| IST. A'aTT

PASSING PARAMETER TYPES IN PROGRAMMING LANGUAGES WITH DATA C'?-;- C?

ABSTRACTIONS
; .t . ++ .+ .+t
P. Asirelli , F. Gimona , A. Martelli , U. Montanari
+ Istituto di Elaborazicne della Informazione, C.N.R. - Pisa
++ Olivetti S.p.A. - Ivrea

+++ Istituto di Scienze della Informazione Universita di Pisa

Abstract

Recently designed programming languages provide\mechanisms
which support the use of procedural and data abstraction. In par-
ticular, most of them give the possibility of defining parame-
tric data types. However this new feature affects pfocedure defini
tions, since parameters with partially specified type must be allow
ed. The paper tackles the problems generated by this generaliza-
tion of procedures, by showing that parameter passing requires a
pattern matcning mechanism. A proposal is made which keeps param-
eter passing and type checking separate, thus simplifying proce-
dure calls.

Furthermore the paper analyzes the ways in which operations
cen be associated with abstract data types and how operations can
have access to the representation of their parameters. A construct
for data abstractions is proposed, which achieves great generality
by separating the two above aspects.

1. Structured programming with parametric abstract data types.

Structured programming is a methodology which allows the
construction of reliable programs [1-2]. According to this methodo-
logy programs are developed through successive levels of refine-
ment. At each level the program is written using abstract objects
and operations which are considered as primitives at this level,
and which are implemented at lower levels. The process goes on un-
til all abstractions are actually primitives of the programming
language in use.

Although this methodology can be used for developing pro-
grams in any programming language, its effectiveness in practice
depends remarkably on the ghoice of a suitable language. In fact,
the methodclogy can be easily applied only if the language pro-
vides constructs which allow a clear separation between the use of
an abstraction cnd its implementation. In this case it is also
possible to add protection mechanisms which, in accordance with
the methodology, provhibit the user from accessing the implementa-
tion.

Structured programming considere three kinds of abstrac-
tions, i.e. data, control and functional abstraction, to be re-
levant. A functional ak:straction defines a transformation from a

429

AICA 77

set of input objects into a set of output objects. Most programm-
ing languages provide a suitable mechanism, the procedure, for im-
piementing such an abstraction. A control abstraction defines a
method of sequencing arbitrary actions, while a data abstraction
defines a new data type in terms of a set of Operations on the
objects of that type. Only some recently designed programming
languages provide constructs which support also these last two
kinds of abstractions[3-8].

In this papér we will be mainly concerned with various as-
pects of the definition of data abstractions. For instance in
Fig. 1 we show how the data abstraction "stack-of-integers" can
be implemented in CLU[4]. The tool provided by CLU for this purpose
is the cluster, which embodies the pepresentation of objects of
type "stack-of-integers" and some operations on such objects. Out-
side the cluster, objects of type "stack-of-integers" can be mani-
pulated only through these operations. For instance

stack-of-integers$push (stack-of~integersfcreate (),5,
creates a stack with one element, the integer 5. Note that a param
eter declared of type cvt has the abstract type outside the opera-
tion and concrete type inside the operation.

stack-of~integers = cluster is create, push, pop, top, empty;

rep = array [int};
Create = proc returns (cvt)

return rep$new ();
end create;

push = proc (s: cvt, elem: int);
repfextendh (s, elem);
end push;
PopP = proc (s: cvt);
repfretracth (s);
end pop ;
top = proc (s: cvt) returns (int);

return rep§fetch (s, repphigh (s));
end top;

empty # proc (s: cvt) returns (bool):
return regfsize (s) = ¢;
end empty;

end stack-of-integers;
Fig. 1

The cluster in CLU allows the definition of only one data
abstraction,whereas in some cases one would like to define more
than one data abstraction at the same time [9] . For example, if
we need a graph structure, we might define two types "node" and
"arc", and a set of operations on objects of the two types. In

430

AICA ‘77

Fig. 2 we give a set of possible operations by specifying the ty-
pes of the parameters and of the returned value.

createnode: —» node
createarc : ncode x node x info —» arc

head : arc —» node
tail : arc —» node
getinfo : arc —+ info
outarcs : node — set [arc]
inarcs : node — set [arc]
deletenode: node —

deletearc : arc —

Fig. 2

There are various reasons for preferring to the cluster
construct a mechanism which allows the simultaneous definition of
both types. First of all, by defining "node" and "arc" with two
separate clusters, there is no obvious choice of the cluster with
which the operations "createarc", "head" and "tail" should be as-
sociated, since these operations have parameters of both types.
Furthermore an efficient implementation can require that these op-
erations know the representation of the objects of both types,
whereas the operations in CLU can know only the representation of
one type.

Finally, even if the two types "node" and "arc" can be im-
plemented separately, they are logically connected. Thus, because
one of the goals of the structured programming methodology is to
join concepts which are logically related, one wants to have a me-
chanism for defining together these two types. Note that the module
construct of MODULA [8] is a mechanism of such kind.

In Fig. 1 we have shown how to define the data type "stack-
of-integers". Assume now that we need also other types" stack-of-
reals", "stack-of-characters". The clusters of these types would
be similar to the one in Fig. 1 except for the type of the elements.
Thus it would be convenient to be able to define in the same clust-
er all these types, by having the type of the elements as a param-
eter.

Some of the languages which support data abstractions provi-
de also this feature. For instance, in Fig. 3 we present an ALPHARD
[5] implementation of the parametric type "stack"™. The form in
ALPHARL is equivalent to the cluster in CLU. The parametric form
"stack" has two parameters: the first is the type of the elements

431

AICA 77

of the stack and the second is the maximum permissible depth of
the stack. Note that the form contains the representation and the
implementation of the operations, together with other informations
which are used for the verification. The "« «— > " attached to the
first parameter asserts that the actual parameter must be a type
for which the assignement operation is defined.

form stack (T:form <<«—>, n:integer)=

beginform
specifications
requires n>0;
let stack=<...X;...> vhere x; is T;

invariant 0 < length(stack)gn;
initially stack=nullseq;
function
push(s:stack,x:T)pre 0<length(s) < n post s=s'~ x
pop(s:stack)pre 0 <length(s) ¢ n post s=leader(s’'),
top(s:stack)returns(x:T)
pre 0<length(s) < n post x=last(s’'),
empty (s:stack) returns(b:hoolean)
post b={s=nullseq);

representation
unique v:vector(T,1,n),sp:integer init sp « 0;
ggiv,sp)=seq(v,1 +SP}
invariant 0 sp<n;
states
mt when sp=0,
normal when 0 <sp<n,
full when sp=n,
err otherwise;

implementation
body push out(s.sp=s.sp'+1As.v=&(s.v',s.sp,x))=
mt,normal:: (s.sp « s.sp+1;s.v[s.sp] « x);

otherwise: :FAIL;

body pop out(s.sp=s.sp'-1)=
normal,full::s.sp « s.sp-1;
otherwise::FAIL;

body top out(x=s.v[s.sp])=
normal,full::x « s.v [s.sp];
otherwise: :FAIL;

body empty out(b=(sp=0))=
normal,full::b « false;
mt::b « true;
otherwise: :FAIL;

endform;
Fig. 3

With the above generalization, which is obtatned with the
introduction of parameters, the cluster and the form become "type
constructors® rather than simple type definitions; For instanoe,

432

AICA 77

by declaring

si : stack (integer, 35),
sr : stack (real , 14);

we create two variables si and sr of different type: a stack of
integers and a stack of reals. '

The introduction of parametric data types requires also some
generalizations in the definition of procedures. In fact one would
like to be able to have a procedure whose parameters have a partial-
ly specified type instead of a fixed type. For instance, a proce-
dure which replaces the top element of a stack can be declared as
follows

procedure replacetop (s: stack (t,n), elem : t).

Note that the type of "elem" is not fixed, but it must always be
equal to the first parameter of "stack". Some problems related to
this generalization will be considered in Section 3.

2. Associating abstract data types with their ocperations.

As we have shown in the previous section, all languages
which support data abstractions, provide a construct {cluster,
form, module) for defining together the representation of a data
type and all the operations which have access to it. However ab-
stract data types can be associated with their operations in many
ways, which affect the access of these operations to the represen-
tation.

A first way, which corresponds to the viewpoint of SIMULA
67 [3] and EUCLID [6], consists 6f associating the operations of an
abstract data type with every instance: that is, every time an
object of that type is created, the operations are associated with
the object just created. For example, if x and y are two different
instances of type "complex", and we suppose that the type "complex"
has the operation. "sum", then there is a "sum" associated with x
and another one associated with y. To denote the operation "sum"
associated with x ,we can use the notation x.sum. This operation
has only one parameter, and thus the sum of x and y can be denoted
indifferently by x.sum{y) or y.sum({x).

A reasonable implementation of the operation "sum" must access
the representation of both operands. It is clear that this opera-
tion can access the representation of the object with which it is
associated, but the problem is how to access the representation of
the parameter. A possible implementation in SIMULA 67 is the follow
ing

433

AICA 77

class complex;
begin
integer re, im;
procedure sum (y); ref (complex) y;
begin
re:=re + y.re;
im:=im + y.im

end complex.

Note that the representations of the two operands are not
accessed in the same way: the components "re" and "im" of the
operand with which "sum" is associated are accessed directly,where-
as the corresponding components of the other operand are accessed
through the "." selector. In fact, in SIMULA 67 there are no re-
strictions on the access, through the "." selector, to the compo-
nents of an object; however this freedom is one of the reasons
why this language is criticized as a language to support data ab-
stractions, because it makes protection impossible.

More recent languages, such as EUCLID, allow the access only
to those components which are explicitly exported. So, in order to
hide the representation to the user of the abstraction, it is
sufficient not to export those components which constitute the re-
presentation, but only the operations. However, by implementing
the type "complex" in EUCLID according to this criterion, the com-
ponents "re" and "im" must not be exported, and therefore it is not
possible to access the representation of the parameter y of "sum".

In conclusion we remark that this first way is adequate if
the purpose is to have a discipline of access to only one data
structure, i.e. when the operations can be naturally associated
with only one operand, but this solution is tco restrictive in ge-
neral.

The problem of accessing the representation of more than
one operand can be partly solved by associating operations with
types, instead of with every instance of a type. As we have seen in
the previous section, this is the viewpoint of CLU and ALPHARD.
For instance, the sum of the complex numbers x and y can be denot-
ed in CLU by

complexfﬁ sum (X,y),

and the cluster which implements the type "complex" can be as fol-
lows

434

AICA '77

complex=cluster is sum,...;
rep=record(re, im:int];
sum=proc¢ (x,y:cvt);

X.re:=x.re + y.re;

X im:=x.im + y.im;

end sum;

end complex

Note that in this way an operation can access only the re-
presentation of all parameters whose type is the one with which
the operation is associated. Suppose now that we want to define
a type constructor "matrix (n,m)", where n and m are the number
of rows and columns of the matrix. Furthermore we want to define
an operation "mult" for multiplying two matrices. In general, the
two matrices do not have the same size, and the types of the pa-
rameters of the operation "mult" are as follows

function mult(x:matrix(n,m); y:matrix(m,p)) result matrix(n,p).

Of course we want "mult" to be able to access the represen
tation of both parameters and of the result. However the types
of the parameters and of the result {i.e. matrix (n,m) ,matrix(m,p)
and matrix(n,p)) are all different, and thus, in the solution we
are now presenting, "mult" can access the representation of only
One parameter. For instance, in CLU the multiplication of two ma-
trices M1 and M2 can be denoted as follows

matrix(r,s] § mult (M1, M2),

and therefore the operation "mult" can only access the representa-
tion of the parameter which is a matrix of size r x s.

Up to now we have dealt at the same time with two different
aspects of operations: their association with abstract data types
and their access to the representation of the operands. Usually
a programmer defines an abstract data type together with the oper-
ations which have access to the representation, and separately he
defines other operations for the same abstract data type using
the previously defined operations as primitives. In the above
mentioned languages these two kinds of operations are treated in
different ways. For instance, in CLU, the operation "push" of
"stack-of-integers" given in Fig. 1 is invoked by

stack-of-integers$push(s,i),

where s is a stack of integers and i an integer; whereas a new
operation "replacetop" defined outside the cluster cannot be as-
sociated with the type "stack~of-integers®, and thus it is invok
ed by '

replacetop (s,i).

435

AICA 77

We believe that the two aspects which we have pointed out
before should be kept separate, because a user of an abstrac-
tion is interested in knowing the types of the parameters of an
operation, but he needs not know whether an operation has access
to the representation of a parameter or not. In order to achieve
this separation, we propose the following solution:

1) The operations are not associated with the type of any operand,
but simply the type of every operand must be specified as usual
(totally or partially: see discussion in the next section).

2) There is a construct which consists of two brackets (beginform
and endform) which hide the representations of abstract data
types. Thus the operations which want to access the representa-
tions must be defined within these brackets.Furthermore more than
one abstract data type car be defined within the same pair of
brackets.

The main advantage of this proposal is to maintain protec-
tion on the representation and at the same time to eliminate, from
the user's point of view, the difference in calling style between
operations accessing the representation and not. A practical
disadvantage might be to require unique names for operations,
since they are not qualified with argument type. A different,
more sophisticated solution would be to introcduce pattern direct-
ed invocation of procedures [10].

An example of the proposed construct will be given in Sec-
tion 4.

Note that a language which satisfies the two points above
is MODULA [8] , although the lack of type constructors makes it
not a very suitable language for supporting data abstractions.

3. Parameter passing and pattern matching

Every parameter actually passed during the execution of a
program has normally a type and a value: the value is assigned
to the formal variable, while the type is simply checked to in-
gure type consistency.Furthermore in most languages type check-
ing is performed once and for all at compiling or linking time
and nothing is done under this aspect at run time.

Some problems arise when one wants not to specify complete
ly the type of a parameter for guaranteeing larger applicability
to the procedure. In this case the operation of passing the actual
parameter should also have the effect of completely specifying
the type of the formal parameter. For example, one might not want
to specify the size of an array pessed as a parameter, especial-
ly if parameter passing takes place by reference and thus this
flexibility does not involve dynamic storage allocation. Three
correct approaches are possible:

1) the array size is passed as a distinct parameter and the
array is declared to be of that size. Language FORTRAN, for
instance, follows this approach.

436

AICA ‘77

2} The formal parameter is declared to be simply an array,
without specifying the size, and a built-in function exists
which, given an array, returns its size.

3) The formal parameter is declared to be an array of size n,
ancd the variable n is automatically assigned during parameter
passing.

A wrong solution, instead, is tou pass separately the size,
if needed, for instance to control loops, without associating it
with the array. This is the case of ALGOLW, where only the number
of subscripts is specified for an array passed as & parameter.

The above discussion is applicable not only to the array
case but is valid in general. We give here some terminology.
Every possible value has a type associated with it: E.g. 25 is
of type "integer". Furthermore, there are values of type "type"
(e.g. "integer" can also be ccnsidered a value of type "type").
All values of type "type" are either elementary types (e.g."in-
teger", "complex" as shown in section 2.) or terms obtained by
writing a type constructor symbol followed by its (nonempty)
list of arguments. For instance "stack (char, 25)", (i.e. a stack
of charactcrs of raximal depth 25, according to the example in
Section 1.)is a value of type "type". Of course the types of the
actual arguments of a type constructor must match the types of
its formal parameters.

A type constructor itself has a type, namely the word
"tconstr” followed by the list of the types of its parameters.
For instance, type constructor "stack" has type "tconstr (type,
integer)”. Similarly, procedures and functions use keywords "proc"
and "func" respectively. Durthermore, in the case of functions,
the 1list following "furc" ends with the type of the result. As-
signing a type in this way to type constructors, procedures and
functions allows to pass them as parameters still fully specify-
ing their type (as in ALGOL 68, and differently from ALGOL 60,
where all procedures are simply of type "proc"). For instance one
could declare a type constructor "double" with two parameters.
The first parameter is itself a type constructor with a single
parameter of type "type", while the second parameter [of "double")
is of type "type". Type constructor "double" returns a type ob-
tained by applying twice its first parameter to its second para-
meter. For example, if "set" is a type constructor with a para-
meter of type "type", then "double (set, integer)” would be a set
of sets of integers. Thus the type of "double" is the following
term:

tconstr (tconstr (type), type)

Let us now go back to our problem of specifying parameter
types not completely. In general, one might think to cemplicated
conditions to be satisfied by parameter types: for instance one
might have a procedure with two two-dimensional arrays as para-
meters, and might ask that the two arrays have the same number of
elements! We restrict ourselves to simpler cases, where the condi-

437

AICA 77

tions are expressible using patterns. Patterns are terms similar
to those representing the values of type "type", but where some
va riables (of suitable type) are present. For instance, in the
ex anple given in Section 2

procedure replacetop (s:stack (t,n), elem:t)

the term "stack (t,n)® is & pattern of type "type" where two va-
riables t and n are present, of type "type" and "integer" respect-
ively. A pattern represents a set of terms, namely those terms
which match the pattern. For instance the term of type "type"

stack (record f1:stack(char);f2:array[1:100]of boolean end,31)
matches the pattern above , while the term
set-of-integers

does not.

Variables in patterns should be explicitely declared as
such. A suitable notation would be to declare the types of varia-
bles at their first occurrence. For instance we might write the
previous example as

procedure replacetop (s:stack(t:type; n:integer), elem:t).

Note that the operation of pattern matching has a twofold
effect: first, to enforce the condition represented by the pattern
and, second, to assign the variables in the pattern. Thus a mecha-
nism of parameter passing where the types of formal parameters
are patterns allows, as desired, both to check the type of the
actual parameters and to specify completely the type of the formal
parameters. For instance a procedure call to "replacetop" written
as follows

a:stack (integer, 40); b:integer;

replacetop(a,b);

would respect type constraints and would cause the following bind
ings:

s:=a
t:=integer
n:=40

The use of patterns as types of formal parameters allows to
represent a relatively large class of type constraints. For instan-
ce, the type constraint necessary for the procedure which multi-
plies two rectangular matrices {see section 2) can be written as
follows:

438

AICA 77

function mult(a:matrix(m:integer,n:integer) ,b:matrix(n,p:integer))
result matrix(m,p)

Similarly, the type of the function "mult" would be

func(matrix (m:integer,n:integer),matrix(n,p:integer))
result matrix(m,p)

Note therefore that the patterns appear also in procedure types.
Passing parameter types by pattern matching , however, has
the disadvantage, by its very nature, of mixing the two aspects
of value passing and of type checking. Furthermore it introduces
new, hidden parameters inside the type of explicit parameters. A
different solution is to add also the hidden parameters to the pa-
rameter list. Declaration of procedure "replacetop" would then
become:

procedure replacestop (t:type, n:integer, s:stack(t,n), elem:t)
and its type would be:
proc (t:type, n:integer, :stack(t,n), :t)

In this approach the operation of pattern matching has the
only effect of checking the type. Note however that variable names
cannot, as usual, be eliminated when writing the type of the pro-
cedure. A further disadvantage of the explicit approach is the
necessity for the programmer to add new parameters to every proce-
dure call. For instance the previous example would become:

a:stack(integer,40); b:integer;

replacetop{integer,40,a,b);

.

By substituting "integer® and 40 for the variables t and n, the
patterns representing the type of the third and fourth parameter
of "replacetop" become "stack(integer,40)" and "integer" respecti-
vely. These patterns match the type of a and b. Note that the type
consistency of the call to procedure "replacetop" can be statical-
ly checked since the type of "replacetop" (see above) is known and
the first two actual narameters are constants.

From a methodological point of view, the extra effort for
the programmer can be justified as a check for making sure he
knows what he is doing. Furthermore, a similarly long notation is
required by CLU. In fact a call to "push" for the aboye example
in CLU would be:

stack(integer,40)$push(a,b).

In the next section we will suggest a construct embodying

439

AICA ‘77

the proposals of section 2 and 3.

4. A proposal of a construct for defining abstractions.

We will discuss an example. We want to implement a hash-
-table as an array where every bucket is a list of name-value
pairs, but we want to leave it parameteric with respect toO name
and value types and, as a consequence, to the hashing function
mapping the names into positions in the array. Furthermore, the
size of the array must also be vairiable. In Fig. 4 we see a form
implementing this data abstraction together with the procedure
"insert". We can imagine that other procedures and functions
accessing the representation of hashtable, like "create", "empty",
"member", "delete", etc., might be part of the same form. In
Fig.5 we see part of a program where a variable of type "hash-
-table (string, integer, 128)" is declared and where procedure
"insert" is called.

A few comments follow. The parenthesis pair "beginform" -
"endform” encloses a number of type constructor declarations,
together with the declarations of all procedures and functions
allowed to access the representation of the abstract data types
which can be generated by these type constructors. Since some of
them might have only a local meaning , the explicit 1list of all
exported (data and functional) abstractions is added after
"beginform". Every abstraction is conceived as a separate module,
with no global identifiers except the names of the other ab-
stractions in the same form. All other nonprimitive abstractions
used must be explicitely imported. This is the case of the type
constructor "list" in "hashtable" and besides it, of its func-
tions "emptylist", "addlist" in "insert". Note that the type of
an abstraction must be declared when the abstraction is imported.
The first (data) abstraction, "hashtable", is implemented as an
array of lists of records. Note that even if the upper bound of
the array is not a numerical constant, we do not necessarily need
arrays with bounds computable at run time, provided that actual-
ly de¢lared variables (like "a" in Fig. 5) have only static pa-
rameters.

Procedure "insert" has as parameters the hash-table "ht"
to act upon and the pair "name"-"value" to insert. Furthermore
it receives also the function "hash" and the hidden parameters
“tname", "tvalue" and "m" now made explicit. A special comment
is due to explain the keyword convertible added to "ht".

It means that this parameter is of type "hashtable..." in the
Caller, and of type "array..." in the called procedure. A
construct of this sort is always necessary if a form must provi
de protection. However three different approaches are possible.

i) Where the representation of a type constructor is knowr., na-
mely inside its form, conversion is automatic and not even re-
cognizable. Thus inside the form the name of the type construc-

440

AICA ‘77

beginform export hashtable,.... insert,...;
typeconstructor hashtable(tname:type,tvalue:type,m:integer);
begin

import list:tconstr{type);
array [1:m]of list(record n:tname;v:tvalue end)
end hashtable

procedure insert(tname:type,tvalue:type,m:integer,
ht:convertible
hashtable (tname, tvalue,m),name: tname,value:tvalue,
hash:func(:tname,:integer)result integer);

import list:tconstr(type),
emptylist:func(t:type,:1list(t))result boolean,
headlist:func(t:type,:1list(t))result t,
taillist:func(t:type,:list(t))result 1igt (t),
addlist :func(t:type,:list(t),:t)result list(t);

type pair=record n:tname;v:tvalue end;

kegln 1l: list(pair);found:boolean;addr:integer;
addr:=hash(name,m) ;
l:=ht[addr] ;
found:=false;

while— emptylist(pair,l)and —found do
if headlist(pair,l) .n=name then found:=true
 else l:=taillist(pair,l);
if—found then ht[addr]:=addlist(pair,ht [addr],
{n=name, v=value)
end insert;

.
.
®

andform
Fig,4

import hashtable:tconstr(:type,:type,:integer),
insert:proc(tname:type, tvalue:type,m:integer,
:hashtable (tname, tvalue,m) ,: tname, : tvalue,
:func (:tname, :integer) result integer),
stringhash:func (:string,:integer)result integer,

.

begin a:hashtable(string,integer,128);s:string;p:integer;

insert(string,integer,128,a,s,p,stringhash)

Fig. 5 aa

AICA ‘77

tor is simply a shorthand for its representation, while cutside,
of course, it is an opaque symbolic name which cannot be convert
ed. This approach is followed by PASCAL [11] based languages, like
MODULA and EUCLID.

ii) Conversion must’ be explicitly performed using primitives "up"
and "down". Of course they can be used only on type constructors
defined in the same form. In particular, the attribute convertible
specified for a parameter means that a "down" operation must be
performed upon entrance in and ap "up" operation upon exit from
the procedure or function. Language CLU follows essentially this
approach.

iii)Conversion can be performed only on a parameter using the
convertible attribute, i.e. primitives "up" and "down" are not
allowed.

The difference among the three approaches is eacily shown
by an example involving a recursively defined type, e¢.g."list".
Recursion is realized through a typed pointer(*)(see Fig. 6).

beginform export list,...,headlist,...;
typeconstructor list(t:type);
begin
record value:t,next: Tlist(t)ggg
end list;

function headlist(t:type,l:convertible list(t))result t;

endform
Fig. 6

According to approach 1), inside the form the name "list"
denotes indifferently a list, or a record connected to a list,
or a record with a null pointer, or a record connected to a re-
cord connected to a list, and so on. In the second approach, just
after entrance in "headlist", if "L" has the convertible attribu-
te, then its type is exactly a record connected to a list. Howev
er, applying function "down" to its dereferenced field "next",
one can get a record connected to a record connected to a list.
But in this case the user must take care explicitly of conversion

(x) To allow termination of a structure, pointers can always have
the type "null", in alternative to their own type.

442

AICA ‘77

and type consistency. In the third approach "1" is again of
type record connected to a list, but, as any other abstract
data type, "list" is opajue and can be manipulated only using
its operations. In the line of imposing a strict discipline upon
the programmer, we suggest here the last approach.

We terminate our discussion on the example in Fig. 4
with two more comments: The "type" construct used to define "pair"
is a PASCAL-like shorthand (similar to "equate" in CLU) while
the curly brackets denote an operation which both allocates and
inizializes records (similar to "cons" in LISP).

5. Conclusion.

In the paper we have proposed a new construct which al-
lows to define a large class of abstractions with non-completely
specified parameter types, still keeping value passing and type
checking separated. Furthermore, it allows to define more than
one type constructor in a form, and thus it is possible to have
an operation which has access to the razpresentation of many of
its parameters, even if of different type.)

What has not been discussed here, and will be the subject
of another paper, is the possibility of checking statically the
type consistency of programs with the proposed construct. In par-
ticular, the modular nature of most languages based on data and
control abstractions suggests the desirability of being able to
perform type checking on each module separately. Due to the strong
typing mechanisms we have suggested, and in particular due to the
forced type declaration for all abstractions, both imported and
passed, we hope that a completely static type checking will be
possible.

The research described in this paper is part of a joint
project among the Italian National Research Council, the Univer-
sity of Pisa and Olivetti, the Italian Computer manfifacturer. fhe
project, (mainly) supported by Olivetti, has as main goal the
design and implementation of an experimental symbélic interpreter
for a PL/1 based language with data abstractions [12-14].

We are indebted for many interesting discussions to the
other partecipants to the project, namely V. Ambriocla, P. Degano,
C. Lami, G. Levi, G. Pacini, F. Sirovich and F. ®urini.

References

1. Dijkstra, E.W., Notes on structured programming, in Structur-
ed Programming, Dahl, 0.J., Dijkstra, E.W., and Hoare, C.A.R.
New York, Accademic Press, 1972, 1-82.

2. Wirth, N., On the composition of well-structured programs,
ACM Computing Surveys, Vol. 6, n.4, December 1974, 247-259.

3. Dahl, 0.J., Myhrhaug, B., and Nygaard, K., The Simula 67
Common Base Language, Publication S-22, Norwegian Compe#ing
Center, Oslo, 1970.

443

AICA 77

10.

11.

12.

13.

14.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., Ab-
straction mechanisms in CLU, Computation Structures Group
Memne 144, M.I.T., October, 1976.

Wulf, W.A., London, R.L., and Shaw, M., An introduction to
the construction and verificaticn of ALPHARD programs, IEEE
Trans. on Software Engineering, Vol. 3E-2, n.4, Decerber,1976,
253-265.

Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G.,
and Popek, G.J., Report on the programming language EUCLID,
SIGPLAN Notices 12, 2.

Ampbler, A.L., et al., GYPSY: A language for specification and
implementation of verifiable programs, SIGPLAN Notices 12, 3
1-10.

Wirth, N., MODULA: A language for modular multiprogramming,
Technical Report 18, Institut fuer Informatik, ETH, Zurich,
March, 1976.

Ghezzi, C., and Paolini, P., Language and system supports to
abstraction implementation, Fifth Annual Int. Conf. on the
Implementation and Design of Algorithmic Languages, Rennes,
France, May 16-18, 1977.

Hewitt, C., Description and theoretical analysis (using sche-
mata) of PLANNER: A language for proving theorems and manipu-
lating models in a robot, AI TR-258, M.I.T., Artificial In-
telligence Laboratory, April, 1972.

Jensen, K., and Wirth, N., PASCAL, User Manual and Report,
Lecture Notes in Computer Science, n.18, Springer-Verlag,1974.

Levi, G., Sirovich, F., Sviluppo di programmi a livelli:
astrazioni, specifiche ed esecuzione simbolica, presented

at Giornate di Studio su:"Programmazione strutturata: Espe~
rienze e Orientamenti®. Milano 23-25 June 1976, to appear in
"Informatica”.

Levi, G., Sirovich, F., Proving program properties, symbolic
evaluation and logical procedural semantics, Mathematical
Foundations of Computer Science 1975, (Springer-Verlag, 1975).

Montanari, U., L'esecuzione simbolica di programmi,
N.I. B75-19, I.E.I., Pisa, October, 1975.

444

