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Abstract

We show the robustness of the structure of Legendre transform in thermodynam-
ics against the replacement of the standard linear average with the Kolmogorov-
Nagumo nonlinear average to evaluate the expectation values of the macroscopic
physical observables. The consequence of this statement is twofold: 1) the
relationships between the expectation values and the corresponding Lagrange
multipliers still hold in the present formalism; 2) the universality of the Gibbs
equation as well as other thermodynamic relations are unaffected by the struc-
ture of the average used in the theory.
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1. Introduction

In the last decades, the interest toward generalized entropic forms is growing
after the more and more large evidence that power-law distributions are recur-
rently found in the description of the statistical proprieties of several complex
systems running from the physical and biological realm to the social and eco-
nomical sciences. In order to account for such phenomenologies several entropic
forms have been proposed.
Basically, the most of them can be grouped in two different large classes. Of-
ten, they are obtained as continuous deformation of the well-known Shannon
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or Boltzmann-Gibbs (SBG) entropy, by means of suitable deformation parame-
ters. The first class corresponds to the trace-like entropic forms, defined as the
linear average of an appropriate Hartley information function that represents
the elementary information gain

S[p] = ⟨I(p)⟩lin , (1)

where ⟨x⟩lin =
∑
i pi xi. In particular, for the Shannon information, the Hartley

function is given by I(p) = − ln p. The Sharma-Tanja-Mittal entropy [1], defined
in

SSTM
αγ [p] = ⟨Iαγ(p)⟩lin , (2)

belongs to this class. In Eq. (2)

Iαγ(pi) = −p
α
i − pγi
α− γ

, (3)

where α and γ are two real deformation parameters and hereinafter, p = {pi ≥
0;
∑
i pi = 1; (i = 1, . . . , W )} denotes a normalized discrete distribution func-

tion.
The second class is given by the kernel-like entropic forms defined in

S[p] = K (⟨I(p)⟩lin) , (4)

that are functions of trace-like entropic forms. The Sharma-Mittal entropy [2],
defined in

SSM
αγ [p] = Kαγ (⟨Iα(p)⟩lin) , (5)

belongs to this class. In Eq. (5)

Iα(pi) = pα−1
i , (6)

and the kernel function Kαγ(x), is given by

Kαγ(x) =
x

1−γ
1−α − 1

1− γ
. (7)

Both the entropy families (2) and (5) have been introduced previously in in-
formation theory and then rediscovered in statistical mechanics. Several one-
parameter deformations of the SBG entropy introduced in statistical physics be-
long to these families. Among them, the Kaniadakis-entropy, the Abe-entropy
and the Tsallis-entropy are special cases of the STM-entropy (see [3] and refer-
ences therein), whilst the second family embodies the Tsallis-entropy, the Rényi
entropy, the escort entropy, the Landsberg-Vedral entropy and others (see [4]
and reference therein).
Often, in statistical mechanics, the approach to obtain the equilibrium distri-
bution of the system, is based on the variational principle [5]. It consists in
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maximizing the entropic form under suitable constraints given by the values
of several thermodynamic variables. Consistence with definitions (1) and (4)
requires that constraints are introduced by means of linear average.

A different approach to look at no-trace-form entropies, often ignored in the
field of the statistical mechanics, exists. It is based on the nonlinear (o quasi-
linear) average originally advanced by Kolmogorov and Nagumo [6] and then
generalized by de Finetti [7]. The Kolmogorov-Nagumo (KN) average reads

⟨x⟩KN = f−1

(∑
i

pi f(xi)

)
, (8)

where f(x) is an arbitrary strictly monotonic and continuous function, first time
employed in statistics by Rényi in the seminal work [8]. Today, the KN average
is recurrently used in the framework of statistical mathematics and information
theory [9], however, as already observed, it is often ignored in statistical me-
chanics.
In analogy with Eq. (2), one could define a kernel-like entropy by means of a
quasi-linear trace-like form with the KN average for a suitable Hartley informa-
tion function, that is

S[p] = ⟨Ĩ(p)⟩KN . (9)

The two definitions (4) and (9) are equivalent each other for K(x) ≡ f−1(x)
and I(x) = f(Ĩ(x)).

Actually, as suggested by some Authors [10, 11], if we employ the KN av-
erage in the definition of the entropy, then the same prescription should be
used, for consistence, in the construction of the constraints used in the varia-
tional problem. This may change significantly the shape of the distribution at
equilibrium.

In order to fruitfully introduce the KN average in statistical mechanics and
thermodynamics, we wonder which impact on the epistemological structure of
the emerging theory it has. The structure of the Legendre transform of the
theory is an important aspect to be considered. This is a fundamental question
that joins the two theories since, the Legendre transform structure binds the
phenomenological aspect of thermodynamics with the microscopical aspect of
statistical mechanics and, for a successful application of the KN average in sta-
tistical mechanics, such mathematical structure should be reproduced in some
way.
In the past, the robustness of the Legendre transform structure has been shown
to hold [12] when the thermostatistic theory is based on trace-like entropy and
the thermodynamic observables are defined by linear averages. This result has
been generalized in [13] for the most general expression of the constraints in-
cluding, in principle, the KN average. However, at the best of our knowledge,
no such investigation has been done when the entropic form is of kernel-like, as
in Eq. (9). Our mayor effort in this work is to elucidate this problem.

The plan of the paper is as it follows. In the next section 2, we revisit the
Jaynes variational principle in the framework of the KN nonlinear average, while,
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in section 3, we derive the structure of Legendre transform of thermodynamics
based on the KN average and we obtain the corresponding Gibbs equation and
other related thermostatistic relations. A concluding summary is given in the
final section 4 whilst in Appendix A, as an example, we explicit our results in
the case of the SM family.

2. Jaynes variational principle in the framework of Kolmogorov-Nagumo
average

Let us consider a statistical system described by the entropic form (9), with
a suitable Hartley function Ĩ(x) that we suppose to be monotonic and normaliz-
able but not necessarily additive. By introducing the function Λ(x) = f1(I(x)),
we rewrite the entropy (9) in

S[p] = f−1
1 (⟨Λ(p)⟩lin) , (10)

where Λ(x) is assumed to be a strictly positive, monotonic decreasing dΛ(x)/dx <
0 and convex d2Λ(x)/dx2 > 0 function.

Let O(j), with j = 1, . . . , M , be a set of macroscopical quantities that,
with abuse of language, we call thermodynamic variables. Consistently with
definition (9), we pose O(j) = ⟨o(j)⟩KN so that, they correspond to the KN

averages of M random variables, where o
(j)
ij

(ij = 1, . . . , nj , with nj ≫M), are
the respective possible outcomes. Thus

O(j) = f−1
2

(〈
f2

(
o(j)
)〉

lin

)
, (11)

where, for sake of exposition, we have introduced in Eqs. (10) and (11) two
different Kolmogorov functions, although in general f1(x) = f2(x) ≡ f(x).

By posing θ
(j)
i = f2

(
o
(j)
ij

)
, the M constraints (11) can be written as functions

of the linear average of θ
(j)
ij

, or equivalently

f2

(
O(j)

)
= ⟨θ(j)⟩lin . (12)

Therefore, the KN average and the linear average are related each other accord-
ing to

f2 (⟨x⟩KN) = ⟨f2(x)⟩lin . (13)

In the same way, we can introduce the trace-like entropy

Σ[p] = f1(S[p]) ≡ ⟨Λ(p)⟩lin . (14)

We call Σ[p] the associated entropic form to the kernel-like entropy S[p].
In order to obtain the probability distribution for the system at equilib-

rium, we apply the Jaynes maximum entropy principle that consists in solving
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the extremal problem for the maximum of the entropy S[p], under the M + 1
constraints given by the thermodynamic variables O(j) and the normalization∑

{i}

p{i} = 1 . (15)

In the remainder, for sake of exposition, we employ a multi-index notation with
p{i} ≡ pi1,i2,...iM and summation run over all possible combinations, that is∑

{i}

p{i} ≡
∑

i1,i2,...iM

pi1,i2,...iM . (16)

In this notation {i} = (i1, . . . , iM ) is an unordered M -tuple of integers, with

entries 1 ≤ ij ≤ nj indicating the possible outcome of j-th observable o
(j)
ij

.
Therefore, let βj and β0 be the respective M + 1 Lagrange multipliers, we
consider the following variational problem

δ

f−1
1

∑
{i}

p{i} Λ
(
p{i}

)− β0
∑
{i}

p{i} −
∑
j

βjf
−1
2

∑
{i}

p{i} θ
(j)
ij

 = 0 , (17)

that is solved for the unknown quantities p{i}. The Lagrange multipliers, that

ultimately turn out to be function only of the quantities O(j), may be eventually
obtained by using constraints (11) and (15).
By performing the variation, we get

F1(S)

(
Λ(p{i}) + p{i}

∂Λ(p{i})

∂p{i}

)
− β0 −

∑
j

βj F2

(
O(j)

)
θ
(j)
ij

= 0 , (18)

where the functions Fi(x) are defined in

Fi(x) =
∂f−1

i (y)

∂y

∣∣∣
y=fi(x)

. (19)

They reduce to identity Fi(x) = 1 in the case of linear average fi(x) = x.
By posing

h(x) = Λ(x) + x
dΛ(x)

dx
, (20)

that is a strictly monotonics function for x > 0 and then invertible, we can solve
formally Eq. (18) according to

p{i} = h−1

β̃0 +∑
j

β̃j θ
(j)
ij

 , (21)

where

β̃0 =
β0

F1(S)
, β̃j = βj

F2

(
O(j)

)
F1(S)

. (22)
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At this step, Eq. (21) turns out to be a function of 2M + 2 quantities: the
entropy S, the Lagrange multipliers β0 and βj and the thermodynamic variables
O(j). Clearly, this is a consequence of the nonlinear flavor of the average used
in the definition of the entropy and the constraints. In a theory based on the
standard linear average, fi(x) = x and therefore Fi(x) = 1, so that β̃ → β and
the dependence from the entropy disappears.

It is worth to observe that, being f1(x) a monotonic function, the varia-
tional problem for the associate entropy Σ[p] gives the same distribution (21),
although the relationships between the Lagrange multipliers β0 and βj , and the
corresponding constraints, differ in the two cases. In fact, from the following
variational problem

δ

∑
{i}

p{i} Λ
(
p{i}

)
− β0

∑
{i}

p{i} −
∑
j

βjf
−1
2

∑
{i}

p{i} θ
(j)
ij

 = 0 , (23)

it is straightforward to obtain the distribution

p{i} = h−1

β0 +∑
j

β̄j θ
(j)
ij

 , (24)

that is formally equal to Eq. (21) while β̄j = βj F2(O(j)). Finally, if we use,
in this case, the linear average for constraints coherently with the trace form
of entropy Σ[p], we obtain a simplest expression for the distribution given by

p{i} = h−1(β0 +
∑
j βj o

(j)
ij

).

3. Legendre transform structure, Gibbs equation and the reciprocity
relations

In standard thermostatistics, the Legendre structure of the theory estab-
lishes a deep connection between thermodynamics and statistical mechanics.
From one hand, it is introduced to derive potential functions to study particu-
lar thermodynamics transformations. On the other hand, it is used to establish
a relationships between the thermodynamic variables that, in the orthodox the-
ory are assumed to be extensive quantities, and their conjugate variables, corre-
sponding to the Lagrange multipliers, that in the orthodox theory are assumed
to be intensive quantities.

A different interpretation of the Legendre transform structure arises in the
framework of the geometric thermodynamics. As firstly suggested by Hermann
[14], thermodynamic manifold can be considered like a 2M + 1 dimensional
space, derived from the thermodynamic principles [15]. The equilibrium config-
uration is then represented by a M dimensional sub-manifold, named Legendre
manifold, where onlyM quantities, typically identified with the thermodynamic
variables O(j), are assumed to be independent. They play the rôle of coordi-
nates. In the Legendre manifold, the Gibbs equation holds. Otherwise, the
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remaining M + 1 variables, given by the Lagrange multipliers βj and the en-
tropy S, are assumed to be functions of O(j). In this geometrical pictures, the
Legendre transform introduces a kind of coordinate transformation in the Leg-
endre manifold, so that one can define new thermodynamic functions on the
equilibrium manifold where the rôle of the independent quantities is, partially
or completely, interchanged.

This interpretation of the Legendre transform and its related structure still
holds in the framework of the KN average if the equilibrium distribution is
derived from a variational principle. To show this, let us firstly describe, in a
formal way, how distribution (21) can be surrounded into the Legendre manifold.
Apparently, this distribution depends on 2M+2 variables. However, these quan-
tities are not all independent since pi must satisfy M + 1 constrained relations.
Among them, the normalization condition is saturated by solving equation (15)
for β0. Therefore, β0 = β0(β1, . . . , βn) ≡ β0[β] becomes a function of the other
Lagrange multipliers. In addition, the M relations (11) can be solved for the
corresponding βj so that, βj = βj

[
O(1), . . . , O(M); S

]
≡ βj [O; S]. At this step,

each Lagrange multiplier depends only on the thermodynamic variables and the
entropy. However, by inserting distribution (21) in Eq. (10), we can derive an
implicit relation for S[p], that once solved, gives us the entropy as function of
the thermodynamic variables only: S[p] ≡ S [O] and, ultimately, βj ≡ βj [O].

In order to derive the Legendre transform structure of the theory, we firstly
evaluate the derivatives of entropy with respect to βj

∂S[p]

∂βj
=

∑
{i}

∂S[p]

∂p{i}

∂p{i}

∂βj

= F1(S)
∑
{i}

(
Λ
(
p{i}

)
+ p{i}

∂Λ
(
p{i}

)
∂p{i}

)
∂p{i}

∂βj
, (25)

and accounting for definition (20) and Eqs. (21) and (22), we obtain

∂S[p]

∂βj
= F1(S)

∑
{i}

h(p{i})
∂p{i}

∂βj

=
∑
{i}

(
β0 +

∑
k

βk F2

(
O(k)

)
θ
(k)
ik

)
∂p{i}

∂βj

=
∑
k

βk F2

(
O(k)

) ∑
{i}

θ
(k)
ik

∂p{i}

∂βj

 , (26)

where we used also the relation
∑

{i} dp{i} = 0, which follows from condition

(15). On the other hand, from Eq. (11), rewritten in

O(k) = f−1
2

∑
{i}

p{i}θ
(k)
ik

 , (27)
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we have

∂O(k)

∂βj
= F2

(
O(k)

)∑
{i}

θ
(k)
ik

∂p{i}

∂βj
, (28)

that, inserted in relation (26), gives us the generalized Euler equations

∂S [O]

∂βj
=
∑
k

βk
∂O(k)

∂βj
. (29)

By multiplying both side by ∂βj/∂O(i), and summing on the index j, we finally
obtain

∂S [O]

∂O(i)
= βi , (30)

that establish the conjugate character between the Lagrange multipliers and the
mean values. Therefore, βj and O(j) are related each other like the intensive
versus extensive variables of thermodynamic, although they have not longer
necessarily the same intensive/extensive character.

Actually, a straightforward derivation of Eqs. (30) can be given by using the

relation
∑

{i} θ
(j)
ij
dp{i} = df2

(
O(j)

)
, as it follows from Eq. (12). Therefore, we

have

dS [O] = F1(S)
∑
{i}

h(p{i}) dp{i} =
∑
j

βj F2

(
O(j)

)∑
{i}

θ
(j)
ij
dp{i}


=

∑
j

βj F2

(
O(j)

)
df2

(
O(j)

)
=

∑
j

βj F2

(
O(j)

) df2
(
O(j)

)
dO(j)

dO(j) , (31)

and observing that

df2
(
O(j)

)
dO(j)

=
1

F2

(
O(j)

) , (32)

we obtain

dS [O] =
∑
j

βj dO(j) , (33)

that corresponds to the Gibbs equation for the present formalism. Accounting
for the independence of dO(j), we recover again Eq. (30).

By means of a partial Legendre transform we can introduce up to 2M − 2
different functions called Massieu potentials. They follow from any possible
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partition I + J of the set of indices {1, . . . , M} into two disjoint subsets. Thus,
function

Φ[O(I), βJ ] = S[O]−
∑
J

βJ O(J) , (34)

depend on the thermodynamic variables O(i), with i ∈ I, and the Lagrange
multipliers βj , with j ∈ J . In fact

dΦ[O(I), βJ ] = dS[O]−
∑
J

dβJ O(J) −
∑
J

βJ dO(J) , (35)

and recalling Eq. (33), we obtain

dΦ[O(I), βJ ]−
∑
I

βI dO(I) +
∑
J

O(J) dβJ = 0 , (36)

or equivalently

∂

∂O(i)
Φ[O(I), βJ ] = βi ,

∂

∂βj
Φ[O(I), βJ ] = −O(j) , (37)

that state again the duality between the Lagrange multipliers and the thermo-
dynamic variables.

In contrast, a total Legendre transform, with J = {1, . . . , M}, defines a
thermodynamic potential ψ[β], that is a function of all Lagrange multipliers βi

ψ[β] = S[O]−
∑
j

βj O(j) , (38)

with

dψ[β] = −
∑
j

O(j) dβj . (39)

The role of dependent and independent variables is exchanged so that, O(j) ≡
O(j)[β] are now the dependent variables, functions of the Lagrange multipliers
βi that turn out to be the independent variables. Therefore, Eq. (39) implies

∂ψ[β]

∂βi
= −O(i) . (40)

Many thermodynamic relations hold also in the present formalism. For in-
stance, from Eqs. (30) and (40), it is straightforward to obtain

∂O(j)

∂βi
=
∂O(i)

∂βj
, (41)

that, in the standard thermodynamic, correspond to the Maxwell relations.
These equations imply the following relationships between the potentials S[O]
and ψ[β]:

∂2S[O]

∂O(i) ∂O(j)
=

(
∂2ψ[β]

∂βi ∂βj

)−1

. (42)
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In the framework of information geometry the two Hessian matrices appearing
in Eq.(42) define, respectively, the metric tensor

gij =
∂2S[O]

∂O(i) ∂O(j)
, (43)

and its inverse

gij =
∂2ψ[β]

∂βi βj
, (44)

of the corresponding statistical manifold [16] that, according to Eq. (42), is
equivalents to

gik gkj = δij . (45)

Proceeding further, we consider again the entropy (10) in the probability
space and looking at the following relation

∂S[p]

∂p{i}
= ℓ{i}[p] , (46)

where

ℓ{i}[p] = F1(S)h
(
p{i}

)
. (47)

According to Eq. (46),
(
p{i}, ℓ{i}

)
forms a set of canonically conjugate variables

in the statistical manifold, like as like, the set (O(j), βj) does in the Legendre
manifold. This suggest us to introduce a Legendre transform of the entropy in
the statistical manifold [16], to obtain a new functional S[ℓ]

S[ℓ] = S[p]−
∑
{i}

p{i} ℓ{i}[p] . (48)

However, taking into account that ℓ{i} actually depend on p{i}, we can pull-back
the functional S[ℓ] onto the probability space and define the new quantity I∗[p],
where I∗[p] ≡ I

[
β[p]

]
, as

I∗[p] ≡ S[(ℓ[p])]
= S[p]− F1(S[p]) ⟨h(p{i})⟩lin

= S[p]− β0 −
∑
j

βj F2

(
O(j)

)
⟨θ(j)⟩lin . (49)

By using Eq. (38), we introduce the pull-back of the ψ-potential ψ∗[p] ≡ ψ
[
β[p]

]
,

according to

ψ∗[p] = I∗[p] + β0 +
∑
j

βj F2

(
O(j)

)
D
(
θ(j)
)
, (50)
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where function D(x) is defined in

D(x) = ⟨x⟩lin − ⟨x⟩KN

F2 (⟨x⟩KN)
, (51)

and measures the discrepancy between the KN average and the standard linear
average. In fact, it is easy to see as D(x) = 0 when f2(x) = x, that is the natural
setup for trace-form entropies. In this case, the expression of the ψ-potential
simplifies in

ψ∗[p] = I∗[p] + β0 . (52)

The same relation holds also for the associate entropy Σ[p] introduced in Eq.
(14), where the I-function is given by

I∗[p] = Σ[p]−
∑
{i}

p{i} h
(
p{i}

)
, (53)

since, in this case, ℓ
(
p{i}

)
≡ h

(
p{i}

)
.

It could be of a certain interest to observe as the function D(x) can be introduced
in

D(x) = f2(x)− x
df2(x)

dx
, (54)

that is reminiscent of a Legendre transform of the Kolmogorov function f2(x).

4. Final summary

In this letter, we proved in the formulation of a thermostatistic theory the
robustness of the structure of Legendre transform against the replacement of
the standard linear average with the Kolmogorov-Nagumo nonlinear average.
This result can be summarized up as it follows

S[O]− ψ[β] +
∑
j βj O(j) = 0

dS[O]−
∑
j βj dO(j) = 0 ⇒ ∂S[O]

∂O(j) = βj

dψ[β]−
∑
j O(j) dβj = 0 ⇒ ∂ψ[β]

∂βj
= −O(j)

∂2S[O]
∂O(i) ∂O(j) = ∂βi

∂O(j) =
∂βj

∂O(i)

∂2ψ[β]
∂βi ∂βj

= ∂O(j)

∂βi
= ∂O(i)

∂βj

 ⇒ ∂2S[O]
∂O(i) ∂O(j) =

(
∂2ψ[β]
∂βi ∂βj

)−1

It is shown, one more time, that the structure of Legendre transform of ther-
modynamics is strictly related to the maximal entropy principle used to derive
the equilibrium distribution, confirming and extending in this way the discus-
sion advanced in [12, 13]. An important consequence of our result concerns
the Gibbs equation of thermodynamics that, as showed, still holds also in the
present formalism.
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Appendix A.

In this appendix we specify the results obtained in the paper by considering,
as an explicit example, the kernel-like entropic form belonging to the SM family
(5). It can be derived from the KN average according to

SSM
αγ [p] = φ−1

αγ

(∑
i

pi φαγ (Iγ(pi))

)
≡

(∑
{i} p

α
{i}

) 1−γ
1−α − 1

1− γ
. (A.1)

where the Kolmogorov function f1(x) = f2(x) = φαγ(x) and the elementary

information gain Ĩ(p) ≡ Iγ(p) are given, respectively, by

φαγ(x) = lnα
(
expγ(x)

)
, (A.2)

and

Iγ(pi) = lnγ(1/pi) , (A.3)

where lnα(x) and expα(x), with lnα(expα(x)) = expα(lnα(x)) = x, are the
deformed logarithm and exponential [17], defined in

lnα(x) =
x1−α − 1

1− α
, (A.4)

expα(x) = (1 + (1− α)x)
1

1−α . (A.5)

The above two definitions reduce to standard logarithm and exponential in the
α→ 1 limit, i.e ln1(x) = ln(x) and exp1(x) = exp(x).

For simplicity, we consider a canonical system with M = 1, where the only
constraint, in addition to the normalization of pi, is given by the energy average
U = ⟨ϵ⟩KN.
From the variational problem

δ

 1

1− γ

(
1 +

∑
i

pαi −
∑
i

pi

) 1−γ
1−α

− β0
∑
i

pi −
β1

1− γ

(
1 + (1− α)

∑
i

pi θi

) 1−γ
1−α

 = 0 , (A.6)

with θi = lnα
(
expγ(ϵi)

)
, we obtain

1

1− α

(∑
i

pαi

)α−γ
1−α (

αpα−1
i − 1

)
− β0 − β1 (expα (⟨θ⟩lin))

α−γ
θi = 0 , (A.7)

that corresponds to Eq. (18), with h(x) = (αxα−1 − 1)/(1 − α) and F1(x) =

F2(x) ≡
(
expγ(x)

)α−γ
. By solving Eq. (A.7) for pi, we get the distribution in

the form

pi = cα

[
1− (α− 1) (β̃0 + β̃1 θi)

] 1
α−1

, (A.8)
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where cα = α
1

1−α is a constant.
Unless γ = 1, distribution (A.8) has an asymptotic power-law behavior for
θi ≫ 1 (i.e. ϵi ≫ 1). Otherwise, for γ = 1, corresponding to the Rényi entropy

SR
α [p] ≡ SSM

αγ=1[p] =
1

1− α
ln
∑
i

pαi , (A.9)

the equilibrium distribution has an exponential tail, like the Gibbs one (α = γ =
1). This fact, already observed in [11], is a consequence of the KN average used
in the definition of the energy average. Differently, if we use standard linear
average, f2(x) = x, the equilibrium distribution (A.8) has always an asymptotic
power-law tail whenever α ≠ 1 and in particular, for the Rényi entropy, it
becomes

pi = cα

[
1− (α− 1)

(
exp (Sα)

)1−α
(β0 + β1 ϵi)

] 1
α−1

, (A.10)

with a power-law tail [18].
The associated entropy to SSM

αγ :

Σα[p] = φαγ
(
SSM
αγ [p]

)
, (A.11)

coincides with the Tsallis entropy

Σα[p] =

∑
i p
α
i − 1

1− α
. (A.12)

This transmutation relationship is already known in the Rényi entropy formal-
ism and actually holds for the whole SM family. As a consequence, both Tsallis
and SM entropies share the same equilibrium distribution given in Eq. (A.8)
but with an appropriate redefinition of its arguments (β̃0+ β̃1 θi) → (β0+β1 ϵi).

Starting from Eq. (A.1) we can derive the expression of the I-function

I∗ SM
αγ [p] =

1

1− α

[(
1− α

1− γ
− α

)
zα[p]

1−γ + zα[p]
α−γ

]
− 1

1− γ
, (A.13)

with I∗ SM
αγ → I∗ SM

00 ≡ I∗BG = 1, where zα[p] is the partition function of the
system [4], given by zα[p]

1−α =
∑

{i} p
α
{i} and the ψ-potential follows directly

from Eq. (50).
In addition, from Eq. (38), we can obtain the fundamental thermodynamic
equation in the entropy representation [19], that links the entropy to the ther-
modynamic variables(

expγ
(
SSM
αγ

) )α−γ(
αφαγ

(
SSM
αγ

)
− 1
)
= β0 +

∑
j

βj O(j) , (A.14)

where, for sake of notation, we defined O(j) = F2(O(j)) f2(O(j)).
In the (α, γ) → (1, 1) limit, Eq. (A.14) reduces to the fundamental equation of
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the Boltzmann-Gibbs theory: SBG = 1 + β0 +
∑
j βj O(j).

In particular, for the Rényi entropy (γ = 1), the fundamental equation (A.14)
becomes

Sα =
1

α− 1
ln
(
α+ (α− 1)

(
β0 +

∑
j

βjO(j)
))

, (A.15)

while the I-function is given by

Iα = log zα − zα−1
α − α

α− 1
. (A.16)

In contrast, for the associated entropic form, the I-function is related to the
entropy by an affine relation I∗

α = 1 + (1 − α)Σα, where Σα = φαγ
(
SSM
αγ

)
and

the fundamental equation becomes

αΣα = 1 + β0 +
∑
j

βj O(j) . (A.17)

A simple expression for I∗[p] is obtained also when Σ[p] belongs to STM family
given in Eq. (2). In this case, posing Σ ≡ SSTM

αγ , the fundamental equation
becomes [20]

λSSTM
αγ

[
pscaled

]
= β0 +

∑
j

βj O(j) , (A.18)

where the scaled distribution is defined in pscaled = {p{i}/δ} and the constants

λ and δ are given by λβ−α = (1+α)1+β/(1+β)1+α and δβ−α = (1+α)/(1+β),
respectively. The scaled entropy fulfills the relation

λSSTM
αγ

[
pscaled

]
= SSTM

αγ [p]− ISTM
αγ [p] , (A.19)

where

I∗ STM
αγ [p] =

∑
{i}

p1+α{i} + p1+γ{i}

2

(α,γ)→(0,0)→ 1 , (A.20)

so that, Eq. (A.18) can be written in [21]

SSTM
αγ = I∗ STM

αγ + β0 +
∑
j

βj O(j) . (A.21)
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mittelwerte, Jpn. J. Math. 7, 71 (1930).

[7] B. de Finetti, Giornale dell’Istituto Italiano degli Attuari 2, 369 (1931).
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