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Abstract. Early diagnosis of cancer often allows for a more vast choice of therapy opportunities. After a cancer diagnosis,
staging provides essential information about the extent of disease in the body and the expected response to a particular
treatment. The leading importance of classifying cancer patients at the early stage into high or low-risk groups has led many
research teams, both from the biomedical and bioinformatics field, to study the application of Deep Learning (DL) methods.
The ability of DL to detect critical features from complex datasets is a significant achievement in early diagnosis and cell
cancer progression. In this paper, we focus the attention on osteosarcoma. Osteosarcoma is one of the primary malignant
bone tumors which usually afflicts people in adolescence. Our contribution to classification of osteosarcoma cells is made as
follows: a DL approach is applied to discriminate human Mesenchymal Stromal Cells (MSCs) from osteosarcoma cells and
to classify the different cell populations under investigation. Glass slides of different cell populations were cultured including
MSCs, differentiated in healthy bone cells (osteoblasts) and osteosarcoma cells, both single cell populations or mixed. Images
of such samples of isolated cells (single-type of mixed) are recorded with traditional optical microscopy. DL is then applied
to identify and classify single cells. Proper data augmentation techniques and cross-fold validation are used to appreciate the
capabilities of a convolutional neural network to address the cell detection and classification problem. Based on the results
obtained on individual cells, and to the versatility and scalability of our DL approach, the next step will be its application to
discriminate and classify healthy or cancer tissues to advance digital pathology.
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1. Introduction25

Every year, several million people die of cancer26

in the world due to the inaccessibility of appropriate27

detection schemes and consequent ineffective treat-28

ments [17]. Over the last decades, scientists have
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applied different methods to detect cancer tissues 29

at an early stage. Such investigation is motivated 30

by the fact that early diagnosis can facilitate the 31

clinical management of patients. As a consequence, 32

researchers have been examining methods for the 33

early detection of cancers via several methods includ- 34

ing cancer screening, solid, liquid and optical biopsy, 35

prognostic determination, and monitoring. However, 36

up till now, there are no known diagnostic proce- 37

dures that do not hurt the physical health of patients 38

during the process of cancer detection, being such 39
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a method invasive. Consequently, early diagnosis40

should require the ability not only to identify cancer41

tissue as small as a single cell but having non-42

invasiveness as a prerequisite.43

Classification of cancer cells is hence essential44

research for early diagnosis and identification of dif-45

ferentiation and progression of cancer in a single cell46

[11, 21, 24].47

With the advent of new digital technologies in the48

field of medicine, Artificial Intelligence (AI) meth-49

ods have been applied in cancer research to complex50

datasets in order to discover and identify patterns51

and relationships between them. Machine Learning52

(ML) is a branch of AI related to the problem of53

learning from data samples to the general concept54

of inference. In turn, DL is a part of ML methods55

based on learning data representation. DL algorithms,56

in particular, convolutional networks, have rapidly57

become a methodology of choice for analyzing med-58

ical images. A fundamental concept in DL is to let59

computers learn the features that optimally represent60

the data for the problem to be handled. This goal can61

be approached by building models (networks) com-62

posed of many layers that transform input data (in63

our case medical images) to outputs (e.g. a classi-64

fication such as disease being present/absent) while65

learning increasingly higher level features. In the last66

decade of application of DL to medical images, Con-67

volutional Object Detection (COD) has become a68

successful approach to cancer analysis. In this paper,69

we have investigated the use of a COD-based method70

to several differentiated samples of cells cultured on a71

glass slide, with the purpose to discriminate osteosar-72

coma cells from MSCs (osteoblasts). The results are73

auspicious, exhibiting an accuracy of nearly one on74

the available dataset. These results related to the75

classification of cells of different malignant degree,76

ranging from normal to cancer cells, can generate77

important advantages in the study of cell seeding and78

cell growth. Indeed, such results allow efficient anal-79

ysis of single cells simply by employing an optical80

microscope without using conventional biochemical81

methods that are time-consuming and may require a82

large number of cells.The next step will be to extend83

the algorithm to large populations of cells and tissues84

with the purpose to improve digital histopathology.85

The paper is organized as follows. First, related works86

are described in Section 2. Section 3 describes materi-87

als and methods, focusing on the procedure followed88

for the cell culture (3.1), on the construction, aug-89

mentation, and annotation of the dataset (3.2) and,90

finally, on the chosen network architecture (3.3).91

Section 4 reports the results of the training and 92

accuracy of the method applied. Finally, Section 5 93

concludes the paper with discussion for future work. 94

This paper extends our conference contribution [7]. 95

2. Related works 96

The automatic classification of biological sam- 97

ples has received a lot of attention during the last 98

years. Most of the conventional approaches rely on 99

a feature extraction step, followed by feature clas- 100

sification for detecting the presence of structures 101

of interest in biological images. Traditional meth- 102

ods have been based on handcrafted features, mainly 103

consisting in descriptors of shape and appearance, 104

including color and texture features. In this approach, 105

general-purpose and ad hoc features are computed on 106

the region of interest or the segmented structure of 107

interest to gather into a single vector all the infor- 108

mation for solving the visual task. By contrast, in 109

DL approaches, significant features for the visual 110

task are not defined a priori but they are learned 111

during the training process. Such a new approach 112

has recently shown expert-level accuracy in medi- 113

cal image classification, improving new methods in 114

diagnostic pathology [4]. Digital pathology exploits 115

the quantification and classification of digitized tissue 116

samples by supervised deep learning. This inno- 117

vative approach to histopathology making use of 118

digital methodologies has shown excellent results 119

even for tasks previously considered too challenging 120

to be accomplished with conventional image analy- 121

sis methods [5, 8, 14, 18, 19, 29]. In histopathology, 122

several DL results have recently appeared. In [16], 123

the authors present two successful applications of DL 124

in reducing the workload for pathologists, namely 125

prostate cancer identification in biopsy specimens 126

and breast cancer metastasis detection in sentinel 127

lymph nodes. Their work proves the potential of 128

DL in increasing objectivity of diagnoses; indeed all 129

glass slides in which prostate cancer and micro- and 130

macro-metastases of breast cancer were present were 131

automatically detected; slides featuring normal tis- 132

sue only could be excluded without the use of any 133

additional immunohistochemical markers or human 134

intervention. Similarly, in [30], a CNN is trained to 135

provide a simple, efficient and effective method for 136

achieving state-of-the-art classification and segmen- 137

tation for the MICCAI 2014 Brain Tumor Digital 138

Pathology Challenge. Transfer learning was used in 139

their work, starting with a network pre-trained on an 140
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extensive general image database. Again, in [9], the141

authors address the classification of breast cancer his-142

tology images using transfer learning starting with143

the general Inception Resnet v2 for direct labeling of144

the full images. In [3], the authors proposed two dif-145

ferent CNN architectures for breast cancer, namely a146

single task CNN is used to predict malignancy and147

multi-task CNN is used to predict both malignancy148

and image magnification level simultaneously. The149

results of their methods are compared using as a150

benchmark the BreaKHis dataset. All the previous151

works discussed above deal with general histological152

images to classify the whole images in order to decide153

whether there is or not the presence of malignant cells.154

Concerning the specific case of osteosarcoma, which155

is the focus of the present paper, in [20], a CNN is156

defined, trained and evaluated on hematoxylin and157

eosin stained images. The goal of their network is to158

assign tumor classes (viable tumor, necrosis) versus159

non-tumor directly to input slide images.160

Also, many tasks in digital pathology, directly or161

indirectly connected to tumor cell differentiation,162

require the classification of small clusters of cells up163

to a single cell, if possible. For this purpose, differ-164

ently, from the works mentioned above, this paper165

investigates the classification of single cultured cells166

with a known grade of differentiation with a super-167

vised DL approach. Specifically, COD-based DL168

method is applied to several differentiated samples of169

cells cultured on a glass slide, with the primary pur-170

pose to discriminate osteosarcoma cells from MSCs171

(osteoblasts).172

Within the ML techniques applied for the analysis173

of cancer cells, recently, COD has gained consider-174

able interest [7]. Besides, several methods have been175

proposed to address the object recognition task, and176

many software frameworks have been implemented177

to design, train and use deep learning networks (such178

as Caffe [12], Apache MXNet [1] and many others).179

Among all such methods, Google TensorFlow [2] is180

currently one of the most used frameworks, and its181

Object Detection API emerged as a potent tool for182

image recognition. Since the case study proposed in183

this paper requires the highest accuracy architecture184

allowable, we selected the Faster Region Convolu-185

tional Neural Network (Faster R-CNN) [22, 23] that186

is an original region proposal network sharing fea-187

tures with the detection network that improves both188

region proposal quality and object detection accuracy.189

Faster R-CNN uses two networks: a Region Proposal190

Network (RPN) to generate region proposals and a191

detector network to discover object instances. The192

RPN produces region proposals more quickly than 193

the Selective Search [27] algorithm used in previ- 194

ous solutions. By sharing information between the 195

two networks, the accuracy is also improved, and this 196

solution is currently the one with the best results in the 197

latest object detection competitions. Faster R-CNN 198

approach can be applied using several network archi- 199

tecture as elemental deep features encoders. In [10] 200

a guide for selecting the right architecture depending 201

on speed, memory and accuracy is provided. 202

Concerning general purpose CODs, evaluating a 203

DL approach to digital histopathology poses the 204

problem of collecting a dataset sufficiently rich for 205

performing an adequate training of the network. 206

Indeed, as it is well known, DL methods require 207

many examples to understand and learn the best rep- 208

resentation of an object model. Some of the works 209

as mentioned above resorted to the use of transfer 210

learning, starting with a network pre-trained on large 211

datasets, such as ImageNet. However, also proper 212

data augmentation strategies have been used with 213

good results to overcome over-fitting issues. Con- 214

ventional data augmentation methods address both 215

the spatial and appearance domains of the images, by 216

applying to the original images geometrical transfor- 217

mations (mainly orthogonal transformation such as 218

rotations and mirroring) and/or intensity transforma- 219

tions (e.g. contrast stretching). For instance, in [13], 220

the authors use spatial data augmentation (arbitrary 221

rotation, mirroring and scaling) during the training 222

of all models, while noticing that the most prominent 223

source of variability in histopathology images is the 224

staining color appearance. In [28], they propose a so- 225

called multi-scale fusion data augmentation method: 226

their original database is augmented with a factor of 227

14 by rotation, scaling and mirroring randomly over 228

all samples. They employed rotations by multiples of 229

the right angle and a scale factor up to 0 .8, as well 230

as horizontal and vertical mirroring, addressing the 231

classification problem of breast cancer pathological 232

images. 233

3. Material and methods 234

3.1. Cells Culture 235

Normal, cancerous and mixed cells were cultured 236

on glass slides. Details can be found in [7]; in 237

this paper we briefly describe the essential differ- 238

ence among the cell populations under investigation. 239

Undifferentiated MSCs were isolated from human 240
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Fig. 1. Morphology of osteoblast cells, (top, 10× objective, scale
bar 100␮m), and osteosarcoma cells (bottom, 10× objective, scale
bar 100␮m).

bone marrow according to a previously reported241

method [25] and used to perform three culture strate-242

gies. MSCs were plated on glass slides inside Petri243

dishes at a density of 20,000 cells with 10% fetal244

bovine serum (FBS). The samples were cultured for245

72 h, then fixed in 1% neutral buffered formalin for 10246

min at 4◦C. Osteosarcoma cells consisted of human247

cells, named MG-63, were seeded on six glass slides248

at 10,000 cells. Finally mixed cancer and healthy cells249

were plated on six glass slides inside Petri dishes at250

10,000 cells with 10% FBS.251

At each endpoint, all the samples were fixed in252

1% (w/v) neutral buffered formalin for 10min at 4◦C.253

Morphologies are visible in Figure 1, as imaged by254

an inverted microscope (Nikon Eclipse Ti-E).255

3.2. Data set collection, annotation256

and augmentation257

A total ofN = 60 images has been collected using258

two different microscopes, working in two different259

color spaces: one acquires conventional RGB images 260

while the other acquires monochrome images with 261

green background density. Experienced users have 262

manually annotated all the images. Namely, it was 263

requested to identify in each of the images a num- 264

ber of rectangular regions corresponding to particular 265

cells and cell clusters. Five categories have been used 266

to label the regions: 267

a) Single cancer cell 268

b) Cancer cluster 269

c) Single MSC cell 270

d) MSC cluster 271

e) Artifact 272

To ease the annotation tasks, a graphical interface 273

for performing annotation has been provided to the 274

experts. The interface is based on the LabelImg Soft- 275

ware [26] and allows to insert multiple instances of 276

labeled regions in each of the images in the dataset. 277

A total of 279 objects were labeled in the images. 278

The dataset was therefore augmented applying
both spatial and intensity transformations. With
respect to other approaches that perform augmen-
tation online directly during the training stage by
applying transformations randomly, in this paper
augmentation was performed offline before training.
Since the dataset contains a relatively small number
of images and objects when compared to large gen-
eral image datasets, there is no memory and efficiency
concern in the present case. For spatial transforma-
tions, we applied the dihedral group D4 consisting
of the symmetries of the square. Each image and the
associated labeled regions were transformed accord-
ingly, yielding a ×8 boost in the number of samples
in the dataset. As for what regards the color space,
power law transform has been used to augment the
datasets and make the results more robust with respect
to illumination changes:

o = c · iγ

where i represents the original input pixel value, 279

o is the output pixel value obtained after power 280

law transformation and c, γ are the parameters of 281

the transform. In our experiments, we fixed c =1 282

and γ = 3/4, 4/5, 1, 5/4, 4/3. In the case of RGB 283

images, the power law transform was applied to each 284

color channel. In general, such a procedure allowed 285

for a ×5 boost in dataset size. 286

Finally, images and labels were automatically con- 287

verted into the relative TensorFlow formats. Images 288

were encoded into TensorFlow records, and labels 289
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were produced into Comma Separated Values (CSV)290

listing. Each row in the CSV listing contains the file-291

name, the image size, the label and the top-left and292

bottom-right corner of the object determined by the293

domain expert.294

3.3. CNN for cell detection and classification295

Among the possible approaches to COD, in this296

paper, Faster R-CNN is adopted. Faster R-CNN uses297

two sub-networks: a deep fully convolutional net-298

work that proposes regions (named Region Proposal299

Network - RPN) and another module that classifies300

the proposed regions (classification network) [22].301

The two sub-networks share the first layers which302

act as a feature extraction module. Several architec-303

tures can be used for building the feature extraction304

module. Specifically, Inception Resnet v2 model was305

selected in this paper and instantiated for this par-306

ticular application making use of TensorFlow [2].307

Transfer learning was used to cope with the limited308

dataset of images, which is not sufficient for deal-309

ing with training from scratch. Namely, an inference310

graph for Inception Resnet v2 pre-trained on COCO 311

dataset [15] has been imported. On the basis of the 312

feature extracted, the RPN produces candidates for 313

regions that might contain objects of interest. Namely, 314

sliding a small window on the feature map, the RPN 315

produces probabilities about the object presence in 316

that region for region boxes of fixed aspect ratio and 317

scale; a bounding box regressor also provides opti- 318

mal size and position of the candidate rectangular 319

areas in an intrinsic coordinate system. Candidates 320

with a high probability of object presence are then 321

passed to the classification network that is in charge 322

of assessing the presence of an object category inside 323

the region. As a training strategy, firstly only the final 324

fully connected layers of the two sub-networks were 325

trained, leaving frozen all the other layers. In a fine- 326

tuning phase, also the layers in the feature extraction 327

module were optimized by using the training routines 328

made available in TensorFlow. 329

4. Results 330

Given the limited dataset available and with the 331

primary goal of demonstrating the applicability of 332

Fig. 2. An example of RGB image with localized and recognized objects. Examples from the all 5 classes described in Section 3.2 are
shown.
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DL to the problem of cell classification, it was opted333

to perform n−fold cross validation with n =5 in334

order to obtain more statistically significant results.335

The original setA of N = 60 images was partitioned336

into n =5 non-overlapping subsets A1, A2,· · ·, A5337

with 12 images each. The data augmentation strat-338

egy described in Section 3.2 was then applied to each339

subset Ai (1 ≤ i ≤5) producing the extended set Āi340

with cardinality #Āi = 480 as well an associated list341

of labeled regions.342

Multiple training and validation sessions were then343

carried out. In particular for each j (1 ≤ j ≤ 5),344

a network Nj was optimized using as training set345

Bj = i /= j Āi , while the set Āj might be used for346

validation. Notice that we opted for this partitioning347

approach in order to keep fully separated the training348

set form the validation set. Approximately, the pro-349

portion of the split between training and validation350

is 4 : 1, since the number of regions of interest con-351

tained in each subset Āj does not vary significantly.352

As an additional experiment, the same training pro- 353

cedure was repeated not taking in input the original 354

monochrome and RGB images, but converting first 355

all the the images to grayscale using [6]. 356

Each training phase lasted five days for all the train- 357

ing sets, using 300 regions proposals and learning 358

parameters set to 10−4 for the first 90.000 cycle and 359

then reduced to 10 −5. In the RPN, four scales cor- 360

responding to 1/4, 1/2, 1, 2 and three aspect ratios 361

1/2, 1, 2 were used. 362

All the inference graphs produced have been 363

exported and tested for inference on the validation 364

set. 365

Figure 2 reports examples of localization and 366

recognition using the first graph on a RGB image. 367

Figure 3 shows an example of the second graph local- 368

ization and recognition on another gray-scale image. 369

The average accuracy obtained using RGB and 370

the original monochrome images was 0.975 ± 0.01. 371

When using the images converted to grayscale very 372

Fig. 3. An example of gray-scale image with localized and recognized objects under investigation. In this case, esample from all the classes
reported in Section 3.2 but MSC cluster are shown.
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similar results have been found with an accuracy of373

0.972 ± 0.005.374

On the basis of these results, the use of color375

seems not to provide significant information for376

classification.377

All training procedures have been executed on a378

PC with a 4 cores 8 threads Intel(R) Core(TM) i7-379

4770 CPU @ 3.40 featuring 16 Giga Bytes DDR3380

of RAM, an Nvidia Titan X powered with Pascal,381

and Ubuntu 16.04 as operating system. Localization382

and recognition of new images require less than one383

second on a personal computer with a modern Intel384

I7 CPU.385

5. Conclusions386

Classification of single or small clusters of can-387

cer cells is a crucial question for early diagnosis.388

In this paper, a Deep Learning approach to recog-389

nize single or small clusters of cancer cells has been390

presented. The Deep Learning method adopted was391

based on Faster-RCNN technique and applied to sev-392

eral samples of cells cultured on glass slide with393

the purpose to discriminate osteosarcoma cells from394

osteo-differentiated MCSs (osteoblasts). The ability395

of such an algorithm to identify and classify approxi-396

mately the 100% of the investigated cells potentially397

will allow us to extend the method to large popu-398

lation cells or tissues. These results related to the399

classification of cells of different malignant degree,400

ranging from normal to cancer cells, can have signifi-401

cant consequences in the study of cell seeding and cell402

growth. Another essential advantage of our results403

is that they allow efficient analysis of single cells404

by merely employing an optical microscope with-405

out using conventional biochemical methods that are406

time-consuming and may require a large number of407

cells. The next step will be to extend the algorithm to408

large populations of cells and tissues with the purpose409

to improve digital histopathology.410
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