-mediated critical current
suppression by phenomenologically introducing temperature-
and magnetic field-dependent relative permittivity.

II. MODEL

A. System

We begin with an infinitely long superconducting nano-
bridge of thickness L, depicted in Fig. 1(a). We assume a uni-
form supercurrent, Is, flowing along the bridge (x-direction)
due to a constant superconducting phase gradient ∂xϕ with
the phase ϕ(r). The gate field, Eg, is applied across the

bridge (z-direction) from a gate electrode (not shown in the
schematic). Note that the z-coordinate runs from 0 to L inside
the bridge. Due to the Thomas-Fermi screening, the gate field
effectively penetrates the superconductor over a rather small
length d ≪ L, ξ, where ξ is the superconducting coherence
length [1]. We assume the presence of a small concentration
of magnetic impurities in the surface layer of thickness d. The
main assumption in our model is that a large Eg causes a sig-
nificantly high spin-exchange coupling between the magnetic
impurity sites and the superconducting sites through gate-
induced electron hopping, hi j(Eg) [see Fig. 1(b)]. The hopping
is linear in the gate field, hi j(Eg) ∼ Eg, in the lowest order of
the perturbation theory, and this can result in a strong surface
spin-flip scattering leading to the GCS suppression. Note that
in this work we do not consider the presence of magnetic im-
purities inside the bridge as they can hardly experience the
gate field, although this scenario would not affect our final
conclusions qualitatively.

To describe the supercurrent, we use the quasiclassical GF
formalism in equilibrium [34, 35]. We assume the diffusive
limit, elastic mean free path ≪ ξ =

√
ℏD/2kBTc where D

is the diffusion coefficient of the material and Tc is the bulk
superconducting critical temperature. In the absence of spin-
splitting, we can work in Nambu space, where the GF matrix
can be parametrized as ĝ = Gτ̂3 + Fτ̂+ + F†τ̂− and is subject
to the normalization ĝ2 = τ̂0 =⇒ G2 + FF† = 1. Here,
τ̂± = (τ̂1±iτ̂2)/2 and τ̂i are the Pauli matrices in Nambu space.
The GF matrix in the bridge satisfies the Usadel equation [36]

ℏD∇ · (ĝ∇ĝ) = [ωnτ̂3 + ∆(r)τ̂+ + ∆∗(r)τ̂− + Σ̂, ĝ], (1)

where ωn = (2n + 1)πkBT defines Matsubara frequencies at
temperature T with n = 0,±1,±2, . . . and ∆(r) is the in-
homogeneous superconducting order parameter. In addition,
we account for the depairing effects described by the self-
energy Σ̂ = [3Γsf + Γorb(B)]τ̂3ĝτ̂3. Here, Γsf is the spin-
flip scattering rate and Γorb(B) = (∆0/4)(B/Bc)2 is the or-
bital depairing rate due to a weak external magnetic field
B across the bridge [z-direction; see Fig. 1(a)]. In the lat-
ter term, Bc =

√
3∆0/(ℏD)(Φ0/πw) is the critical magnetic

field of a bare BCS superconducting bridge of width w with
Φ0 = h/(2e) being the magnetic flux quantum [37]. The BCS
gap at zero temperature is ∆0 = 1.764kBTc. As discussed be-
low, the spin-flip scattering is present only in a thin surface
layer and effectively manifests itself as a boundary condition
(see Sec. II B). We consider that L and w are smaller than the
London penetration depth.

Due to a constant supercurrent along x-direction, we ac-
count for the spatial inhomogeneity of the system by intro-
ducing the ansatz: ∆(r) = ∆(z)eiϕ(x), F(r, ωn) = f (z, ωn)eiϕ(x)

and G(r, ωn) = g(z, ωn) with superconducting phase ϕ(x) =
qx. Hence, the phase gradient along the bridge is ∂xϕ =
q providing a uniform current. We utilize the so-called
θ-parametrization, g(z, ωn) = cos θ(z, ωn) and f (z, ωn) =
sin θ(z, ωn) [35, 38], obtaining

ℏD∂2
zθ + 2∆(z) cos θ − 2ωn sin θ − 2Γeff(q) sin θ cos θ = 0, (2)

where Γeff(q) = ℏD(q2/2) + 2Γorb + 6Γsf is an effective pair-
breaking rate. Note that Γsf = 0 inside the bridge due to the
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lack of magnetic impurities, which are, as already mentioned,
present only at the surface in our model.

To obtain a full solution to the problem, the superconduct-
ing gap across the bridge should be treated self-consistently
as

∆(z) ln(T/Tc) = 2πkBT
ND(T )∑
n=0

[
sin θ(z, ωn) −

∆(z)
ωn

]
, (3)

where ND truncates the summation over ωn up to the Debye
frequency. Based on the preceding discussion, we can calcu-
late the supercurrent density along the bridge as

Js(y, z) =
2σN

e
πkBTq

ND(T )∑
n=0

sin2 θ(z, ωn), (4)

where σN = 2e2νD is the normal-state conductivity. The
supercurrent itself is calculated by integrating the expres-
sion above over the cross-section of the bridge, i.e., Is(q) =∫

dy dz Js(y, z; q), and the critical supercurrent is obtained
as Ic = Is(q = qmax), such that Is is maximum at q =
qmax. Here, we express the supercurrent in the units of Isc =

2πσN LwkBTc/(eξ).
As already anticipated, obtaining a full solution of Eq. (2)

requires us to apply appropriate boundary conditions and here
Eg-dependent spin-flip processes enter playing a crucial role.
In what follows, we first discuss the effect of an external gate
field on the spin-flip scattering rate and then how it effectively
translates into the pair-breaking boundary conditions.

B. Gate-induced surface spin-flip scattering

Here we demonstrate how the gate field Eg can participate
in magnetic impurity scattering in the surface layer. The fi-
nite gate field penetrating a thin surface layer of thickness d
along the z direction can be expressed as Eg = −∂Vg/∂z. Con-
sidering a uniform electric field near z = L, the scalar poten-
tial within the surface layer becomes Vg ≈ −Egz. Hence, the
gate field Eg can drive the electron hopping process between
the superconducting sites and the magnetic impurity centers
in this region. Gate field can also induce electron hopping
between the superconducting sites and the magnetic impurity
centers in the surface layer via spin-orbit interactions [39–41].
For simplicity, we here only express electron hopping due to
the scalar potential Vg as

ti j(Eg) = −eEg

∫
d3r ψ∗s(r,Ri) z ψm(r,R j), (5)

where r and z stand for one electron coordinate and
ψs/m(r,Ri/ j) stands for the electronic wave function at a su-
perconductor/ magnetic impurity center located at spatial co-
ordinate Ri/ j.

The gate-modulated electron hopping between the super-
conducting and the magnetic impurity sites leads to elec-
tron spin-exchange processes resulting in an effective spin-

exchange Hamiltonian

Ĥex
i j =

[
t(0)
i j + ti j(Eg)

]2

2u
σ(i) · s( j)

=
h2

i j(Eg)

2u
σ(i) · s( j) = Ji j(Eg)σ(i) · s( j), (6)

where t(0)
i j accounts for the corresponding hopping process in

the absence of Eg, hi j = t(0)
i j + ti j(Eg) [see Fig. 1(b)], u stands

for the electron-pairing energy at a magnetic impurity site [see
Fig. 1(b)], and σ(i) and s( j) stand for the Pauli spin matrices
at the superconducting site Ri and the magnetic impurity site
R j, respectively. Apparently, the exchange energy Ji j(Eg) in
Eq. (6) modulates with Eg. This is similar to the recent studies
about the impact of an external electric field on the electron
spin-exchange interaction [39–41].

Due to the spin-exchange mechanisms described above, su-
perconducting electrons can scatter with the magnetic impu-
rity centers. Considering magnetic moments of the magnetic
impurity centers as classical spins, the corresponding spin-flip
self-energy that enters the Usadel equation (1) in the surface
layer reads [42]

Σ̂sf(Eg) = 3Γsf(Eg) τ̂3ĝτ̂3, (7)

where a numerical factor of 3 is due to the summation over
the spin degrees of freedom. Defined in this way, the spin-flip
self-energy enters Eq. (1). The spin-flip scattering rate itself
is given by

Γsf(Eg) =
2π
3
νNm|⟨s⟩|2

∫
dΩ
4π

∣∣∣J(Θ, Eg)
∣∣∣2 , (8)

where ν is the density of states at the Fermi level, Nm is the
density of the magnetic impurities in the surface layer, |⟨s⟩|
defines the magnitude of the average classical magnetic mo-
ment of a magnetic impurity center. In addition, J(Θ, Eg) is
the Fourier transform of Ji j(Eg) under quasiclassical scheme:

Ji j(Eg) =
∫

d3 p eip·(ri−r j)J(p, Eg), (9)

J(p − p′, Eg)
∣∣∣
p=p′=pF

= J(Θ, Eg), (10)

where pF is the magnitude of the Fermi momentum. Con-
sidering Eqs. (5)-(10), we can in general express the spin-flip
scattering rate with respect to Eg as Γsf(Eg) =

∑4
i=0 AiEi

g.
Due to the random spatial distribution of the magnetic im-

purity centers, hopping amplitudes t(0)
i j are random in real

space. For perfectly random distribution of t(0)
i j , upon the

Fourier transformation above we can express the spin-flip
scattering rate as Γsf(Eg) = A0+A2E2

g+A4E4
g. The coefficients

A0 ∼
(
t(0)
i j

)4
and A2 ∼

(
t(0)
i j

)2
would increase with the increas-

ing strength of t(0)
i j . For large Eg, with relatively insignificant

impact of t(0)
i j , we may consider Γsf(Eg) ∼ E4

g > 0 for large
gate fields. The even behavior of Γsf vs Eg yields bipolarity in
gating as observed in experiments [7–9, 15], a very relevant
fingerprint of the above proposed mechanism.
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C. Boundary conditions

This gate-mediated spin-flip scattering of superconducting
electrons on the magnetic impurities sitting at the surface
leads to the Cooper pair breaking. Now, we show how the
described mechanism results in a gate-dependent boundary
condition. By assuming that the large Eg makes the spin-flip
processes energetically dominant, the Usadel equation [see
Eq. (1)] close to the surface adopts the form

ℏD∂2
zθ ≈ 12Γsf(Eg) sin θ cos θ. (11)

Under the assumption d ≪ L, ξ, we can consider that the prox-
imity angle in this region is constant, θ(z) ≈ θ(z = L) and
integrate Eq. (11) arriving at

∂zθ|z=L = −b−1
g sin θ cos θ

∣∣∣
z=L

, (12)

where bg = ℏD/[12dΓsf(Eg)] is the gate-dependent extrap-
olation length whose inverse determines the strength of the
surface depairing. It is clear that the Eg dependency of
b−1

g follows from Γsf(Eg), i.e., for large Eg we model it as
ξ/bg = (Eg/Esc)4, where Esc is the scaling field at which
ξ/bg = 1. The boundary condition at the free surface [z = 0;
see Fig. 1(a)] follows from the current conservation law and
simply reads ∂zθ|z=0 = 0 [43]. Equation 12 represents the cen-
tral result of this work.

III. RESULTS AND DISCUSSION

By solving Eq. (2) supplemented by the derived boundary
conditions [see Eq. (12)], we can describe the superconduct-
ing gap quenching and the supercurrent suppression caused by
the gate-mediated surface depairing.

Using Eq. (12) we present ∆(L, b−1
g ) in Fig. 2(a,b). Since the

gap is spatially dependent we illustrate the maximum [z = 0;
panel (a)] and the minimum values [z = L; panel (b)]. Ap-
parently, in the case of thin bridges, L ≲ ξ, a sufficiently high
surface depairing can result in a complete quenching of the su-
perconducting gap. The gap is almost spatially uniform across
the bridge and diminishes monotonically with increasing b−1

g .
On the other hand, thicker bridges, L > ξ, feature a partial gap
suppression. This is similar to an earlier theoretical finding
[25]. Interestingly, for L > ξ in the presence of sufficiently
high b−1

g the gap can completely vanish only at the boundary
while remaining non-zero inside the bridge. These observa-
tions demonstrate that the superconductivity of the bridge can
be modulated by a direct field-controlled surface effect.

Following the Ginzburg-Landau (GL) approach close to Tc
for thin bridges, L ≲ ξ, we obtain an approximate but analytic
formula for the superconducting gap’s maximum, ∆(z = 0) =
1.74∆0(1 − F − T/Tc)1/2, and minimum, ∆(z = L) = (1 +
0.5L/bg)−1∆(z = 0), where (see Appendix A)

F =
π

4

(
q2ξ2 + 2

Γorb

kBTc

)
+

πξ2

2(L2 + 2Lbg)
, (13)

with the notation introduced before. From the expressions
above, it is visible that increasing b−1

g causes the gap quench-
ing. In Figs 2(c) and 2(d) we show the analytically obtained

Δ/Δ0

ξ/
b g

Δ/Δ0

L/ξ

ξ/
b g

L/ξ

(a)	Usadel:	Δ(z	=	0)
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0.1 0.5 1 1.5 2

FIG. 2. The gap function ∆(L, b−1
g ) at (a) z = 0 (maximum value)

and (b) z = L (minimum value). Temperature is T = 0.1 Tc. Panels
(c) and (d) respectively show the analytically obtained maximum and
the minimum of the gap, calculated from the GL approach [see the
text above Eq. (13)] at T = 0.95Tc. In all panels, qξ = 0.1 and B = 0.

maximum and minimum gaps, respectively, as a function of
L and b−1

g . Note that the GL theory is, strictly speaking,
valid only at temperatures close to Tc. Seemingly, our sim-
plified model captures qualitatively the essential physics. Ap-
parently, the quenching of ∆(z) due to surface depairing di-
rectly leads to Ic suppression in the bridge. Figure 3(a) shows
Ic(Eg) for various T and B = 0. Note that we model the
surface depairing by Eq. (12), where for large gate field we
consider ξ/bg = (Eg/Esc)4, making Ic symmetric with respect
to Eg. Apparently, Ic vanishes monotonically by increasing
Eg. Higher temperature enhances the effect, i.e., the critical
gate field is reduced. The latter is defined as the electric field
for which the current completely vanishes. This effect is es-
pecially pronounced at high temperatures [see the blue dash-
dotted and violet solid lines in Fig.3(a)], which is partly in
disagreement with certain experiments [7, 8, 15] that report
the robustness of the critical field against temperatures. How-
ever, our model qualitatively captures Ic(Eg) features at low
temperatures, observed in experiments. The absence of tem-
perature dependence in the experiments we briefly discuss be-
low. In Fig. 3(b) we illustrate the role of B on Ic(Eg). Even
small magnetic fields strongly enhance the supercurrent sup-
pression and reduce the critical gate field.

Similarly to the temperature, the magnetic field affects the
critical gate field stronger than that observed experimentally,
and the present theory cannot completely explain these devi-
ations. However, accounting for T and B dependencies on
the spin-flip processes occurring at the boundary may help to
overcome these issues. We stress that the following discus-
sion is purely phenomenological since there is still no micro-
scopic mechanism for the T - and B-dependent spin-flip pro-
cesses. To further extend the discussion about the above is-
sues, one may consider Eg as an effective electric field in the
surface layer related to an actual external gate field, Eext, as
Eg = χ(T, B)Eext, where χ(T, B) is the relative permittivity in
the surface layer. Consequently, χ can bring T - and B- depen-
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FIG. 3. The critical supercurrent Ic vs. the gate field Eg for (a)
various temperatures T and zero magnetic field B = 0 and (b) various
magnetic fields B and temperature T = 0.1Tc. The thickness of the
bridge is L = 0.8ξ.

dencies in Γsf and hence in ξ/bg = χ4(T, B)(Eext/Esc)4. The
function χ can decrease as the system approaches the normal
state from the superconducting one by increasing T and B,
e.g., χ(Tc, B = 0) = χ(T = 0, Bc) = 0 [7]. Introducing χ we
may achieve weaker T - and B- dependencies of the critical
values of Eext (see Appendix B). However, a detailed micro-
scopic analysis of χ(T, B) is required for further understand-
ing.

Finally, to provide some realistic values for the parameters
of our model, let us consider an aluminum superconductor
characterized by the critical temperature Tc ≈ 1.2 K, the den-
sity of states ν ≈ 2 × 1047 J−1m−3, and the lattice constant
a ≈ 4 Å. By assuming the typical D ≈ 20 cm2/s, we end up
with ξ ≈ 80 nm. In experiments, typical values of the gate
field are rather large, Eg ∼ 700 MV/m and the Thomas-Fermi
screening length is typically small, d ∼ 1 nm. Approximating
hopping energy as hi j ∼ eEga and considering electron pair re-
pulsion at a magnetic impurity site u ≈ 1 eV, we may estimate
Ji j = h2

i j/2u and J(Θ) as ∼ Ji ja3. Taking all these parame-
ters into account brings us to the estimated magnetic impurity
concentration in the surface layer of Nm ≈ 2 nm−3 nm that
corresponds to the surface depairing strength ξ/bg ≈ 0.1. As
our discussion presented above suggests this value of ξ/bg suf-
fices to significantly reduce Ic in a thin bridge, e.g., L ≈ 0.5ξ.
Hence, according to our model’s a surface magnetic impurity
density 2×1014 cm−2 would be enough to observe a significant
gate-controlled supercurrent suppression. We note that the ef-
fective exchange correlation length larger than a can cause
sizable Ji j for lower values of gate fields.

IV. CONCLUSIONS

We conclude that if a superconducting bridge features di-
lute magnetic impurities on the surface, a large gate field can
significantly enhance spin-flip scattering at the surface mag-
netic impurity centers. Consequently, these magnetic impuri-
ties can lead to a significant enhancement of the surface de-
pairing via gate-induced spin-flip scattering resulting in the
GCS suppression. We find that for thin bridges, L ≲ ξ, one can
achieve the complete suppression beyond some strong gate

field. Yet, thicker bridges, L > ξ, can only feature a partial
suppression. These findings suggest that the GCS suppres-
sion could be a consequence of the surface depairing. Our
model also captures the bipolar behavior with respect to the
gate-field direction, one of the key features of the direct field
effect [7–9, 15]. In addition, we have analyzed the impact
of temperature and a weak magnetic field on the critical su-
percurrent and the critical gate field. Our findings indicate
that the supercurrent suppression could originate from a direct
gate effect. The temperature and magnetic field dependence of
our model reproduces qualitatively experimental data. Future
experiments can test our predictions, e.g., by artificially mod-
ifying the superconducting surface with magnetic impurities
and correlating their concentration with our model estimates.
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Appendix A: Ginzburg-Landau (GL) description

In Eq. (2), the Green’s functions are parametrized by the
proximity angle θ, where g = cos θ and f = sin θ. Near the
superconducting critical temperature Tc, the anomalous Green
function f and the superconducting gap ∆(z) are small. Hence,
we can consider f = sin θ ≈ θ and the Usadel equation (2) can
be approximated as

ℏD∂2
z f = 2ωn f − 2∆(z)g + 2Γeff(q)g f , (A1)

where Γeff(q) = ℏD(q2/2) + 2Γorb inside the bridge. Close
to Tc and for small q and B, we can consider g ≈ g0 =

ωn/
√
ω2

n + ∆
2(z). On the other hand, we can express the

anomalous Green function as f = f0 + f1, where f0 is ze-
roth order in gradients and f1 is the first correction which is
quadratic in gradients, i.e., f1 ∼ ∂2

z f0. By returning this ex-
pansion into Eq. (A1), we end up with the following relations:

f0 =
∆(z)

ωn + Γeff(q) g0
g0, (A2)

f1 =
ℏD

2(ωn + Γeff(q) g0)
∂2

z f0. (A3)

Moreover, close to Tc the gap is small, ∆ ≪ kBTc, and the
equations above can be further expanded

f0 =
ωn

ω̃n

∆(z)
ωn
−

1
2

(
∆(z)
ωn

)3 , (A4)

f1 =
ℏD
2ω̃n

∂2
z f0, (A5)
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where ω̃n = ωn + Γeff(q). Note that we aim at the expansion
up to the third order in ∆ and the second order in gradients.

By inserting Eqs. (A4) and (A5) back into the self-
consistency equation (3), we obtain

∆(z) ln(T/Tc) = 2πkBT
ND∑
n=0

[
∆(z)
ωn

(
ωn

ω̃n
− 1

)

−
1
2
ωn

ω̃n

(
∆(z)
ωn

)3

+
D

2ω̃n
∂2

z

(
∆(z)
ω̃n

) . (A6)

For small superconducting phase gradients, qξ ≪ 1, and weak
magnetic fields, Γorb ≪ kBTc, the pair-breaking rate Γeff(q) is

considerably smaller than Matsubara frequencies ωn = (2n +
1)πkBT near Tc. Hence, we can take

1
ω̃n
≈

1
ωn
−
Γeff

ω2
n
. (A7)

Using Eqs. (A6) and (A7), along with the definition of the
Riemann ζ-function as ζ(p) =

∑∞
n=1(1/np), we obtain the

Ginzburg-Landau (GL) equation as follows:

ξ̃2∂2
z∆(z) + α∆(z) − β∆3(z) = 0, (A8)

where

ξ̃2 = ℏD
 3
4πkBT

ζ(2) +
15 Γ2

eff(q)

16π3k3
BT 3

ζ(4) −
14 Γeff(q)
8π2k2

BT 2
ζ(3)


≈ ℏD

 3
4πkBTc

ζ(2) +
15 Γ2

eff(q)

16π3k3
BT 3

c
ζ(4) −

14 Γeff(q)
8π2k2

BT 2
c
ζ(3)

 close to Tc, (A9)

α = −
3 Γeff(q)
2πkBT

ζ(2) − ln(T/Tc) ≈
(
1 −

T
Tc

)
−

3 Γeff(q)
2πkBTc

ζ(2) close to Tc, (A10)

β =
7

8π2k2
BT 2

ζ(3) −
15 Γeff(q)
16π3k3

BT 3
ζ(4) ≈ β0 −

15 Γeff(q)
16π3k3

BT 3
c
ζ(4) close to Tc with β0 =

7
8π2k2

BT 2
c
ζ(3). (A11)

In order to solve the differential equation in Eq. (A8), we need
two boundary conditions. At the free surface, we have

∂z∆(z)|z=0 = 0, (A12)

which is nothing but the current conservation law. The other,
gate-dependent, boundary condition can be obtained as fol-
lows:

∂z f (z, ωn)|z=L = −
1
bg

f (z = L, ωn), (A13)

=⇒ ∂z

∞∑
n=0

f (z, ωn)
∣∣∣∣∣
z=L
= −

1
bg

∞∑
n=0

f (z = L, ωn), (A14)

=⇒ ∂z∆(z)
∣∣∣
z=L = −

1
bg
∆(z = L), (A15)

where bg was defined earlier [see Eq. (12)]. With Eqs. (A8)-
(A11) and the boundary conditions in Eqs. (A12) and (A15),
one can analyze gate-mediated superconductivity suppression
in a superconducting nano-bridge close to Tc.

The GL description provided above is advantageous since
it allows us to treat the problem analytically under certain as-
sumptions. Namely, if the bridge is sufficiently thin, L < ξ, we
can assume a weak spatial dependence of the order parameter
∆(z) and introduce the following ansatz:

∆(z) ≈ ∆(z = 0) +
∆2

2
z2 + · · · , (A16)

where the linear term in z is zero due to the boundary condi-
tion at the free surface [see Eq. (A15)]. Note that the second

term is small compared to the leading one by a factor ∼ L2/ξ2

and subsequent terms are even smaller. Using the boundary
condition given by Eq. (A15), for thin bridges we obtain

∆2 = −
2∆(z = 0)
2bgL + L2 , (A17)

where bg was defined earlier. Then by substituting Eq. (A16)
in the GL equation [see Eq. (A8)] and using Eq. (A17), we
obtain the following solution for the superconducting order
parameter:

∆(z) =

√
α

β
−

2ξ̃2

(2bgL + L2)β

(
1 −

1
2bgL + L2 z2

)
. (A18)

This rather simple result gives a qualitative insight into the
effect of the interface pair breaking. Namely, in the case of
long junctions, L ≫ ξ̃, we immediately notice that the solution
reduces to the bulk solution, ∆(z) = ∆∞ =

√
α/β. The same

holds if the pair-breaking rate is very weak, bg ≫ ξ̃.

Appendix B: Gate-mediated critical current suppression with
temperature and magnetic field dependent spin-flip scattering:

phenomenology

To account for the full temperature dependency of the crit-
ical current suppression via the external gate field, we may
think of Eg as an effective electric field in the surface layer.
The effective field Eg affecting the superconducting bridge
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could be different from the actual external gate field, Eext [7].
We can consider Eg = χ(T, B)Eext, where the relative permit-
tivity χ can depend on T and B. Earlier scientific work demon-
strates that the electric field screening effect increases as the
system approaches from superconducting to normal state [7].
Therefore in the absence of B the effective gate field in the
surface layer would be maximum at T = 0 K and it would
be negligibly small in the normal metal state (T ≥ Tc). Phe-
nomenologically the relative permittivity can be modeled as
χ(T, B = 0) = (1 − T/Tc)η with η > 0. Apparently, χ(T =
0, B = 0) = 1 and χ(T = Tc, B = 0) = 0 [7]. Hence, in the ab-
sence of B, the surface depairing parameter b−1

g is temperature
dependent having the form ξ/bg = (1 − T/Tc)4η(Eext/Esc)4.
For illustration, Fig. 4(a) shows the the critical current Ic vs.
the external field Eext for various temperatures T , the bridge’s
thickness L = 0.8ξ, and η = 1/4. Note that the critical exter-
nal field is quite stable with respect to temperature.

To account for the magnetic field dependency on the critical
current, similarly, we can choose χ(T, B) for a fixed tempera-
ture. However, in this case, the situation is somewhat compli-
cated. Namely, to provide stability with respect to B we are
supposed to introduce two fitting parameters, η1 and η2, i.e.,

χ(T, B) = [1 − (B/Bc)η1 ]η2 . Figure 4(b) shows Ic vs. Eext for
various B, T/Tc = 0.1, and η1 = 2 and η2 = 1/4.

Eext/Esc

I c	
/I s

c

Eext/Esc

(a)

0

0.05

0.1

0.15

0.2

0 0.25 0.5 0.75 1

T/Tc	=	0.1
T/Tc	=	0.3
T/Tc	=	0.5
T/Tc	=	0.7
T/Tc	=	0.85
T/Tc	=	0.95

(b)
B	=	0
B/Bc	=	0.2
B/Bc	=	0.4
B/Bc	=	0.6
B/Bc	=	0.8
B/Bc	=	0.9

0 0.25 0.5 0.75 1

FIG. 4. Panel (a): The critical current Ic as a function of the external
gate field Eext for various temperatures T , the bridge’s thickness L =
0.8ξ and zero magnetic field, B = 0. Panel (b): the same quantity
for various magnetic fields B and T/Tc = 0.1, other parameters are
the same as in panel (a). Current is expressed in the unit of Isc =

2πkBTc/eRN .
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[9] F. Paolucci, F. Crisá, G. De Simoni, L. Bours, C. Puglia,
E. Strambini, S. Roddaro, and F. Giazotto, Electrostatic field-
driven supercurrent suppression in ionic-gated metallic super-
conducting nanotransistors, Nano Lett. 21, 10309 (2021).

[10] I. Golokolenov, A. Guthrie, S. Kafanov, Y. A. Pashkin, and
V. Tsepelin, On the origin of the controversial electrostatic field
effect in superconductors, Nat. Commun. 12, 2747 (2021).

[11] L. D. Alegria, C. G. L. Bøttcher, A. T. Saydjari, Andrew
K.and Pierce, S. H. Lee, S. P. Harvey, U. Vool, and A. Yacoby,
High-energy quasiparticle injection into mesoscopic supercon-
ductors, Nat. Nanotechnol. 16, 404 (2021).

[12] M. F. Ritter, N. Crescini, D. Z. Haxell, M. Hinderling, H. Riel,
C. Bruder, A. Fuhrer, and F. Nichele, Out-of-equilibrium
phonons in gated superconducting switches, Nat. Electron. 5,
71 (2022).

[13] J. Basset, O. Stanisavljević, M. Kuzmanović, J. Gabelli,
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