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Abstract. Schema matching is the problem of finding mappings be-
tween different structured schemas. When retrieving information from
digital libraries with heterogeneous schemas, the query over a target
schema has to be transformed into a query over the schema of the digital
library (the source schema) it has been submitted to. Schema mappings
define the rules for this query transformation.
In this paper we address the issue of automatically learning these map-
pings; furthermore, we evaluate their effectiveness in accessing distributed,
heterogeneous digital libraries.

1 Introduction

Federated digital libraries integrate a large number of legacy libraries and give
users the impression of one coherent, homogeneous library. These libraries use
different metadata schemas (called source schemas). As users cannot deal effi-
ciently with this semantic heterogeneity, they only see one system-wide or per-
sonalized target (or global, or mediated) metadata schema, which is defined
independently of the libraries. In such a context, three major tasks have to be
executed to answer to a query q issued by users over the target schema T . Let
us assume for the sake of concreteness that queries are of the form

q = {A1 = v1, . . . , Aq = vq} ,

where each Ai is an attribute of the target (global) schema and vi is a type
correct value for attribute Ai. A query example over the metadata schema
T(author, abstract) may be:

q = {abstract = “logic”, abstract = “computer science”, author = “Moshe V ardi”}

whose intended meaning is to “retrieve all documents written by Moshe Vardi,
which talk about logic in computer science”.

Then, the following tasks have to be executed:

1. select a subset of relevant (or, most promising) digital libraries among all the
digital libraries that can be accessed by a system, as it is not cost-effective
to submit a query to all possible resources. This task is called automated
resource selection in the literature (see, e.g. [3, 13]);



2. for every selected digital library (called resource), reformulate the informa-
tion need q into a query q̄ over the query language provided by the resource.
Query reformulation is based on schema mappings, which are usually au-
tomatically learnt in the context of the automated schema matching task
(see, e.g. [26]). These mappings are usually of the form AT → AS , stat-
ing that attribute AT of the target schema can be mapped into the at-
tribute AS of the source schema. For instance, suppose the source schema
is S(creator, description), then under the set of mappings {author →
creator, abstract → description} the above query will be rewritten as

Q = {description = “logic”, description = “computer science”,
creator = “Moshe V ardi”} ;

3. submit the transformed queries to the selected resources and merge the rank
lists together. This latter task is called rank fusion in the literature (see,
e.g. [27]).

In summary, you have to know where to search, how to query different digital
libraries, and how to combine the retrieved information from diverse resources.
In this paper we deal with the schema matching task, i.e. how to learn the map-
pings automatically, without human intervention, for querying different digital
libraries we are accessing to.

The framework we propose here relies on simple and effective method to au-
tomatically learn schema mappings in such a scenario. While automatic schema
matching has already been addressed in the literature, the novelty is that we
propose a technique based on a resource selection method [5]. We recall that
resource selection is the task of identifying relevant libraries for a given query.
Now take a resource S and its metadata schema with attributes S1, ..., Sn (the
source schema). The resource selection task can be reformulated in the schema
matching problem as follows: given an attribute-value pair Ai = vi, with Ai

being an attribute of the target schema, select among all the attributes Sj those
which are most relevant to the attribute Ai given its value vi, and map Ai to
the most relevant attribute.

The structure of the paper is the following: Section 2 describes how this
work is related to other approaches; Section 3 introduces our formal framework
for schema mapping, based on resource selection; in Section 4 we report the
evaluation of the proposed approach on two different data sets; and Section 5
concludes.

2 Related Work

With the proliferation of Digital Libraries over the Web, the development of
automated tools for schema matching is of particular importance to automatize
distributed retrieval.

The matching problem has been addressed by many researchers in two related
areas: the matching problem for “database” schemas, and the matching problem



for “ontologies” 1. These two areas are closely related as, e.g., schemas can be
seen as ontologies with restricted relationship types. The techniques applied in
schema matching can be applied to ontology matching as well; additionally, we
have to take care of the hierarchies.

Related to ontology matching are, for instance, the works [16, 18, 24] (see
[10] for an extensive comparison). While most of them use a variety of heuris-
tics to match ontology elements, very few do use machine learning and exploit
information in the data instances [10, 16, 18].

Related to schema matching are, for instance, the works [1, 2, 6–9, 11, 12,
14, 15, 17, 19–23, 25, 29] (see [6, 26] for an extensive comparison). Most recent
approaches, either implicitly or explicitly, perform schema mapping based on
attribute name comparison and/or comparing properties of the underlying data
instances using machine learning techniques. In particular, applying machine
learning techniques requires instances from both the target schema (global query
language) and the source schema. In these cases both the target schema and the
source schema are relational database tables. The attribute matching process is
based on some comparison between the values in the source table and the target
table.

However, these methods do not directly apply to our specific case as we have
just some queries over the target schema and not a relational table.

3 Formal Framework for Schema Mapping

The framework we propose here relies on a simple and effective method to au-
tomatically learn schema mappings. It is based on a reformulation of the CORI
resource selection framework [5]. In the following, after some preliminary defini-
tions, we first describe how CORI works for automated resource selection, and
then we fit this method into our context.

Preliminaries. Our framework is based on the following assumptions. We assume
that a user query q over the target metadata schema T is based on single-valued
attributes A1, . . . , Aq, i.e. a query is a set of attribute-value pairs of the form
q = {A1 = v1, . . . , Aq = vq}, where each Ai is an attribute of the schema and
vi is a type correct value for attribute Ai

2. We further assume that there are
n distributed information resources R = {R1, . . . ,Rn} accessible to the user.
Each resource Ri has schema Si based on attributes Ai1 , . . . , Aiq

, and supports
two types of queries: simple queries and complex queries. A simple query is just
a set of values qs = {v1, ..., vm}, while a complex query for resource Ri is a set of
attribute-value pairs qc

i = {Ai1 = vi1 , . . . , Aiq
= viq

} over the schema attributes
of Ri.

1 Informally, an ontology consists of a hierarchical description in some suitable logical
language of important concepts in a particular domain, along with the description
of the properties of the instances of each concept.

2 Note that a query attribute may appear in the query multiple times.



Automated resource selection using CORI. Automated resource selection is based
on the assumption of having a significant set of records available from each infor-
mation resource (see, e.g. [3, 13]). Usually, these records are obtained by issuing
random queries to the resource. This allows to compute an approximation of
the content of each information resource. This task is called information re-
source sampling and methods for computing it exists (see, e.g. [4]). Information
resource sampling consists of the computation of a representation of what an
information resource is about, i.e. the so-called information resource topics or
language model of the information resource. As a result, a sample set of records
for each information resource is gathered. This set is our resource description or
approximation of the information resource.

This data is then used in the next step to compute the resource score for each
information resource, i.e. a measure of the relevance of a given resource to the
query. The resource score establishes the relatedness of an information resource
with respect to the query. The resource score is computed using an adapted
version of the CORI resource selection method, which we describe next.

Consider the original query q = {A1 = v1, . . . , Aq = vq}. At first, we unfold
the complex query q into a simple query q′ = {v1, ..., vq}, where the attributes
Ai have been removed. Now, for each resource Ri ∈ R, we associate the resource
score, or simply the goodness, G(q,Ri), which indicates the relevance of resource
Ri to the query q. Informally, a resource is more relevant if its approximation,
computed by query-based sampling, contains many terms related to the original
query. However, if a query term occurs in many resources, this term is not a good
one to discriminate between relevant and not relevant resources. The weighting
schema is as follows:

G(q,Ri) =

∑
vk∈q′ p(vk|Ri)

|q′|
, (1)

where |q′| is the number of values in q′. The belief p(vk|Ri) in Ri, for value vk

appearing in q′, is computed using the CORI algorithm [3, 5]:

p(vk|Ri) = Ti,k · Ik · wk (2)

Ti,k =
dfi,k

dfi,k + 50 + 150 · cwi

cw

(3)

Ik =
log

(
|R|+0.5

cfk

)
log (|R|+ 1.0)

(4)

where:

wk is the weight of the term in the query;
dfi,k is the number of records in the approximation of Ri containing value vk;
cwi is the number of values in the approximation of Ri;
cw is the mean value of all the cwi;
cfk is the number of approximated resources containing value vk;
|R| is the number of the resources.



In the above formulae, Ti,k indicates how many records contain the term vk in
the resource Ri. As cfk denotes the number of resources in which the term vk

occurs, called resource frequency, Ik is defined in terms of cfk inverse resource
frequency: the higher cfk the smaller Ik, reflecting the intuition that the more a
term occurs among the resources the less it is a discriminating term. The belief
p(vk|Ri) combines these two measures.

Finally, given the query q, all information resources Ri ∈ R are ranked
according to their resource relevance value G(q,Ri), and the top-n are selected
as the most relevant ones. This concludes the description of the resource selection
phase.

Schema mapping using CORI. We are ready now to describe our method for
schema mapping. Let Rk ∈ R be a selected resource. Our task is to find out
how to match the attribute-value pairs Ai = vi ∈ q (over the target schema)
into one or more attribute-value pairs Akj

= vi, where Akj
is an attribute of the

schema of the selected resource Rk. The basic idea is as follows. Consider the
resource Rk and the records r1, . . . , rl of the approximation of Rk Approx(Rk)
(computed by query-based sampling). Each record rs ∈ Approx(Rk) is a set of
attribute-value pairs rs = {Ak1 = vk1 , . . . , Akq

= vkq
}.

From Approx(Rk), we make a projection on each attribute, i.e. we build a
new set of records for each attribute Akj

of the schema:

Ck,j =
⋃

rs∈Approx(Rk)

{r | r = {Akj
= vkj

}, Akj
= vkj

∈ rs} .

So, each projection Ck,1, . . . , Ck,kq can be seen as a new library, i.e. resource.
Now we apply the resource selection framework for attribute matching: in

order to find out whether to match an attribute-value pair Ai = vi ∈ q into
an attribute-value pair Akj

= vi, we verify whether the resource Ck,j has been
selected among the top-n relevant resources to the query q̄ = {Ai = vi}. That
is, we build the query q̄ = {Ai = vi} and then compute all the goodnesses
G(q̄, Ck,1), . . . , G(q̄, Ck,kq

). If G(q̄, Ck,j) is the top score, then we map Ai = vi

into the attribute-value pair Akj
= vi. Once we apply the procedure to all

Ai = vi ∈ q, a complex query over the selected source schema Rk ∈ R is
obtained and can be submitted to the resource Rk.

4 Experimental Methodology

In this section we describe the data (documents and queries), the evaluation
measures, and the experimental setup used to evaluate our approach.

Experimental setup. The schema mapping task involves a target schema, and one
source schema with its correspondent resource approximation. The experiments
were performed on two different data sets:



– OAI-DC is an Open Archive Initiative collection 3 that contains more than
40, 000 scientific documents in XML format. Its schema, used as the source
schema, has 21 attributes. As the target schema for this data set we used
the NCSTRL system 4, which has 29 attributes.

– NGA is a sampled collection of 864 documents from the National Gallery of
Arts, Washington D.C. 5. The documents are available in a schema manually
built from the web site (our source schema), and in a standard schema (our
target schema), manually derived from the previous one with simple rules.
From now on, the former will be called NGA schema, the latter standard
schema. The standard schema contains 12 attributes, while the NGA schema
contains 14 attributes.

For each data set, a set of structured queries over the target schema of the
form q = {A1 = v1, . . . , Aq = vq} have been submitted to the resource. These
queries have been first transformed into simple queries, and then transformed
into complex queries by relying on the attribute mappings obtained using the
resource selection approach described in Section 3.

For each data set, we perform two sets of experiments: one computing the
mappings on the fly when the query is submitted to the resource, and another one
by computing the mappings off-line. In the off-line mapping, we use a training
set of 10 queries to compute the “best” mapping for each given target attribute.
Essentially, for each training query, we compute the set of mappings A → B, and
sum up A → B’s score. Finally, we rank all the mappings A → B in decreasing
order according to the final score. For each target attribute A, we select the
mapping A → B with highest score.

Evaluation Metrics For the evaluation of the effectiveness of the mapping method,
we consider two metrics. First, for each query we count how many mappings are
correct and report the average value. Second, we evaluate the effectiveness of
the query transformation process. That is, given a target query q = {A1 =
v1, . . . , Aq = vq}, we evaluate whether issuing the simple query q′ = {v1, . . . , vq}
directly to the resource provides better effectiveness than the transformed query.
Therefore, different queries are submitted to a resource:

– the optimal query (called, “source query”), which consists in correctly trans-
forming the target query in the source query by using manually built map-
pings;

– the simple query obtained from the complex target query;
– the query obtained applying on-line mapping;
– the query obtained applying off-line mapping.

For each query submitted to the source schema, the first n results (with n em-
pirically set to 10) are manually evaluated for relevance with respect to standard

3 http://dublincore.org
4 RFC 1807 Bibliographic Records Format, http://www.ncstrl.org
5 http://www.nga.gov



Information Retrieval measurements:

Precision =
# RelevantRetrieved

# TotalRetrieved

Recall =
# RelevantRetrieved

# TotalRelevant

F − Score = 2 · Precision · Recall

Precision + Recall

4.1 Experimental Results

The results are reported in Tables 1-3. For each set of queries and each method,
the average percentage of mappings correctly found, and the average recall,
precision and F-Score are computed.

% mappings On-line Off-line

OAI-DC 0.29 0.8
NGA 0.55 1.00

Table 1. % of correct attribute mappings.

Queries Source Simple On-line Off-line

Avg Precision 0.44 0.32 0.13 0.25

Avg Recall 1.00 0.83 0.34 0.70

Avg F-Score 0.61 0.46 0.19 0.37

Table 2. Effectiveness of schema matching over OAI-DC data set.

Queries Source Simple On-line Off-line

Avg Precision 0.30 0.29 0.16 0.30

Avg Recall 1.00 0.97 0.60 1.00

Avg F-Score 0.46 0.45 0.25 0.46

Table 3. Effectiveness of schema matching over NGA data set.

Table 1 highlights a considerable difference in effectiveness between the two
methods for learning schema mappings. Off-line mapping is clearly better than



on-line mapping, since in the latter effectiveness depends on each query, while
in the former it depends on the entire training set.

Applying on-line mapping over OAI-DC is not very effective (Table 2). This
may be due to different reasons: a large collection and a small sample (about 1%
of the entire collection), which might not give a good resource approximation.
Indeed, the OAI-DC resource is such that many query values are distributed in
many different and sometimes unjustified source attributes, making the mapping
process very difficult. For instance, we found out that the attribute “date” with
value “1920” has been mapped into the attribute “source”, maybe due to an
erroneous metadata compilation by a librarian. Interestingly, better results are
obtained applying off-line mapping, which are comparable to the optimal query.

Applying on-line mapping over NGA is not very effective as well (Table 3),
even if the gap with the optimum result is lower than in the previous case. In
this case, indeed, we have a sample that is about the 10% of the entire collection.
Interestingly, applying off-line mapping we obtain the exact mappings for all the
target attributes. The experiments were also performed inverting the schemas,
using standard as the source schema and NGA as the target schema. The results
obtained are exactly the same reported in Table 3.

Note that, in both the data sets used, querying the resources with the simple
query (so ignoring the structure of the source schema), we obtain almost the
same precision and recall of the original query. This may suggest that query
transformation, even if perfect (as e.g. with off-line mapping) is not necessary
for querying distributed digital library metadata schemas. However, more inves-
tigations should be made on this issue, before drawing concluding results. This
case may depend on the particular data set considered, and on the manually
constructed queries we have selected (effectiveness of the perfect query almost
coincides with the effectiveness of the simple query).

5 Conclusions

In this paper we have proposed the use of CORI resource selection framework to
automatize the schema mapping generation phase. This approach allows trans-
formation of a complex query over a target metadata schema into a complex
query over the source metadata schema. To the best of our knowledge, a major
novelty of this paper is the fact that our approach works directly on queries over
the target schema and, thus, no instances of the target schema are required for
the learning process.

The results in this paper can be employed for instance in Peer-to-peer net-
works. These are dynamic scenarios where peers can dynamically join and leave
the network, so the system should –for each query– only consider the services
which are currently available and relevant to a given query, and transform the
query on the fly.

We are currently testing on different data sets to verify whether the good
performances of simple query against query transformation is confirmed. We are
also investigating the use of bayesian classifiers [28] to determine the schema
mappings and compare it againts our resource selection-based approach.
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