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Environmental stochasticity affects population dynamics in a variety of ways, including the possibility of
drastic modifications in the stability properties of the ecosystem. In this work, we investigate a case of
coupled host-parasitoid dynamics adopting Beddington’s conceptual two-dimensional map. We stochas-
tically perturb some of the parameters controlling either the host dynamics or the host-parasitoid inter-
action, observing a dramatic change in the system dynamics with the emergence of on-off intermittency,
a behavior characterized by the irregular alternation between quiescent phases and sudden population
bursts. This phenomenon is herein offered as a qualitative, environmental-based description of popula-
tion outbreaks.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Population fluctuations are a core component of ecological
dynamics, and can be generated by internal feedback processes
and/or by external environmental drivers, often mimicked by envi-
ronmental stochasticity (Turchin, 2003). Sudden population out-
breaks in host-parasitoid systems, also called irruptions, are a
paroxysmic form of population fluctuations which stand out as
an intriguing and practically relevant topic (Hassell, 2000). Pest
outbreaks, in particular, have received much attention owing to
their ecological and economic relevance (Barbosa et al., 2012).

Parasitoid outbreaks did not receive the same amount of atten-
tion as sudden pest growths (Ludwig et al., 1978), even though the
phenomenon has been discussed in the literature (Ford and Ford,
1930; Hill and Caswell, 2001; Ehrlich and Hanski, 2004). The rele-
vance of weather conditions has been studied in the case of aphids
(Weisser et al., 1997), finding that searching rate (quantified by the
visited number of aphid colonies and rose bushes) and growth rate
(in terms of the reproductive success of foraging females) are con-
siderably affected by adverse meteorological conditions such as
wind and rain.

In past years, the impact of environmental stochasticity on pop-
ulation outbreaks was studied in various models. In a host-
pathogen-predator model (Dwyer et al., 2004), irregular outbreaks
were interpreted as an outcome of the weather-forced interaction
between a stable point associated with the predator action and
limit cycles induced by the pathogen, thus focusing on the interac-
tion between multiple species. Another approach considered a
prey-predator model in which the species were coupled through
a type III functional response (Spencer and Collie, 1996). In such
model, the predator equation was stochastically forced by red
noise, leading to irregular fluctuations between high and low prey
equilibria and causing the insurgence of outbreaks in both species.
In a model composed of two competing preys and one predator
active only during summer (Hanski and Henttone, 1996), environ-
mental stochasticity was included by linearly varying the number
of predators at the beginning of each summer.

In this paper we focus on the coupled dynamics of a host-
parasitoid system and further explore the role of environmental
forcing in generating outbreaks. Model-wise, one of the earliest
approaches was proposed by Nicholson and Bailey (1935), who
introduced a two-dimensional map reproducing the host-
parasitoid dynamics. This approach, however, showed a problem-
atic flaw, resulting in unstable oscillations in the size of the popu-
lations. Later, Beddington (1975) introduced an exponential
density-dependent self-regulation (already considered by May
(1974)) as a stabilizing factor in Nicholson-Bailey’s model, thus
providing a reliable—yet simple—way to describe the interaction
between the population of the parasitoid and that of the parasited
host.

A two-dimensional model—such as Beddington’s—is a crude
representation of the desired dynamics, and it does not include
complicating but crucial ecological phenomena such as climate
and environmental variability, that can have remarkable effects
on the system dynamics. Conditions such as drought and severe
weather can affect the species growth rate or their ability to find
resources, for example, and those can in turn affect the size of
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the populations. One simple way to represent these effects is to
introduce a stochastic perturbation in some of the main model
parameters, leading to random variations in the strength of species
interactions. As we show here, such parametric perturbation can
lead to the occurrence of on-off intermittency, a feature that could
qualitatively describe abrupt changes in the population size
(Ehrlich and Hanski, 2004; Schowalter, 2016).

In dynamical systems, intermittency is the term used to describe
the switching behavior between different regimes. Initially
observed in turbulence (Batchelor and Townsend, 1949), the phe-
nomenon rapidly caught the attention of the scientific community,
which categorized it in a few different typologies. Here we focus on
the case of on-off intermittency (Platt et al., 1993), which describes
the alternation between quiescent phases (often called also laminar
phases, mainly in physics-related disciplines) and sudden bursts of
activity generated by the temporally-varying stability of an invari-
ant set (in the simplest case, a fixed point) as determined by the
value of an external control parameter.

Several systems showed on-off intermittency, ranging from the
solar cycle (Platt et al., 1993) and earthquakes (Bottiglieri and
Godano, 2007) to electronic circuits (Hammer et al., 1994) and
the electrodynamics of liquid crystals (John et al., 1999). Most the-
oretical aspects of the phenomenon were studied when focusing
on simple population dynamics models, usually employing the
logistic equation (Platt et al., 1993; Heagy et al., 1994; Toniolo
et al., 2002; Metta et al., 2010; Moon, 2010); proofs of its occur-
rence in even slightly more complex dynamics, which e.g. aim to
describe the behavior of a few trophic levels, are still rare (Vissio
and Provenzale, 2021).

To study outbreaks in the Beddington host-parasitoid model,
we first allow the host grazing intensity to be affected by random
forcing, showing the occurrence of on-off intermittency in the host
dynamics. We then apply stochastic forcing to the parameters
related to parasitoid activity, either the searching efficiency or
the growth rate. The properties of the perturbed systems are qual-
itatively compared with the unperturbed case to gain insight in the
role of environmental stochasticity. Finally, we investigate the
dynamics of on-off intermittency when coupled maps are consid-
ered, i.e. when we take into account that different sites could
exchange some individuals.

Section 2 describes the properties of on-off intermittency, out-
lining results from previous studies that motivated this work. Sec-
tion 3 introduces Beddington’s model, describing the procedure
used to introduce stochastic forcing and the details of the numer-
ical integration. In Sections 4,5,6 we illustrate the behavior gener-
ated by environmental stochasticity and the conditions for which
on-off intermittency is generated. Section 7 summarizes our
results and outlines possible developments.
2. On-off intermittency

A system is defined intermittent when its dynamics shows an
irregular alternation between different states. In the case of on-
off intermittency, the system undergoes irregular transitions
between quiescent or off phases—whose duration follows an
approximate power law distribution, at least in the simplest
cases—and abrupt activity bursts or on phases.

In this kind of intermittency, quiescent phases are due to the
existence of an invariant manifold (e.g. a fixed point), which is
attractive enough to allow for long, stable phases during which
the system lingers in the vicinity of the temporarily stable attrac-
tor. Remaining near this manifold for relatively long times, the sys-
tem displays the quiescent phases. Suddenly, however, the
volatility of an external parameter controlling the stability causes
the manifold to become unstable and the system to burst away.
2

In the simplest cases, the phase-space location of the invariant
manifold is independent of the external control parameter, which
determines only the manifold stability. Also, the fluctuations of
the external parameter are usually taken to be independent of
the system state (i.e., it is a driven system where the driver is inde-
pendent of the driven component, that is a skew-product
configuration).

Owing to the potential role of this concept to qualitatively
describe bursting behavior, in past years on-off intermittency has
received some attention by the scientific community.

Platt et al. (1993) and Heagy et al. (1994) enlightened the fun-
damentals of the phenomenon, the latter deriving the power-law
underlying the distribution of the duration of quiescent phases
for maps with the specific form ynþ1 ¼ znf ðynÞ (with the variable
zn taken from a random or a chaotic process). Later on, Toniolo
et al. (2002) inspected the occurrence of on-off intermittency in a
stochastically driven logistic map. In their papers, Metta et al.
(2010) and Moon (2010) examined Toniolo’s framework in the
context of coupled logistic equations, the former focusing on kur-
tosis as an index to identify on-off intermittency, the latter putting
the spotlight on intermittency in coupled systems, an approach of
particular interest for the study presented here (see Section 6).

In past years, several works explored the emergence of inter-
mittent dynamics in population models. Using a double map sim-
ulating competing species and applying stochastic driving to the
whole system, Ferriere and Cazelles (1999) found the quiescent-

phase power law D�3
2. Interestingly, De Feo and Ferriere (2000)

found on-off intermittency using the same model without random
forcing, although a close inspection of the time series shows that
the outbursts are not as abrupt as in the stochastic case, rather
resembling randomly increasing fluctuations with a wave-like
structure. While Ferriere and Cazelles (1999) used multiplicative
noise, Sharma et al. (2015) used additive random noise to force
the Ludwig model Ludwig et al. (1978). Considering both white
and, more markedly, red noise, these authors found that the tem-
poral dynamics of the spruce budworm population clearly appears
similar to on-off intermittency. Finally, Vissio and Provenzale (2021)
extended the study of on-off intermittency in population dynamics to
stochastically forced systems of ordinary differential equations in a
three-species food chain.

3. Host-parasitoid model

The dynamics of host and parasitoid populations can be mod-
elled by the two-dimensional map introduced by Beddington
(1975), Kot (2001), and Edelstein-Keshet (2005) as an extension
of the Nicholson-Bailey (NB) model (Nicholson and Bailey, 1935).
Since the original NB model predicts unstable oscillations for both
populations, Beddington implemented a stabilizing factor, express-
ing the host reproductive rate as the exponential of the logistic
increment (Moran, 1950; Ricker, 1954; May and Oster, 1976),
exp r 1� N

K

� �� �
. Thus, the model equations become:

Ntþ1 ¼ dNt exp r 1� Nt

K

� �
� aPt

� 	
; ð1Þ

Ptþ1 ¼ bNt 1� exp �aPtð Þ½ �; ð2Þ
where N and P represent the biomass of, respectively, the host and
parasitoid components, while r and K are respectively the growth
rate and the carrying capacity of the host. The parameter d, when
constant, can be rescaled and in the original Beddington model
was thus fixed as d ¼ 1. Finally, a and b are, respectively, the search-
ing efficiency and the growth rate (with respect to the host popula-
tion) of the parasitoid. Neglecting the parasitoid presence, thus
setting P ¼ 0, reduces the system to the classic Moran-Ricker model
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(Moran, 1950; Ricker, 1954). Depending on the values of the param-
eters, the Beddington model can exhibit different regimes from
stable fixed points to chaotic dynamics. Here, we show that includ-
ing stochastic variability in the parasitoid searching efficiency or
growth rate leads to the occurrence of alternating quiescent phases
and bursts—i.e. to on-off intermittency.

In the original (deterministic) version of the model, all parame-
ters were constant. Here, some of them are allowed to vary
stochastically, that is we take either

d ¼ D� ð3Þ

for the case of environmental stochasticity acting on the host, and
either

a ¼ A� ð4Þ

or

b ¼ B� ð5Þ

for the case of environmental stochasticity acting on the parasitoid.
Here, D, A and B are constant maximum values and � is a random
number uniformly distributed between 0 and 1.

Throughout the paper we consider three different versions of
the model, one with fixed values of the parameters and the others
with either d, a or b allowed to vary stochastically as described
above. The chosen values for the parameters are:

� Fully deterministic: d ¼ 1; a ¼ 0:7; b ¼ 0:7
� Stochastic variability of d : D ¼ 0:15; a ¼ 0:7; b ¼ 0:7
� Stochastic variability of a : d ¼ 1; A ¼ 0:6; b ¼ 1
� Stochastic variability of b : d ¼ 1; a ¼ 1; B ¼ 0:6

We recall that, in the above list, lower case letters represent
fixed parameters, while upper case letters are the coefficient of
the random number �. See Appendix A for details on the choice
of the parameters for the stochastic a and b cases—stochasticity
in the host parameter is addressed in a qualitatively similar
methodology. In all settings we use r ¼ 3 and K ¼ 10, with initial
conditions N ¼ 10; P ¼ 5. Each run has spin-up and run times of,
respectively, 105 and 107 time steps.

In the fully deterministic setting, the system displays chaotic
dynamics; Fig. 1 (left panel) shows a typical parasitoid time series
for this case.

Following Toniolo et al. (2002), in what follows we define as off-
phase those continuous time intervals during which the parasitoid
biomass Pn (or, in Section 4, the host Nn) is below a specific thresh-
old, here chosen as 0:001 (other choices lead to analogous results).
Such ”off-phases” are not explicitly definable in the deterministic,
non-intermittent case.
Fig. 1. Left: chaotic parasitoid dynamics in the Beddington model for the fully determ
stochastic variations of the b parameter.
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Fig. 1 (right panel) shows the parasitoid time series for the
Stochastic b case—the Stochastic a case is qualitatively similar.
The alternation of on and off phases distinctly stands out, with
the former suddenly interrupting the latter with no apparent
regularity.

We must point out that, when employing stochastic parasitoid
parameters, after a large number of iterations the parasitoid popu-
lations can get extinct, reaching the zero stable state. Checking this
behaviour with different numbers of digits to represent the vari-
ables indicates that it depends on the numerical approximation—
i.e., the collapse to zero happens on longer times for higher preci-
sion and it would not happen if we could achieve infinite precision.
In order to practically overcome this behavior, when a parasitoid
population cancels out we force it to assume a value 10�12�, with
� a random number uniformly distributed between 0 and 1. This
could also be taken as a representation of a (very small) immigra-
tion of individuals from a regional pool or of the existence of a
small refugium. Another way to address this problem is to add a
very small term 10�12�, where � is a random number uniformly
distributed between 0 and 1, to the right side hand of Eq. 2 there-
fore directly including a small random immigration term. The two
approaches provide equivalent results and in the following we
adopt the first strategy. A detailed discussion of the results
obtained using the random immigration term is given in the Sup-
plementary Information, where we also explore an alternative
stochastic perturbation of the model parameters, confirming the
results reported below.

Following the approach proposed by Moon (2010), we also
inspect locally connected maps, coupling them with the structure:

Nk
tþ1 ¼ ð1� cÞf NðNk

t ; a
k
t Þ þ

c
2

f NðNk�1
t ; ak�1

t Þ þ f NðNkþ1
t ; akþ1

t Þ
h i

; ð6Þ
Pk
tþ1 ¼ ð1� cÞf PðPk

t ; a
k
t Þ þ

c
2

f PðPk�1
t ; ak�1

t Þ þ f PðPkþ1
t ; akþ1

t Þ
h i

; ð7Þ

where f N and f P are defined by the right hand side of Eqs. 1,2 and
the superscript k defines a specific location, with k� 1 and kþ 1
representing the neighboring maps coupled to this location.
4. Intermittency in host dynamics

Bursting behaviour in host populations can have dramatic
impacts on ecosystem functions and services. On-off intermittency
in host dynamics can emerge in Beddington’s model by including
stochastic variations in the intensity of grazing by the host, suit-
ably modelled by allowing the pre-factor d in Eq. 1 to become vari-
able in time. Adopting d ¼ D� with D ¼ 0:15 (where � is a random
number uniformly distributed between 0 and 1) leads to on-off
intermittency for the host dynamics.
inistic case. Right: intermittent parasitoid dynamics in the Beddington model for
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Heagy et al. (1994) and Toniolo et al. (2002) showed that a
power-law distribution of quiescent phases is a distinctive feature
of on-off intermittency. In such works, the probability of having a
quiescent phase lasting D steps was shown to be proportional to

D�3
2, at least for the case ynþ1 ¼ znf ðynÞ, as mentioned in Section 2.

A much steeper dependence was instead found for the non-
intermittent dynamics of the same models.

Fig. 2 shows a time series of the host population and the prob-
ability distribution of the quiescent phase duration D for this case.
The quiescent phase duration approximately follows the power

law D�3
2, in keeping with the occurrence of on-off intermittency.

Larger values of D, on the other hand, did not generate host popu-
lation intermittency.

For a random variability of the grazing intensity we have always
observed the extinction of the parasitoid, when the host dynamics
is on-off intermittent. For larger values of D—starting at D ¼ 0:2—
the host undergoes non-intermittent chaotic dynamics and the
parasitoid survives, developing a dynamics similar to on-off inter-
mittency but with longer quiescent phases. The extinction of the
parasitoid when host intermittency is present is explained by the
fact that during the quiescent phases the host biomass stays at val-
ues that are too small to support a permanent parasitoid popula-
tion. A different situation is encountered in the case of a
metapopulation of hosts distributed in nearby sites, controlled by
a single parasitoid population able to attack the most abundant
site, as discussed in Section 6.
5. Bursting parasitoid dynamics

In this Section we discuss the effects of stochastic perturbations
on some of the parameters related to the parasitoid activity in Bed-
dington’s model—corresponding to the ‘‘Stochastic a” and
‘‘Stochastic b” cases.

The stochastic driving here inserted in Beddington’s model—as
discussed in Section 3—modifies one of the parasitoid-related
parameters, leading to modifications in the overall dynamics. As
a first step in the analysis, we inspect how these changes impact
the evolution of the whole system, checking the possible values
reached by the host and the parasitoid given the state of the para-
sitoid at the previous time step. That is, we look at the region of
phase space spanned by the system.

Fig. 3 (left panel) shows Pnþ1 versus Pn. The area spanned by
Stochastic a case is, by far, the largest of the three cases considered.
On the contrary, in the Stochastic b case the range of values cov-
ered by the parasitoid is smaller than in the purely deterministic
case. Fig. 3 (right panel) shows Nnþ1 versus Pn. The differences
between the models are astounding: whilst in deterministic case
a high value for Pn inevitably corresponds to a low value for
Fig. 2. Left: a time series of the host population for a case in which the host undergoes on
time series. Dotted line: D�3=2.
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Nnþ1—and this behaviour is even more emphasized in Stochastic
b case —, the application of the random driving for the searching
efficiency leads to a much more complex dynamics where Nnþ1

spans a large set of values even for large Pn.
From Fig. 3 we infer that environmental-induced changes in the

searching efficiency affect the host-parasitoid dynamics in a much
stronger way than in the case of a variable parasitoid growth rate.
Indeed, the same stochastic formulation—with the same coeffi-
cient—applied to the two parameters leads to different results. In
particular, whilst a high value of Pn generally leads to a compara-
tively lower value of Pnþ1, a random searching efficiency does not
lead to the same behavior for the future state of the host.

As shown in Fig. 4, the probability distribution of the parasitoid
quiescent phase duration, D, in the intermittent cases follows an
approximate power law at least for moderate values of D. For com-

parison, the classic reference slope D�3
2 is also reported; the power

law detected in the model adopted here is slightly steeper than
�3=2, indicating that longer quiescent phases are slightly less
likely to happen. A possible explanation of the difference between
Beddington’s model results and the logistic equation relies on the
higher complexity of the former, whose equations are asymmetri-
cal and represent two populations evolving with different dynam-
ics. This difference stands out even when comparing the case of
host intermittency—we recall that just the host is active, due to
parasitoid extinction—in Fig. 2 with parasitoid intermittency in
Fig. 4.

The power spectrum is another useful statistics to characterize
the properties of on-off intermittency in discrete-time dynamical
systems. In many (simple) cases, non-intermittent discrete-time
chaotic dynamics is characterized by white or blue spectra (i.e.,
spectra that are either flat or grow at high frequency, respectively)
(Cohen, 1995). In the on-off intermittent case, by contrast, the
presence of strong spikes leads to the prevalence of ‘‘red” spectra,
where the spectral energy is larger at lower frequencies (Balmforth
et al., 1999). In general, however, the situation could be more com-
plicated and a red spectrum cannot always be taken as a proof of
the presence of intermittency (Reuman et al., 2006).

The power spectra of the parasitoid for the three cases consid-
ered are shown in Fig. 5 (left panel). Both stochastically-
perturbed settings clearly show a ‘‘red” power spectrum in most
of the domain, especially at low frequencies. Instead, the determin-
istic setting displays, as expected, a ‘‘blue” character, with domi-
nance of energy at high frequency.

The inspection of the power spectra of the host in Fig. 5 (right
panel) reveals that the two stochastic settings show a nearly iden-
tical behavior, at least for the parameter choices adopted here. In
general, the specific form of the spectra depends on the range of
stochastic variations of the a and b parameters, but lead to ‘‘red”
spectra at low frequency anyway.
-off intermittency. Right: probability distribution of the quiescent phases in the host



Fig. 3. Red (medium gray in b/w), Deterministic. Orange (light gray in b/w), Stochastic a. Blue (dark gray in b/w), Stochastic b. (left panel) Pnþ1 versus Pn; (right panel) Nnþ1

versus Pn .

Fig. 4. Probability distribution of the quiescent phases.
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6. Locally coupled maps

We now turn to a preliminary investigation of the dynamics of a
chain of locally coupled maps, as described by Eqs. 6,7. We con-
sider a set of 102 coupled maps with periodic boundary conditions
at the two ends of the chain. Spin-ups and runs are set to, respec-
tively, 105 and 106 time steps.
6.1. Host intermittency

Using Eq. 6 to represent the coupling between different sites,
we build a metapopulation of 100 coupled maps for the host with
only a single parasitoid population to predate it. Supposing that the
latter can instantaneously reach the node with the largest host bio-
mass, it is possible for the host to undergo on-off intermittency and
Fig. 5. (left panel) Power spectra of the parasito
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for the parasitoid to survive in time—typically with chaotic
dynamics.

Fig. 6 shows such a case: here the Stochastic d scenario, with
different nodes coupled with c ¼ 0:001, provides different host
populations interacting with each other through mutual exchange
of individuals. The single parasitoid population is able to move
rapidly to the site where the host is more abundant. This strategy
allows the parasitoid to survive, in spite of the average host bio-
mass being too low to assure parasitoid permanence.

6.2. Parasitoid intermittency

We then turn to parasitoid intermittency and stochastically
force the searching efficiency a. First, we consider the case a ¼ A�
with A ¼ 0:6, that is the stochastic a case of previous sections
(hereafter we always consider the case r ¼ 3; b ¼ 1). Decoupling
the maps—i.e. setting c ¼ 0 in Eq. 6–7—leads to independent on-
off intermittent behavior for each map as already discussed above.
An Hovmöller diagram—Fig. 7 (left panel)—shows the scarcity of
peaks in the time series of the maps, whose identification number
is reported on the horizontal axis. Time runs vertically from bot-
tom to top. The probability density of the quiescent phase duration
is the same as in Fig. 4. Increasing c to a very small value com-
pletely modifies this behaviour, leading to much more frequent
peaks with respect to the previous case and to the disappearance
of the power-law distribution of quiescent phases for the individ-
ual maps. Fig. 7 (right panel) shows the Hovmöller diagram for
the case c ¼ 0:0001.

An interesting behavior appears when we set A ¼ 0:4. For the
uncoupled case, this value of A leads to the extinction of the para-
sitoid. Instead, a coupling strength c ¼ 0:005 leads to the appear-
ance of on-off intermittency, see Fig. 8 (left panel). That is,
allowing the species to be exchanged across adjacent sites is
enough to prevent them from extinction and to generate sudden
bursts in population size. Interestingly, this indicates the possibil-
id; (right panel) Power spectra of the host.



Fig. 6. Case with host coupled on multi-dimensional map and single map parasitoid. Left: Hovmöller diagram of the host. Center: Host time series in one node. Right:
Parasitoid time series.

Fig. 7. (left panel) Hovmöller diagram for c ¼ 0; (right panel) Hovmöller diagram for c ¼ 0:0001. Stochastic a case, 0 6 a 6 0:6.

Fig. 8. Stochastic a case, 0 6 a 6 0:4; c ¼ 0:005. Left panel: Hovmöller diagram. Right panel: probability distribution of the quiescent phase duration.
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ity of population outbreaks in coupled spatial-temporal dynamics
for parameter values that would lead to extinction in isolated pop-
ulations. On the other hand, a significant increase in the coupling
strength (e.g., employing c ¼ 0:05) leads to fully chaotic dynamics.
It is worth to mention that spatially induced chaos has already
been shown in population dynamics models (Pascual, 1993).

The probability distribution of the quiescent phase duration for

each individual map closely follows a power law D�3
2, as shown in

Fig. 8 (right panel) and it is consistent with the results of Heagy
et al. (1994), Toniolo et al. (2002), Metta et al. (2010), Moon
(2010), and Vissio and Provenzale (2021). In this coupled system,
longer quiescent phases appear to be more likely to occur than
for the case of individual uncoupled maps shown above, generating
on-off intermittent behavior with the well-known distribution of
quiescent phases.

The outcome of this preliminary exploration of coupled maps is
that spatial coupling, inserted through local interactions of the
populations, can significantly affect the dynamics with unexpected
outcomes, e.g. inducing or suppressing on-off intermittency when
the same uncoupled systems would respectively become extinct or
undergo on-off intermittency.
6

7. Discussion and conclusions

We have discussed the effects of stochastic variations in the
control parameters of a host-parasitoid model system, to simulate
the impact of environmental variability. We have shown that,
under suitable conditions, the parameter fluctuations induce the
onset of on-off intermittency, in which chaotic bursts suddenly
interrupt quiescent phases whose duration has an approximate
power-law distribution. Analogously, the analysis of the parasitoid
power spectra has indicated that the stochastically-driven host-
parasitoid systems display red spectra.

Beddington’s model is a solid—albeit simple—testbed to study
intermittent outbreaks in more than a single trophic level, i.e.,
for more than an individual component such as in the case of the
logistic map considered in past works.

We have started introducing stochastic variability in the inten-
sity of grazing in Eq. 1 showing that, for the stochastic forcing cho-
sen, it leads to the emergence of on-off intermittency for the host
dynamics, giving a qualitative, environmental-based explanation
for, e.g., pest irruptions, a case of particular relevance for practical
purposes. In such cases, however, Beddington’s model always pre-



Fig. A.9. Orbit diagrams depicting parasitoid attractors in Beddington’s model. (left panel) b ¼ 1; r ¼ 3, P vs a; (right panel) a ¼ 1; r ¼ 3, P vs b.
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dicted the extinction of the parasitoid population, except when a
single parasitoid population is allowed to predate the momentarily
largest host population in an ensemble of spatially coupled sites. In
this case, of relevant practical interest, the host population fluctu-
ated intermittently in time and space while the parasitoid popula-
tion survived and controlled it.

When environmental stochasticity affects the parasitoid vital
rates and control parameters, we observed that the range of values
spanned by the parasitoid population dramatically increased. In
this case, the parasitoid population size at a given time influences
the subsequent state of both the host and parasitoid populations in
different ways that depend on which of the three settings is
considered.

We have also shown that adding local coupling to a set of indi-
vidual host-parasitoid systems can have relevant effects, such as
hamper the presence of intermittency in cases when the uncoupled
individual systems were intermittent or, conversely, generate on-
off intermittency for populations that in isolation were otherwise
bound to go extinct.

Throughout the paper we have simulated the effect of environ-
mental variability in terms of stochasticity in the parameter values.
Indeed, this kind of approach provides a reason—which plunge its
roots in, e.g., weather conditions—for the occurrence of irruptions
in natural populations. Further developments of this approach
could for example consider a case with bistability between a
strictly nonzero fixed point and a cyclic or chaotic attractor, or
between two chaotic states. Particularly relevant will be the fur-
ther exploration of the consequences of hierarchical and/or spatial
coupling (Balmforth et al., 1999; Balmforth et al., 2002). In any
case, the processes analyzed here qualitatively describe the occur-
rence of population outbreaks, where the quiescence of a given
population is abruptly interrupted by irregular and violent
increases in its size.

Code Availability

Code used in numerical simulation can be found at https://fig-
share.com/articles/software/On-off_intermittency_and_irrup-
tions_in_host-parasitoid_dynamics/16744048 (last accessed on 30
March 2022).

Funding

GV has been supported by LifeWatch Italy through the project
‘‘LifeWatchPLUS” – CIR01_00028.

CRediT authorship contribution statement

Gabriele Vissio: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data cura-
7

tion, Writing – original draft, Writing – review & editing, Visualiza-
tion. Antonello Provenzale: Conceptualization, Methodology,
Formal analysis, Writing – review & editing, Supervision, Project
administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Bifurcations

As many other models, Beddington’s map dynamics changes with
respect to the values chosen for the parameters, switching from
stability to multistability and to (eventually) chaos following dif-
ferent routes (Xu and Boyce, 2005). A useful method to show this
is employing orbit diagrams (Ott, 1993; Thompson and Stewart,
2002; Strogatz, 2014), where the projection of the system’s attrac-
tors on one dimension is plotted with respect to a specific param-
eter. This is important for our approach since, e.g., for specific
values of the parameters b and r, we need to replace a with a
stochastic factor suitable to drive it in and out the chaotic dynam-
ics range, without lingering excessively into it. This case is depicted
in Fig. A.9 (left panel), where we can see that, for b ¼ 1 and
r ¼ 3; a ¼ 0:7� is a reasonable choice to reproduce the desired
behaviour. We remind that � represents a random number picked
from a distribution uniformly distributed between 0 and 1. Fig. A.9
(right panel) shows the orbit diagram of the system attractor as a
function of b for a ¼ 1 and r ¼ 3. Again, b ¼ 0:7� is a convenient
choice for the stochastic parameter.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jtbi.2022.111174.
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