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Abstract: Chronic kidney disease (CKD) is a significant public health concern associated with
significant morbidity and has become one of the foremost global causes of death in recent years.
A frequent comorbidity of CKD is secondary hyperparathyroidism (SHPT), exemplified by high
serum parathyroid hormone (PTH) levels. The mineral metabolism disturbances resulting from CKD
and progression to SHPT are currently considered part of the definition of chronic kidney disease–
mineral and bone disorder (CKD-MBD). However, CKD-MBD does not only include abnormalities
in laboratory-measured parameters; it is a complex condition characterized by dysregulation of
bone turnover, mineralization, growth and strength, accompanied by vascular or another soft-tissue
calcification. Together, this increases the risk of bone fractures, cardiovascular disease, and overall
mortality in CKD-MBD patients. Monitoring serum markers is essential in diagnosing SHPT and
CKD-MBD, and there are several recognized indicators for prognosis, optimal clinical management
and treatment response in late-stage kidney disease patients receiving dialysis. However, far fewer
markers have been established for patients with non-dialysis CKD. This review provides an overview
of current and emerging markers and tools used in the diagnosis and management of CKD-MBD in
non-dialysis adult patients.

Keywords: chronic kidney disease–mineral and bone disorder; secondary hyperparathyroidism;
biomarker; calcification; bone; calcium; phosphate; PTH; vitamin D; osteoporosis

1. Introduction
1.1. CKD-MBD/SHPT

Chronic kidney disease (CKD) is a significant public health concern associated with
significant morbidity. It has become one of the foremost global causes of mortality over the
past 30 years [1]. An estimate from 2017 suggests that CKD affects up to nine percent of the
global population, and CKD is predicted to become the fifth leading cause of premature
mortality worldwide by 2040 [1,2]. Complex disturbances to mineral metabolism and
dysregulation of homeostasis are associated with declining kidney function in CKD [3–5],
and a frequent complication is secondary hyperparathyroidism (SHPT), defined by elevated
serum parathyroid hormone (PTH) and enlargement of the parathyroid glands [6].

SHPT is an adaptive and typically detrimental condition that develops due to declining
kidney function and the subsequent dysregulation of calcium and phosphate homeostasis.
This leads to increased serum phosphate, elevated fibroblast growth factor-23 (FGF-23)
levels, and reduced synthesis of klotho (the FGF-23 co-receptor) and the active form of
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vitamin D, calcitriol. These alterations directly and indirectly cause elevated production
and secretion of PTH and parathyroid hyperplasia, further exacerbating the condition [3].
The presence of multifactorial hyporesponsiveness to PTH creates an additional negative
feedback loop [7].

The mineral metabolism disturbances resulting from CKD and rising PTH levels are
currently considered part of the definition of chronic kidney disease–mineral and bone
disorder (CKD-MBD) [4]. However, CKD-MBD does not only include abnormalities in
laboratory-measured parameters; it is a complex condition characterized by dysregula-
tion of bone turnover, growth, mineralization, or strength, accompanied by soft tissue
and vascular calcification (VC) [4,8,9]. Together, this increases the risk of bone fractures,
cardiovascular disease, and overall mortality in CKD-MBD patients. Consequently, bone is
now considered a novel endocrine organ at the center of CKD-MBD [10]. Moreover, the
involvement of bone metabolism in CKD-MBD has clear parallels for cardiovascular health
and aging in the general population [11].

Monitoring of serum markers, including calcium, phosphate, PTH, vitamin D and
alkaline phosphatase activity, as well as other diagnostic tools, are essential in the manage-
ment of SHPT and CKD-MBD, and treatment decisions should be based on a combined
assessment of these parameters [4]. Although FGF-23 could represent an early indicator
of phosphate overloading, and klotho may be an important preliminary marker of CKD,
monitoring these proteins is not yet recommended in regular practice [4].

1.2. Diagnostic Tools in CKD-MBD

Biochemical anomalies are common in CKD [12,13], and, as previously highlighted,
the diagnosis of CKD-MBD typically includes laboratory testing for serum PTH, calcium,
phosphate and alkaline phosphatase activity [4,9]. Fluctuations in the biochemical profile of
CKD-MBD may be evident in CKD stage 3 or earlier for parameters not typically measured
in regular practice [4,13], such as decreased levels of klotho [14]. However, the rate of
change and severity of anomalies may vary among patients [12]. Given the complexity of
variation within any one parameter, trends of changes are more important than individual
values to assess the severity of abnormal laboratory results in CKD-MBD and inform
therapeutic decisions [4].

The benchmark for diagnosis of renal osteodystrophy is bone biopsy with histomor-
phometric analysis, which is the only technique capable of providing a full evaluation of
dynamic bone parameters [15,16]. However, the use of bone biopsy has decreased in recent
years due to a lack of proficiency in performing the procedure and interpreting the findings,
perceived invasiveness of the technique and corresponding pain for patients, and issues
surrounding healthcare reimbursement [15,16]. Recent updates to clinical guidelines rec-
ommend assessment of bone mineral density (BMD) by dual-energy X-ray absorptiometry
(DXA) at the spine or hip for diagnosis of osteoporosis [4,17]; however, imaging should not
be considered a complete surrogate for histological findings as it is not sensitive enough to
fully evaluate underlying mineral and bone disorders [15,16].

For the diagnosis of cardiovascular calcifications in CKD-MBD, lateral abdominal radio-
graphy is recommended to detect VC, while an echocardiogram can be used to assess the
degree of valvular calcification [4,18]. Other techniques, such as simple radiography of the
hands and pelvis and pulse wave velocity, can provide additional helpful information [8,19].
More detailed information on the diagnosis of CKD-MBD is beyond the scope of this paper
and is reviewed in other articles [11,20–23].

1.3. Objective

There are several recognized markers for prognosis, optimal clinical management
and treatment response in late-stage kidney disease patients receiving dialysis; however,
fewer markers have been established for CKD patients not receiving dialysis. This review
aims to provide an overview of current and emerging markers or risk factors for disease
progression, cardiovascular dysfunction, and bone turnover in non-dialysis patients with
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CKD-MBD. Markers described include parameters that can be assessed via blood samples.
The functions of markers typically detected in systemic circulation are summarized in
Table 1, and a schematic summarizing some key marker interactions can be found in
Figure 1. Figure 2 describes interactions between cardiovascular dysfunction markers. In
addition, this review highlights some of the diagnostic tools available for the assessment of
cardiovascular and bone health (Table 2).

Table 1. Summary of marker roles relating to CKD-MBD.

General Mineral Dysregulation Markers

Phosphate Essential for bone growth and mineralization; multiple key roles in
cellular maintenance, metabolism and signaling

Parathyroid hormone Regulates serum calcium and phosphate concentration through effects on
the gastrointestinal tract, kidneys and bone

Calcium Essential for bone formation; versatile signaling molecule with multiple
physiological functions

25-hydroxyvitamin D (25(OH)D) The main circulating form of vitamin D; serves as a precursor to the
active form of vitamin D—1,25-dihydroxyvitamin D (1,25(OH)2D)

1,25-dihydroxyvitamin D (1,25(OH)2D)
Increases absorption of calcium from the gastrointestinal tract and
promotes its reabsorption in the kidneys; helps regulate phosphate levels;
suppresses the release of PTH from the parathyroid glands

Fibroblast growth factor-23 (FGF-23) Suppresses phosphate reabsorption and calcitriol synthesis in the kidney

Klotho Obligate co-receptor for FGF-23; role in the regulation of survival and
vascular calcification

Cardiovascular Dysfunction Markers

Matrix Gla protein
Helps regulate vascular calcification by scavenging circulating calcium
phosphate and interacting with fetuin-A to form primary
calciprotein particles

Fetuin-A
Helps regulate vascular calcification by binding to calcium phosphate
and interacting with matrix Gla protein to form primary
calciprotein particles

Primary calciprotein particles (CPPs) Develop into secondary CPPs, which contribute to vascular calcification

Secondary calciprotein particles (CPPs) Are involved in the initiation and progression of vascular calcification

Osteocalcin
Promotes bone mineralization and plays a multifaceted role in
cardiovascular health by influencing insulin sensitivity, vascular function,
cardiac function and the regulation of calcification processes

Markers of Bone Turnover

Bone-specific alkaline phosphatase Contributes to the process of bone turnover by regulating bone
matrix mineralization

Tartrate-resistant acid phosphatase 5b (TRAP5b) Released by osteoclasts to break down bone matrix

Procollagen type 1 N-terminal propeptide (P1NP) A marker of bone formation released following extracellular cleavage of
type 1 collagen

Sclerostin Inhibits bone formation by osteoblasts and influences
vascular calcification
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Table 2. Summary of tools available for use in the diagnosis and management of CKD-MBD.

Tools that Assess Cardiovascular Health

Coronary artery calcification (CAC) score Uses computed tomography to measure the amount of calcified plaque
in the coronary arteries

Kauppila score Uses lateral lumbar radiographs to quantify abdominal
aortic calcification

Adragao score Uses X-rays of the pelvis and hands to assess vascular calcifications of
iliac, femoral, radial and digital arteries

Pulse wave velocity
Is a measure of arterial stiffness. It is calculated by measuring the time
it takes for the arterial pulse to travel between two points (e.g., carotid
and femoral arteries) divided by the distance between those points

Non-Invasive Tools that Assess Bone
Dual-energy X-ray absorptiometry (DXA) Uses spectral imaging to measure bone mineral density

Peripheral quantitative computed tomography (pQCT) Is a 3D imaging technique used to quantify bone mineral density in
peripheral skeletal sites, e.g., spine, proximal femur, forearm and tibia

Trabecular bone score (TBS) Uses images acquired from lumbar spine DXA to evaluate bone texture
variations and bone quality

2. General Markers of Mineral Dysregulation

Abnormalities of mineral metabolism are very common in patients with CKD. As
previously mentioned, variations in laboratory-measured levels of circulating markers
may begin in CKD stage 3 or earlier, and monitoring is essential for effective manage-
ment [4]. The following section summarizes general markers associated with adverse
patient outcomes in non-dialysis CKD.

2.1. Phosphate

Although monitoring of serum phosphate levels is standard practice for the diagnosis
and management of CKD-MBD, there is evidence to suggest a role for phosphate as a marker
of disease progression and outcomes. For example, research has shown that high serum
phosphate levels in non-dialysis CKD patients are associated with renal function decline
and an increased risk of end-stage kidney disease and death [24–27]. The recent PECERA
study identified the minimum risk ranges of serum phosphate for all-cause mortality
(2.8–5.0 mg/dL) and cardiovascular mortality (2.1–4.4 mg/dL) [28], which correlate well
with the ‘normal’ range indicated in current guidelines [4]. Values exceeding these ranges
are associated with an increased risk of mortality [28]. Accordingly, current KDIGO (Kidney
Disease Improving Global Outcomes) guidelines suggest reducing elevated phosphate
levels ‘towards’ the normal range in CKD patients and basing decisions about phosphate-
modulating treatment on progressively or persistently elevated serum phosphate [4].

2.2. Parathyroid Hormone

Parathyroid hormone is a peptide secreted by the parathyroid glands that regulates
serum calcium concentration through interaction with the kidneys, bones and gastrointesti-
nal tract [24]. The active biological form is called ‘intact’ PTH (iPTH) and contains 84 amino
acids secreted after cleavage from a larger inactive precursor [25,29]. Elevated iPTH is a
hallmark of CKD and SHPT. In this setting, PTH is considered a uremic toxin which causes
harmful complications, including bone loss, soft tissue calcification and cardiomyopathy,
among many others [25]. Substantially elevated PTH is typically observed in patients re-
quiring imminent dialysis therapy [25]; however, PTH levels may rise as early as in stage 3
CKD [13,27]. Correspondingly, several studies have observed that elevated PTH correlates
with declining renal function in patients with non-dialysis, stage 3–5 CKD [26,28,30,31].
Additionally, results from observational studies have shown that PTH is an independent
predictor of fractures, vascular events and death in adult patients with CKD stage 3 and
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4 CKD [32] and that rising PTH levels may be linked to the progression of CKD and an
increased incidence of cardiovascular events [33,34]. Nevertheless, despite evidence linking
elevated iPTH levels with adverse outcomes, there is currently limited data to indicate that
reducing iPTH in non-dialysis patients leads to a reduced risk of adverse outcomes.

While a consensus exists that rising PTH levels serve as an indication for treat-
ment initiation, it has been suggested that complete normalization of PTH levels is to be
avoided [35–37], due to the beneficial phosphaturic effects of PTH, the presence of hypo-
responsiveness to PTH in CKD and to avoid low turnover bone disease. For instance,
in dialysis patients, iPTH levels between 2–9 times the upper limit of normal, or increas-
ing trends between those values, is the suggested level at which iPTH should be main-
tained [4,8]. In contrast, the latest KDIGO guidelines could not define the optimal PTH
level in non-dialysis CKD patients [4] due to a lack of robust evidence. This issue has been
recently reviewed in other articles [35,37].

There is a balance to be found when managing rising PTH levels, as parathyroid
hyperplasia, persistent elevation of PTH, and the progression of SHPT resulting from
delayed therapeutic interventions are accompanied by continuing reductions in sensitivity
to vitamin D and calcium homeostasis, subsequently posing a risk of treatment resis-
tance in later stages of the disease [6]. Additionally, patients starting hemodialysis with
iPTH > 600 pg/mL have a high risk of maintaining substantially elevated iPTH levels after
one year of receiving hemodialysis compared with patients starting dialysis with lower
iPTH levels. This may occur despite the more aggressive treatments prescribed to the
patients starting hemodialysis with iPTH > 600 pg/mL [38]. This further suggests the need
for effective PTH control to avoid progressive SHPT during non-dialysis CKD and raises
the need for a consensus on PTH target guidelines in these patients [38].

Despite some of the challenges with PTH measurement, it remains a key marker for
monitoring CKD-MBD [39]. As mentioned later in this review, PTH combined with other
markers has been assessed, but mainly in dialysis patients [40], and requires further research.

2.3. Vitamin D

Individuals can obtain vitamin D through multiple sources: endogenous synthesis
from UV exposure to the skin, dietary intake, or supplementation. Upon entering the blood-
stream, vitamin D undergoes hepatic hydroxylation, resulting in the formation of 25(OH)D
(calcidiol or calcifediol). 25(OH)D is biologically less active compared to 1,25(OH)2D
(calcitriol), which is generated in the kidney after another hydroxylation step. In clinical
settings and epidemiological studies, 25(OH)D is the most widely used marker of vitamin D
status [41]. Calcitriol is not frequently used as a marker as the assays developed to measure
1,25(OH)2D lack standardization, its short half-life complicates accurate measurement,
and exogenous administration of calcitriol and vitamin D analogs can artificially influence
results [8].

Vitamin D deficiency (defined by most experts as serum 25(OH)D serum levels
<20 ng/mL) [42] is common in CKD and can affect more than 80% of non-dialysis pa-
tients [43]. Several studies provide evidence suggesting a robust inverse association be-
tween serum 25(OH)D levels and poor outcomes in CKD patients not receiving dialysis.
For example, low levels of 25(OH)D have been associated with deteriorating renal function
and an elevated risk of mortality in non-dialysis CKD [29,44–46].

Guidelines differ regarding recommendations to supplement low 25(OH)D levels.
Australian and US guidance states that levels < 30 ng/mL should be corrected using
appropriate treatment strategies even in earlier stages of CKD, whereas KDIGO advised
that adult non-dialysis patients with stage 3–5 CKD and vitamin D deficiency should be
treated with nutritional vitamin D. In contrast, calcitriol and vitamin D analogs should
not be routinely prescribed, reserving these for stage 4–5 CKD patients with severe and
progressive hyperparathyroidism [4,47]. However, a consensus from the National Kidney
Foundation defined ‘adequate’ 25(OH)D concentrations in CKD stages 3–4 as >20 ng/mL,
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assuming the absence of a counter-elevation in PTH levels, and agreed that 25(OH)D
concentrations < 15 ng/mL should be corrected regardless of PTH level [32].

2.4. Calcium

Several studies have identified relationships between dysregulation of serum calcium
levels and outcomes in non-dialysis patients. For example, results from two observational
studies show that low serum calcium levels are associated with renal function decline and
progression to renal replacement therapy. Together, these studies suggest that serum cal-
cium could be considered in a predictive model of patient prognosis [48,49]. A more recent
study of patients with stages 4–5 non-dialysis CKD showed an increased risk for all-cause
mortality at serum calcium levels > 10.5 mg/dL. The lowest risk range for cardiovascular
mortality was between 8.5–10.0 mg/dL, and concentrations on either side of this threshold
were likely to correspond to a higher cardiovascular mortality [33]. Current guidelines
recommend that hypercalcemia is to be avoided in adult patients with stage 3–5 CKD but
suggest an individualized strategy with regard to treatment rather than endorsing the
correction of hypocalcemia for all patients [4], as serum calcium levels are not necessarily a
reflection of total calcium burden and high phosphate levels are usually treated first.

2.5. FGF-23

FGF-23 is a 32 kDa glycoprotein mainly produced in bone by osteoblasts and osteocytes.
The primary action of FGF-23 is the inhibition of phosphate reabsorption from the urine
and the suppression of calcitriol synthesis in the kidney [50]. FGF-23 may represent an
important marker in non-dialysis CKD, as several studies have linked serum FGF-23 levels
to adverse patient outcomes.

Increases in serum FGF23 have been demonstrated as one of the early indicators of
mineral dysregulation in non-dialysis patients, compared with phosphate and PTH, with
high FGF-23 and low 25(OH)D levels identified as independent predictors of poor renal
outcome [34]. Furthermore, a prospective study of 3879 participants with stages 2–4 CKD
found that elevated FGF-23 was an independent risk factor for end-stage kidney disease
(ESKD) and progression to dialysis in patients with relatively preserved kidney function,
and for mortality across all stages of CKD enrolled [51].

In a later study, elevated FGF-23 was associated with risk of progression to renal
replacement therapy (hazard ratio [HR] 1.35; 95% confidence interval [CI] 1.001–1.820;
p = 0.05), as well as both fatal and non-fatal cardiovascular events (HR 1.74; 95% CI
1.303–1.305; p < 0.001) and all-cause mortality (HR 1.4; 95% CI 1.109–1.767; p = 0.005) [52].
Similar outcomes were observed in a large meta-analysis of 15 prospective cohort studies,
where elevated FGF-23 levels in non-dialysis patients with CKD stages 1–5 were associated
with an increased risk of all-cause mortality (risk ratio [RR] 1.46; 95% CI 1.38–1.55; p < 0.001),
cardiovascular disease (RR 1.37; 95% CI 1.15–1.63; p < 0.001), and renal events (RR 1.31;
95% CI 1.07–1.59; p = 0.008), including progression to ESKD or the initiation of dialysis [53].
Finally, two smaller investigations highlighted that raised serum FGF-23 correlates with
levels of bone metabolism-related markers and vertebral fractures in older non-dialysis
patients, as well as increased insulin resistance in non-diabetic, non-dialysis stage 3–5 CKD
patients [44,54], among many other potential pleiotropic effects [45].

2.6. Klotho

Klotho is a protein produced mainly in the kidney that can exist in a membrane-bound
state or a soluble, circulating form [46]. The membrane form of klotho acts as a co-receptor
for FGF-23. Soluble klotho is found in the blood, urine and cerebrospinal fluid and carries
out a range of functions, including the suppression of growth factor signaling and the
regulation of ion channels and transporters [55,56]. Klotho gained attention due to its
association with extending survival [46,57,58] and subsequently as an early biomarker of
acute or chronic kidney injury [59]; however, initial studies in CKD provided contradictory
results regarding deterioration of renal function and increased mortality [60,61].
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Evidence shows that a decline in serum klotho level can occur as early as CKD stage 2
and continues to reduce as CKD progresses [62–64]. Recent studies have also suggested that
in patients with non-dialysis CKD, lower soluble Klotho levels in combination with higher
FGF-23 levels are associated with adverse clinical outcomes, including overall mortality
and cardiovascular events in non-diabetic non-dialysis CKD patients [55,65]. In addition,
analyses have shown an association between decreased serum klotho levels and the risk
of vascular calcification [66,67]. These results hint that klotho could be a promising CKD
diagnosis and prognosis marker. However, evidence relating to the clinical significance of
klotho in CKD patients is inconsistent, and therefore, this topic requires further study [68].

3. Diagnostic Tools and Markers of Cardiovascular Dysfunction
3.1. Vascular Calcification in CKD-MBD

Vascular calcification (VC) is a highly complex process involving multiple signaling
pathways; there are many promoters as well as inhibitors of calcification [69]. There are
two main types of VC: intimal calcification and medial calcification (Mönckeberg’s sclero-
sis) [70,71]. Intimal calcification is linked to atherosclerosis, a condition characterized by
chronic inflammation and/or lipid accumulations [71,72]. Medial calcification is a form
of arteriosclerosis and occurs in the elastic region of the arteries without involvement of
lipid or inflammatory components [71,73]. Calcium and phosphate ions play a key role
in the initiation of medial calcification in CKD, forming circulating calcium–phosphate
nanoparticles (Figure 2). Regulatory proteins can remove calcium–phosphate complexes
under normal conditions but can eventually become saturated in CKD, leading initially to
the formation of primary calciprotein particles (CPPs) followed by conversion to secondary
CPPs [74]. CPPs contribute to conditions that induce the differentiation of vascular smooth
muscle cells into osteoblast-like cells, which subsequently express osteoblast transcription
factors and other bone-related proteins. This corresponds with the downregulation of con-
tractile proteins and secretion of matrix vesicles, which trigger mineralization within blood
vessel walls [69]. Medial and intimal calcification occur in CKD, but medial calcification is
more common [70,75].

VC is associated with several adverse clinical outcomes, including cardiac events,
cardiovascular mortality and all-cause mortality [76]. Guidelines indicate that patients
with stage 3–5 CKD and evident vascular or valvular calcification have the greatest car-
diovascular risk, and it is sensible to use this knowledge to inform the management of
CKD-MBD [4], for instance, via reducing the use of hypercalcemic/hyperphosphatemic
drugs or restricting calcium-based phosphate binders.

Patients with CKD exhibit an elevated cardiovascular risk, and cardiovascular disease,
rather than ESKD, is the leading cause of death in patients with advanced CKD. In CKD
patients not receiving dialysis, the incidence and prevalence of cardiovascular events are
also significantly higher compared with the general population [77]. This section highlights
the current evidence surrounding markers of cardiovascular events and cardiovascular
dysregulation tools in non-dialysis CKD populations.

3.2. Vascular Calcification Imaging Tools

Several imaging methods have been developed to evaluate the extent and severity of
VC in patients with CKD, many of which do not differentiate between intimal and medial
calcification [78].

Coronary artery calcification (CAC) scoring is a technique to assess the likelihood
of coronary heart disease and mortality in the general population [49], and is typically
quantified by computed tomography (CT) [79,80]. Studies have indicated that CAC may be
present even in mild-to-moderate non-dialysis adult CKD patients [81], and is linked to an
increased risk of declining kidney function [82]. Additionally, high CAC scores have been
linked with faster progression to ESKD and mortality [83,84], with a meta-analysis of eight
studies involving 862 subjects identifying a considerable association between high CAC
and cardiovascular events in non-dialysis patients [85].
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While the CAC score is the gold standard to measure VC, the technique delivers high
radiation doses and can incur significant costs [86]. Consequently, guidelines suggest that
simpler radiographical methods, such as lateral abdominal radiography, can be used as
reasonable alternatives to CT-based methods to identify the degree of VC [4].

The Kauppila score is a validated grading system used to assess the severity of ab-
dominal aortic calcification based on lateral abdominal radiography [18]. Aortic VC scores
using this system correlate significantly with renal resistive index (RRI) in non-dialysis
CKD patients, suggesting it could be a convenient and inexpensive tool for estimating
RRI and, consequently, the intrarenal vascular status [87]. However, further research is
warranted [87]. Furthermore, the degree of calcification in the abdominal aorta, measured
by the Kauppila score, has been strongly associated with a decline in kidney function and
an increase in adverse cardiovascular parameters, including pulse pressure, left ventricular
mass, left atrial volume, and left atrial volume index in CKD patients not receiving renal
replacement therapy [88].

Adragao scoring is another simple VC score based on plain radiographical imaging of
the pelvis and hands [19]. VC assessment using the Adragao score has also been shown
to independently predict death and time to hospitalization in non-dialysis CKD patients.
Consequently, it may represent a useful index to detect patients with CKD at high risk of
complications or death [89]. Recently, a small study utilizing a plain X-ray of the lumbar
spine, pelvis, and hands to assess VC reported that bone formation rate was significantly
lower in patients with VC than patients without VC. This was the first study reporting
a relationship between the histomorphometric qualities of bone and simple VC scores in
non-dialysis patients [90].

Kauppila and Adragrao scoring are semi-quantitative, relying on a visual assessment
and, therefore, are more susceptible to human errors. Recently, an X-ray-based, computer-
assisted abdominal aorta VC score has been developed with improved precision versus the
Kauppila score. Ongoing studies will determine whether this new scoring method may
be beneficial in detecting the progression of VC [86]. Finally, breast arterial calcification
(BAC) is becoming well-recognized as a specific marker of medial calcification and is
commonly observed in CKD patients, increasing in prevalence and severity with disease
progression [91]. Therefore, measurement of BAC may offer a personalized, non-invasive
approach to differentiate women at risk for cardiovascular disease, with no additional
exposure to radiation or financial implications, as most women aged 40 years or above
experience routine breast cancer screening via mammography [91].

3.3. Pulse Wave Velocity

Pulse wave velocity (PWV) is a non-invasive method for analyzing central arterial
stiffness based on the rate at which blood pressure pulses travel through the circulatory
system. It is a straightforward and reproducible technique and is validated and widely
used in clinical settings throughout Europe. Changes in PWV have independent predictive
value for cardiovascular risk in the general population [92].

In non-dialysis patients with CKD, several studies have correlated high PWV, indica-
tive of increased arterial stiffness, with deterioration of renal function [93–95]. Addition-
ally, data from an extensive cross-sectional study in 1385 non-dialysis patients with CKD
(KNOW-CKD cohort) indicated that greater arterial stiffness, indicated by elevated PWV,
corresponded with coronary artery calcification [96]. Correspondingly, two recent clinical
studies identified arterial stiffness as an important predictor of cardiovascular events and
risk [97,98], whereas a meta-analysis of studies in non-dialysis patients showed that high
PWV was also associated with an increased risk (RR 2.52; 95% CI 1.40–4.55; I2: 62.6%)
of all-cause mortality [85]. Together, these observations suggest that monitoring arterial
stiffness via PWV may represent an inexpensive method for estimating the extent of disease
progression and likelihood of death in non-dialysis patients with CKD.
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3.4. Regulators of Vascular Calcification

Fetuin-A is a multifunctional, circulating glycoprotein that scavenges calcium phos-
phate via negatively charged amino acids β-sheet of the N-terminal domain [99–101].
Matrix Gla protein (MGP) and Gla-rich protein (GRP) also scavenge calcium phosphate
via their negatively charged γ-carboxylated glutamate residues. The interaction between
fetuin-A and Gla proteins initiates the formation of primary CPPs [101], which help regulate
VC [101]. Fetuin-A, MGP and CPPs offer potential as markers of cardiovascular health in
non-dialysis adult patients with CKD.

3.5. Fetuin-A

Low serum fetuin-A is typically linked to mineralization imbalance and increased
likelihood of death in advanced kidney disease [102]. However, the situation in non-dialysis
CKD is still unclear. Some studies have identified associations between low fetuin-A
levels, accelerated progression of aortic VC and major adverse clinical events [103,104],
whereas increased phosphorylated fetuin-A-containing CPPs have also been associated
with increased aortic stiffness in patients with non-dialysis CKD [105]. Nevertheless, in a
recent meta-analysis of 5169 CKD patients, a significant association between low fetuin-
A levels and higher risk of mortality was observed in dialysis patients but not in the
non-dialysis population [106].

3.6. MGP

Matrix Gla protein (MGP) is a powerful inhibitor of VC, and carboxylation by vitamin
K is required to trigger the active, inhibitory state [107]. Correspondingly, markedly
increased levels of inactive MGP have been observed in late-stage CKD patients and
correlate with surrogate markers of VC and mortality [108]. However, the role MGP plays
as a marker in non-dialysis patients is less well-known. For example, one study in patients
with CKD stages 1–4 found no significant relationship between MGP and measures of
arterial stiffness; however, this study did not differentiate between active and inactive
forms of MGP [109]. Two other small studies in patients with CKD stages 2–5 not reliant
on dialysis suggested that high levels of the inactive form of MGP are linked to kidney
damage and may also serve as a marker of cardiovascular risk in CKD patients [110,111].

As an essential co-factor for MGP activation, poor vitamin K status may contribute to
a high VC burden in CKD patients [112]. Vitamin K antagonist therapies, such as warfarin,
can also contribute to vitamin K deficiency in CKD patients and further increase the risk
of VC. Indeed, results from one cross-sectional study show that patients on hemodialysis
treated with warfarin have an increased risk of VC [113]. Uncarboxylated (inactive) MGP
reflects inadequate vitamin K-dependent carboxylation and may serve as a better predictor
of cardiovascular risk in CKD patients than active MGP [114].

3.7. Primary and Secondary CPPs

Primary CPPs are small, spherical complexes of amorphous calcium phosphate and
other regulatory proteins. Primary CPPs develop into larger, needle-shaped secondary
CPPs containing crystalline calcium phosphate [115]. Our understanding of CPPs is evolv-
ing, but it is known that CPPs are associated with the development of VC in CKD patients,
and clinical studies have shown that serum CPP levels increase as CKD progresses [116].
Methods for measuring serum CPP levels require standardization, and more research into
their potential as a marker in CKD-MBD is warranted.

In addition, the T50 calcification inhibition test has recently been developed to deter-
mine the overall tendency for calcification of a patient’s serum. This in vitro diagnostic
method evaluates the maturation of primary to secondary CPPs in serum, with T50 being
the half-maximum time in minutes for this conversion [117]. As T50 provides information
on the equilibrium point of calcification processes within the extracellular fluid, it could be
considered a more compelling predictor of patient outcome than single protein or molecule
measurements [118], such as fetuin-A or MGP. Serum calcification propensity has been
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independently associated with several cardiovascular outcomes, including myocardial
infarction, peripheral vascular disease, heart failure, and all-cause mortality, in a large
(n = 2785) study of patients receiving hemodialysis [119]. Additionally, a prospective cohort
study in patients with stages 3 and 4 CKD reported that serum calcification propensity was
independently associated with progressive aortic stiffening and an increased risk of all-
cause mortality [118]. A further study of 3404 participants with stage 2–4 CKD found that
a higher serum calcification propensity corresponded with atherosclerotic cardiovascular
disease, ESKD, and mortality, independent of conventional risk factors for cardiovascular
disease; however, this association was not independent of kidney function [120].

These studies suggest that serum T50 may be advantageous as a marker to moni-
tor treatments against VC; however, future studies are needed to further evaluate T50
in non-dialysis patients and establish whether therapies to improve calcification pro-
moter/inhibitor regulation might benefit patients [118,120].

3.8. Osteocalcin

Osteocalcin is a vitamin K-dependent hormone derived from osteoblasts and has
roles in bone mineralization, bone cell activity, and regulation of glucose and lipid
metabolism [121,122]. Although a marker of bone turnover, recent studies suggest that
osteocalcin may also be associated with vascular health, including VC [122,123]. To date,
few studies have assessed osteocalcin as a marker in non-dialysis CKD; however, some
data have been reported.

Osteocalcin correlated negatively with renal function in a small study of non-dialysis
CKD patients [124], and other investigations have identified a link to cardiovascular risks:
a cross-sectional analysis of 256 non-dialysis CKD patients found that low levels of total
osteocalcin were associated with endothelial dysfunction, whereas participants with high
osteocalcin levels had a greater degree of arterial stiffness [125]. Additionally, a further
study focusing on the uncarboxylated form of osteocalcin (ucOC) demonstrated that de-
creased ucOC levels were closely correlated with subclinical carotid atherosclerosis in
non-dialysis CKD patients [126]. Further investigation is required, however, to ascertain
if ucOC has utility as a novel marker for predicting atherosclerosis and cardiovascular
disease in CKD patients not on dialysis.

4. Diagnostic Tools and Markers of Bone Dysregulation
4.1. Mechanism of Bone Deterioration

During normal kidney function, a reduction in calcium causes calcium-sensing recep-
tors in the parathyroid glands to release PTH, causing the kidney’s reabsorption of calcium
from urine into the blood and increased excretion of phosphate. PTH also stimulates the
formation and release of calcitriol to increase calcium uptake from the small intestine to
the blood, especially calcium release from bone, returning circulating calcium levels to the
basal range and achieving homeostasis [3,8,127].

In CKD patients, when the glomerular filtration rate falls below normal retrievable
levels, the kidneys cannot increase calcium uptake from urine to blood and stimulate the
production of calcitriol to increase calcium absorption from the gut, leading to hypocalcemia.
This further stimulates PTH secretion via calcium-sensing receptors, causing bones to
release calcium (bone resorption) to regulate serum calcium levels, weakening them and
causing symptoms including bone pain in the lower back, hips and legs, with a significant
fracture risk correlating to increasing PTH levels [3,8,24,127].

These bone quality and strength abnormalities are observed in most patients with
CKD stage 3–5 and in all patients treated with dialysis [128]. Consequently, patients with
mild-to-moderate CKD are predisposed to a higher likelihood of fractures, and the risk of
fracture rises as kidney function declines. Evidence suggests that many non-dialysis CKD
patients experience adynamic bone disease with low bone turnover [129]. High-turnover
bone disease develops later as CKD progresses to stages 4–5 D [129]. This section reviews
current and emerging bone dysregulation tools and markers in non-dialysis CKD patients.
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4.2. Alkaline Phosphatase

Serum alkaline phosphatase (ALP) is a hydrolytic enzyme that catalyzes the removal of
phosphate groups from protein and nucleotides. Although it is produced by many tissues,
it is typically concentrated in the bone and liver [130]. Bone-specific alkaline phosphatase
(BSAP) is associated with the cell membrane of osteoblasts and is also partly released into
the serum. BSAP stimulates tissue mineralization mainly through the inactivation of the
mineralization inhibitors [131] and strongly correlates with bone formation rate [132]. High
total ALP and BSAP levels are associated with increased mortality and fracture rate in
hemodialysis patients [133–135].

In non-dialysis CKD patients, BSAP has been identified as an independent predictor
of total hip BMD; furthermore, monitoring the B/I isoform of BSAP predicts osteopenia in
the hip and the distal third of the radius in stage 3 CKD [136]. In another study, the authors
suggested that in patients with non-dialysis stage 3–5 CKD, measurements of BMD were
useful to demonstrate bone loss but not sensitive enough to distinguish the quantity of
bone loss between different stages of CKD. Conversely, higher serum levels of BSAP and
total ALP were observed in more advanced stages of renal failure and reflected an increased
fracture risk of the femur [137]. A strong correlation has also been observed between serum
ALP, iPTH and BMD [112,138], suggesting serum ALP may serve as a useful substitute for
PTH as a biochemical marker to identify patterns of bone turnover [112]. An additional
study suggested that the combined monitoring of BSAP and iPTH provides significant
predicting power for non-invasive assessment of bone health in CKD and is a more reliable
index than either marker used alone [139]. However, the beneficial predicting power of
combining PTH and BSAP markers has not been completely verified yet.

4.3. TRAP5b

Tartrate-resistant acid phosphatase 5b (TRAP5b) is an enzyme secreted by osteoclasts
to catabolize bone matrix. Therefore, elevated serum levels indicate enhanced osteoclastic
activity [140], and studies in hemodialysis and late-stage CKD patients have demonstrated
that TRAP5b correlates with bone turnover and resorption [141–143].

In non-dialysis patients, an early study identified significant negative correlations
with renal function and a positive correlation with serum bone markers and the develop-
ment of secondary hyperparathyroidism [144]. In a subsequent investigation, TRAP5b
was an independent predictor of total hip BMD [136]. Furthermore, increased levels of
TRAP5b have been associated with higher odds of fracture, and TRAP5b monitoring can
discriminate fracture status in non-dialysis CKD patients independent of BMD [145].

An additional study reported a significant correlation between elevated TRAP5b
concentrations, reduced BSAP levels and higher arterial stiffness, suggesting that the
disparity between bone resorption and formation in CKD, inferred by the TRAP5b:BSAP
ratio, is prognostic of vascular stiffness in non-dialysis patients [109]. TRAP5b may be a
useful marker for serum bone resorption and cardiovascular risk, as it is not affected by
renal dysfunction [144]. However, further studies are required to validate this marker in
non-dialysis CKD patients.

4.4. P1NP

Procollagen type 1 N-terminal propeptide (P1NP) is released during the extracellular
cleavage of type 1 collagen and is a marker of bone formation [146]. Higher levels of P1NP,
in association with osteocalcin and TRAP5b, have been linked with a higher risk of fracture,
even after adjustment for femoral neck T-score, suggesting that quantification of bone
turnover markers may strengthen the diagnostic accuracy of densitometry to detect non-
dialysis patients with CKD with a higher risk of fracture [145]. It is important to consider
that both TRAP5b and the intact form of P1NP, in addition to alkaline phosphatases, do not
have renal clearance [23].
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4.5. Sclerostin

Sclerostin is a protein primarily produced by osteocytes, which plays a crucial role in
regulating bone metabolism [147]. By binding to specific receptors on osteoblasts, sclerostin
prevents the activation of Wnt/β-catenin signaling. This inhibits the differentiation and
activity of osteoblasts, leading to a decrease in bone formation [148]. Sclerostin regulation is
not widely understood. However, animal studies have demonstrated that PTH suppresses
sclerostin expression in osteocytes [149]. In the setting of CKD, sclerostin levels have been
reported to increase as renal function declines [150]. Elevated sclerostin levels in stage
3–4 non-dialysis patients and PTH resistance could contribute to the early appearance of
low-turnover bone disease [129,150,151]. High-turnover bone disease will likely develop as
CKD progresses and serum PTH levels overcome peripheral resistance [129]. While there
is sufficient evidence to show that sclerostin impacts bone formation, further research on
its potential as a biomarker for assessing bone health is warranted [152,153].

In addition, studies have established significant links between sclerostin levels and
aortic, carotid and coronary artery calcification [148,154,155] in non-dialysis CKD, with one
study suggesting that sclerostin measurement appears to be more important than serum
phosphate levels for detecting VC-associated risk factors in patients with CKD who are
not undergoing dialysis [148]. The association with VC may be important, as outlined in
a further study demonstrating that serum sclerostin levels correspond with an increased
risk of both fatal and non-fatal cardiovascular events in a non-dialysis CKD population,
even after multiple statistical adjustments [156]. This is supported by two recent studies in
stage 3 and 4 CKD, which identified a link between high sclerostin levels and low rates of
bone turnover with a corresponding increase in VC [90,150]. The independent association
between VC and the rate of bone formation highlights evidence of a key interplay between
bone and the cardiovascular system in patients with CKD [90].

4.6. Bone Histology Tools

Up to half of patients with moderate kidney failure have irregular bone histology,
suggesting that alterations to the skeleton may begin years before symptoms become ap-
parent [157]. Bone biopsy is still considered the benchmark in assessing CKD-MBD as it
offers evidence of bone mineralization, turnover and information regarding microstructural
integrity [158,159]. Nevertheless, biopsy is seldom performed due to the invasive nature
of the procedure, the potential risk of complications and the lack of experienced patholo-
gists [15,16]. However, as biochemical data may not be sufficient to predict bone pathology
in earlier stages of kidney disease, bone biopsy may be considered to define these bone
changes and to allow appropriate therapeutic approaches in non-dialysis patients [160].

Assessment of bone mineral density (BMD) using dual-energy X-ray absorptiometry
(DXA) is suggested by the current KDIGO guidelines for patients with stage 3–5 CKD
showing evidence of CKD-MBD, as the lack of bone biopsy may not be sufficient justification
for reserving antiresorptive therapy in patients with a high fracture risk [4]. Among non-
dialysis patients, studies have shown that BMD measurement by DXA can discriminate
fracture risk in stage 3–5 CKD and predict future fractures in patients with stage 1–3
CKD [161–164].

Although bone strength, inferred by its density, can be established by DXA, bone
quality (as opposed to quantity) relating to factors such as remodeling, microdamage, and
microarchitecture cannot be determined using this method [165]. Furthermore, a recent
study suggested that DXA may overestimate lumbar spine BMD, likely due to an increased
abdominal aortic calcification volume in non-dialysis patients [166].

Peripheral quantitative computed tomography (pQCT) can measure both trabecular
and cortical volumetric density [165], and is considered a new tool for monitoring bone
health in CKD. Several studies have demonstrated the utility of this technique to detect
bone loss and accurately assess bone quality status [161,162,166], with a strong correlation
to bone biopsy results [167], in non-dialysis patients. High-resolution pQCT (HR-pQCT)
has a greater resolution than pQCT, which permits the assessment of trabecular number,
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thickness, separation and the direct quantification of cortical density, thickness, geometry
and porosity at the distal radius and tibia, providing a greater indication of bone qual-
ity [165]. In non-dialysis patients, lower bone quality, assessed by HR-pQCT, is associated
with an increased risk of fractures [161], and a progressive reduction in bone structural
integrity has been observed from CKD stages 3–5 using this technique [168,169].

A further non-invasive measurement of bone structure can be achieved by determining
the trabecular bone score (TBS), which evaluates texture variations and bone quality from
images acquired from lumbar spine DXA [170]. Recent studies have demonstrated that lower
TBS scores are associated with declining renal function and increased fracture risk and that
the technique can accurately assess bone status in non-dialysis adult CKD patients [166,170].
Although the focus of this review is on markers and diagnostic tools in non-dialysis adult
patients with CKD, bone histology tools are also used in pediatric studies. For example, a
recent study used TBS scores to show that children and young adults with CKD stages 4 to 5
or on dialysis may develop VC even as their BMD increases [171]. Finally, another minimally
invasive technique, impact microindentation, measures the resistance of bone tissue to an
applied mechanical challenge via a probe inserted through the skin to the bone surface [172].
In a recent study, bone material strength index values were significantly lower in CKD patients
receiving dialysis than in 94 healthy non-CKD controls [173]. However, no studies to date
have validated the technique for assessment of bone quality in non-dialysis patients.

5. Conclusions

Despite advances in the field, optimal management of CKD-MBD and SHPT in non-
dialysis adult CKD patients remains challenging. While there are established markers for
prognosis and treatment response in late-stage kidney disease patients receiving dialysis,
far fewer markers have been identified for CKD-MBD patients not receiving dialysis.
Recent evidence highlights several promising tools and markers for the prediction of
disease progression and risk of adverse clinical outcomes in non-dialysis CKD patients;
however, many of them are not currently available in everyday clinical practice and further
research is needed to define parameters that inform optimal clinical management or likely
treatment responses.

Cardiovascular and bone disease are common complications in CKD patients, high-
lighting the complex relationship between bone turnover and vascular calcification in
CKD patients. In addition to biochemical markers, bone and vascular imaging should be
considered important tools to guide treatment decisions for non-dialysis CKD patients and
the focus of future research.
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