
CONSIGLIO
NAZIONALE
delle RICERCHE

Istituto CCNNUUCCEE
via S. Maria, 36
56126 Pisa (Italy)

A Repository Based Tool

for

Re-Engineering

towards an

Object Oriented Environment

Oreste Signore - Mario Loffredo

ERCIM Database Research Group Workshop

EDRG Workshop 4
“Repositories, methods and tools for systems engineering”

May 3-5, 1993

CONSIGLIO
NAZIONALE
delle RICERCHE

Istituto CCNNUUCCEE
via S. Maria, 36
56126 Pisa (Italy)

Ierapetra, Crete, Greece

Contents

p Re-engineering, Object orientation, Repository

p Re-engineering towards an O-O

environment

• Motivation

• Related work

• Problems

p The TROOP tool

• The Re-Engineering process

• The architecture

• The Repository

p Conclusions

 TROOP-1

The Re-Engineering process

ANALYSIS RESTRUCTURING

abstraction
Product

 New
product

Old
product

 Analyzed
product product

Structured

 R E F E
PHYSICAL LEVEL

LOGICAL LEVEL

Objectives of Re-engineering:

• Better manage portfolio of existing systems.

• Provide automated assistance for maintenance.

• Reduce maintenance errors and costs.

• Increase productivity of system maintainers.

• Make system easier to understand, change, test.

• Enable system conversion and migration.

• Improve maintenance staff morale.

• Enforce adherence to standards.

• Improve response to maintenance request.

• Protect and extend system life.

• Use CASE to support existing systems.

• Reuse existing system components.

 TROOP-2

Object-Oriented: why?

p O-O design style h many desirable code

requirements

• Modularity

• system naturally decomposed in modules (classes)

• Extendibility

• easier reuse of definitions by inheritance mechanism
• addition of new specialisations by type polymorphism

• Integrability

• interactions only via well defined interface
• hiding of the implementation details

• Robustness

• loose coupling and reduced number of connections
between the various classes eliminate the danger of the
side effects

• Reusability

• consistent support of several kinds of reuse:
• at high level, the inheritance supports the modelling of

generalisation and specialisation relationships

• at low level, the inheritance supports the reuse of an existing

class as a basis for the definition of a new class.

 TROOP-3

Three kinds of re-engineering

Depending on their target:

p reverse re-engineering:

 target: the system itself

 possibly a final version
implemented in a different
imperative language

 benefits: re-documentation or re-design

p reuse re-engineering:

 target: a new system, but implemented

maintaining the top-down design
style

 benefits reduction of the implementation

costs and time for future
applications

 reuse of knowledge and design
elements taken from previous
projects

p object-oriented re-engineering:

 TROOP-4

 target: the system itself, but implemented

according to the object oriented
methodology

 benefits: object oriented “philosophy”

 TROOP-5

Repository: a must?

p reverse re-engineering:

 content: diagrams, annotations, code, etc.

 problems: from poor documentation to the

formal repository?

p reuse re-engineering:

 content: potential reusable components,

abstractions, election criteria,
metrics

 problems identification, qualification and

selection of the reusable
component

p object-oriented re-engineering:

 content: classes, attributes, methods

 problems: mechanisms for retrieval of

classes, navigation in the class
space, etc.

 TROOP-6

may an intermediate repository for the storage of “canditates” be useful?

 TROOP-7

OORE: related work

p Jacobson I., Lindström F.:

 Re-engineering of old systems to an object-oriented

architecture, Proceedings of OOPSLA’ 91

• A 1st step of RE yelds a more abstract description of the

system
• In 2nd step, reasoning at a more abstract level about the

changes in functionalities
• 3rd step: forward engineering

 Alabiso M.:

 Transformation of Data Flow Analysis Models to Object Oriented

Design, Proceedings of OOPSLA’ 88, September 25-30 1988

• Hybrid Software Life Cycle model, with mapping of Data

Flow analysis models into O-O design techniques

Informal documentation must be carefully examined.

High level documentation must be available, complete and consistent.

p Liu S-S., Wilde N.:

 Identifying Objects in a Conventional Procedural Language: An

Example of Data Design Recovery, Proceedings of IEEE Conf. on

Software Maintenance, San Diego, November 26-29 1990

• The approach consider sets of strongly

connected data types or data structures as
candidate objects and the associate
procedures as their methods .

 TROOP-8

A further refinement is necessary in order to avoid that potential objects result “too big”.

 TROOP-9

Software components classification
and repositories: related work

p Biggerstaff T.J.:
 Design Recovery for Maintenance and Reuse, IEEE Computer,

(July 1989)

• design recovery is essentially a human task

• identification of modules and “software artifacts”

• population of the reuse and recovery libraries

• analysis of informal documentation

p Sedes F.:
 A Hypertext Information System for Reusable Software

Component Retrieval, DEXA’92 - Valencia, September 1992

• retrieval on a hypertext containing heterogeneous documents

• both faceted and hierarchical classification

• associative thesaurus

• term weighting

p Basili V.R., Caldiera G., Cantone G.:
 A Reference Architecture for the Component Factory, ACM

TOSEM, Vol. 1, N. 1 (January 1992)

• the component factory

• heterogeneous reusable products and reusable experiences are

stored in a repository and made accessible

p Burton B.A., Wienk Aragon R., Bailey S.A., Koehler K.D., Mayes L.A.:
 The Reusable Software Library; IEEE Software, (July 1987)

• attributes of every reusable software component stored in a

repository

• classification of components: hierarchical + keywords

p Helm R., Maarek Y.S.:

 TROOP-10

 Integrating Information Retrieval and Domain Specific
Approaches for Browsing and Retrieval in Object-Oriented Class
Libraries , Proceedings of OOPSLA’ 91

• combination of information retrieval and domain specific

approaches to retrieve classes in an O-O library

• browsing based on class functionalities

 TROOP-11

The TROOP tool

Tool for

Re-engineering towards

Object

Oriented

Paradigm

TROOP

p emphasis on data

• data reverse engineering is easier

• existing objects must correspond to some data structures

p a fundamental aspect: capture the
semantics

• too difficult in a purely automatic way

• access to informal documentation

• “tricky code” obscures design issues

• human intervention is required

 TROOP-12

 TROOP-13

The Re-Engineering process

p Identification of objects and fields

1. Identification of the data structures used by different
modules of the existing programs

 (global variables, record description structures, data
structures most used as actual parameters).

 May database structures correspond to objects?

2. The inheritance hierarchies can be established on the

basis of a type classification based on
characteristics like access method, scanning,
storage ([Meyer]).

p Identification of methods

1. Arranging the modules by taking into account:

• their size, expressed as Lines Of Code (LOC);
• their depth in the Structure Chart;
• their reuse frequency

2. Slicing the modules, starting from the modules

derived from the previous step and on the basis of
the variables identified in the object identification
phase.

3. Identifying the code chunks as potential methods

and assigning to them a name, a set of keywords, the
name of the potential “objects” it is operating on

 TROOP-14

 (keywords are extracted from a faceted classification a
browser can graphically display and navigate through).

 TROOP-15

 The Re-Engineering process
 (cont.)

p Identification of inheritance hierarchies

1. Considering the similarities between the potential
methods by making use of:

• types and data structures;
• PDG slices;
• regular expressions at different abstraction levels

(particular substrings are identified by a single label that
gives information about its functionalities);

• “formal specifications”

 Techniques developed in the context of the Information Retrieval area may help in this process

2. Paying attention to the identification of possible
cases of generalisation when considering modules at
higher levels in the Structure Chart.

3. Rebuilding of the program, eventually restructuring

it, expressing it by means of the identified
components.

 TROOP-16

The architecture of TROOP

C source code

Static Code
Analyser

Diagram

 Server

Query

Processor

O-O Version

TROOP
kernel

Data flow

Control flow

ReBuild

- Control Graph
- Nesting Tree
- Dominator Tree
- PDG
- Slices
- Regular Expression

ReComp

- Data Structures
- Slices
- Regular Expressions

- Modules
- Data Structures & Types
- Graphs & Reg. Expr.
- Code Chunks
- Classes
- Methods & Attributes
- Keywords

TROOP Information
Repository

USER

TROOP
User Interface

 TROOP-17

Ref.: 15th International Conference on Software Engineering, Baltimore,
May 1993

 TROOP-18

T.I.R.
TROOP Information Repository

p two main sets of entities:
• classical environment
 (Programs, Modules, Data structures, Code chunks, etc.)
• object oriented perspective
 (Classes, Attributes, Methods).
• keywords can characterise both the Code chunks

and the Methods

p some entities:

• Code chunks
 pieces of code resulting from the slicing

process on the modules

• Representations
 representations of the structure of a Code

chunk or of a Module, both as a graph
(Program Dependence Graph, Nesting Tree,
Control Graph, Dominators Tree) and as
regular expression

• Classes and Attributes
 O-O classes and attributes which have a

representation in terms of Data structures in
the conventional programs.

• Types
 model the conventional types (int, char, struct,

array, etc.).

 TROOP-19

 The unary relationship involving Types model
the subtype relationship.

(We conform to the terminology adopted by Eiffel).

 TROOP-20

T.I.R. Conceptual Schema

Programs

Code
chuncks

Data
structures

Record
layouts

DB Tables

Variables
&

structures

Modules

Types

Classes

Program
classes

Library
classes

Methods

Keywords

Attributes

inherits
is client of

calls

calls

Representations

Regular
expressions

Graphs

Possible implementation environments:

1. Relational: Sybase
2. Logic DB: ConceptBase
3. O-O: ObjectStore

 TROOP-21

Source Code Analyzer

Task:

1. Extract information needed to “candidate” objects and
methods.

2. Insert in the Repository.

What we extract:

1. Global variables

2. Local variables

3. Data types

4. Formal parameters

 TROOP-22

Re-Build Module

Task:

1. Building the program representations using the particular
description formalism adopted by Diagram Server.

2. Slicing algorithm implementation.

Representations:

1. Structure Chart

2. Control Flow Graphs

3. Nesting Trees

4. Dominator Trees

5. DAGs

6. PDGs (Horwitz)

7. Slices

8. Regular Expressions

 TROOP-23

Re-Comp Module

Task:

1. Comparison between potential objects.

2. Comparison between potential methods.

3. Developing a similarity measure.

Evaluation parameters:

1. Similarity between data structure (Meyer):

a) Access method

b) Scanning method

c) Storage method

2. Similarity between potential methods:

a) “Formal specifications”

b) PDG Slices

c) Regular expressions at different abstraction levels

d) Informal description

 TROOP-24

 TROOP-25

Conclusions

p Re-engineering could improve the

maintainability of the existing software
applications, possibly by their
reconfiguration.

p Re-engineering towards an object-oriented
environment seems to be an interesting
and fruitful activity.

p To accomplish this task, we have sketched
the architecture of a re-engineering tool
(TROOP).

p TROOP is based on a central repository
(T.I.R.) that contains information pertaining
to both the traditional as well as the object
oriented target environment .

p We take into account both formal and
informal documents.

 TROOP-26

	A Repository Based Tool
	for
	Re-Engineering
	towards an
	Object Oriented Environment
	Tool for
	Re-engineering towards
	Object
	Oriented
	Paradigm

