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Abstract—Any 3D tracking algorithmhas to deal with occlusions:multiple targets get so close to each other that the loss of their identities

becomes likely; hence, potentially affecting the very quality of the data with interrupted trajectories and identity switches. Here, we

present a novel trackingmethod that addresses the problem of occlusions within large groups of featureless objects by means of three

steps: i) it represents each target as a cloud of points in 3D; ii) once a 3D cluster corresponding to an occlusion occurs, it defines a

partitioning problem by introducing a cost function that uses both attractive and repulsive spatio-temporal proximity links; and iii) it

minimizes the cost function through a semi-definite optimization technique specifically designed to cope with the presence of multi-

minima landscapes. The algorithm is designed to work on 3D data regardless of the experimental method used: multicamera systems,

lidars, radars, and RGB-D systems. By performing tests on public data-sets, we show that the new algorithm produces a significant

improvement over the state-of-the-art trackingmethods, both by reducing the number of identity switches and by increasing the accuracy

of the estimated positions of the targets in real space.

Index Terms—3D, tracking, multi-object, occlusions, clouds of points
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1 INTRODUCTION

TRACKING large groups of targets in 3D space is a challeng-
ing topic, which is particularly relevant in the field of tur-

bulence [1], collective animal behavior [2], [3] and social
sciences [4], [5], [6] as well as in robotics [7] and autonomous
mobility [8]. The technological progress of the last decades
gave a boost to the development of new experimental strate-
gies to collect 3D data, such as RGB–D, multicamera, lidar
and radar systems. Nowadays the effort of a part of the com-
puter vision community is directed towards finding general
high-performance trackingmethods.

The crucial point of all tracking algorithms is how to handle
occlusions that arise every time that two or more objects get
too close in 3D space to be detected as multiple targets. This
kind of ambiguities are particularly severe when dealing with
featureless objects (objects that cannot be identified by any fea-
ture such as shape or color) and with large and dense groups
of targets, where the chance to get in 3D proximity is high.
Occlusions hinder in a twofoldway the quality of the retrieved
trajectories: loss of one or more of the targets involved into the
occlusions and a potential switch of identities.

In this paper we propose a novel tracking method called
SpaRTA (Spatiotemporal Reconstruction TrackingAlgorithm),
which is able to solve 3D occlusions identifying each target
during the occlusions and producing negligible switches of
identities. SpaRTA is meant to work on objects detected as 3D
clouds of points, regardless of the system used to collect the
data. The core ideas of the methods are the following: i)
SpaRTA reconstructs the ð3Dþ 1Þ spatio-temporal volume
(where 3D is the spatial dimension and ðþ1Þ represents the
time dimension) occupied by each target during the entire
acquisition as a cloud of points; ii) when an occlusion arises,
SpaRTA tackles the problem of splitting it into different objects
by defining a partitioning problem that uses both attractive
and repulsive links depending on the distance in space and
time among the points belonging to the occlusion; iii) as the
superposition of attractive and repulsive links gives rise to
frustration, namely to the emergence of many local minima of
the partitioning cost function, SpaRTA uses an optimization
method inspired on Semi-Definite Programming (SDP) techni-
ques developed in the context of statistical physics of disor-
dered systems [9], to find the optimal partition (i.e., ground
state of the cost function), thus finally splitting the occlusion
into the actual different targets composing it.1

SpaRTA was tested on data of large groups of animals col-
lected in the field with a multicamera system. This kind of
data are a good benchmark for 3D tracking methods because
large groups of animals are particularly hard to track: data are
characterized by frequent occlusions, lasting several frames,
and by a low spatial resolution such that targets appear as
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1. For the sake of easy reading and without losing any generality,
throughout the paper we will refer to occlusions to denote the geomet-
ric event of two targets getting in 3D proximity, but also to denote the
cloud–of–points representing the ð3Dþ 1Þ volume occupied by targets
in 3D proximity.
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objects without any recognizable feature. The only limitation
of these data is that the production of ground truth trajectories
to evaluate the tracking result is quite difficult and time–
consuming, and it is then hard to give a quantitative evalua-
tion of the quality of the resulting set of trajectories. This is the
reason why there are very few public data-sets that are usable
as benchmarks. To the best of our knowledge, the only avail-
able two public data-sets of featureless objects collected via a
multicamera system are published by Wu et al. in [10]. We
tested SpaRTA on these data-sets showing the high perfor-
mance of the proposed algorithm in terms of the quality of the
retrieved trajectories.

2 RELATED WORKS

Since the seminalwork of Reid [11], several 3D tracking strate-
gies have been proposed in the past forty years. However,
despite this strong effort, only few methods are designed to
track large and dense systems of featureless objects and the
research on this topic is still verymuch ongoing, especially for
what concerns the solution of occlusions.

There are two fundamentally different ways to represent
the targets an algorithm wants to track: on one hand, we can
associate to each target at a certain instant of time one single
spatial position (typically the center of mass) – we will call
this case Single Point (SIP) representation; on the other hand,
we can associate to a target a dense Cloud of Points (COP),
representing the full spatial volume of the target at that
instant of time.

The SIP representation is typically adopted within the con-
text of multicamera data-taking systems, in which sets of 2D
single objects positions have to be turned into 3D positions
and trajectories. One way to achieve this is to first track the
objects in each camera and then match the 2D trajectories
across cameras to retrieve the corresponding 3D trajectories
(the so-called Tracking-Reconstruction (TR) route). Working
in the 2D space of the cameras, TR algorithms have to deal
with two different kind of optical occlusions: 2d–occlusions
which arise when the projections of two or more objects
become spatially close on the 2D image plane but the objects
themselves are not close in the 3D space and 3d–occlusions
which arise whenmultiple objects are occluded in all the cam-
eras simultaneously, namely when multiple objects get in 3D
proximity (see Fig. 1, top row). Both 2D and 3D occlusions
produce bifurcations of the 2D trajectories, and hence a high
intrinsic complexity due to the proliferation of the 2D trajecto-
ries to bematched across the cameras. Several different strate-
gies to prune the set of 2D trajectories and reduce the
complexity of this approach have been devised [2], [12], [13],
[14], [15] and [16].

Conversely, yet still within the SIP representation, one
can first reconstruct single objects turning them into 3D
positions (by matching their identities across the cameras),
and then track them in 3D space (the so-called Reconstruc-
tion-Tracking (RT) route). Working directly in the 3D space,
RT methods are not affected by 2D occlusions that are natu-
rally solved when matching objects across the cameras,
hence their complexity is naturally quite lower than the TR

Fig. 1. Optical occlusions: SIP versus COP representation. Left column: 2D occlusions. The blue and the green targets are occluded in the image
plane of the first camera and well–separated in the other two. Right column: 3D occlusion. The blue and the green targets are in 3D proximity, there-
fore they are occluded in all the three cameras. Top row: SIP representation. a) The information from the two cameras where the occlusion do not
occur make the occluded targets to be reconstructed in two different positions (the red circles in the right graph of the panel), but with a poor accu-
racy: both the two 3D positions do not correspond to the target centers of mass. b) The two occluded targets are associated with one single 3D posi-
tion (the red circle between the blue and the green target), with a consequent loss of the targets identities and potential switch of identities after the
occlusion occurs. Bottom row: COP representation. c) The occluded targets are represented as two well-separated dense cloud of 3D points. d) The
occluded targets are reconstructed in a single cloud of 3D points as big as their total volume. Identities may be retrieved by splitting the clusters in
the two subsets representing the volumes of the two distinct objects, as SpaRTA does using the SDP technique described in Section 4.2.
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methods; however, RT strategies are typically more prone to
creating false 3D objects. The SIP-RT approach has been
explored in small groups of objects [17], [18], [19], [3], and it
is not clear how these approaches perform in case of dense
groups, while the most advanced SIP–RT method has been
proposed in [20] and it can successfully track large groups.

The SIP representation has some drawbacks, especially in
dense systems, where occlusions are frequent: the assumption
behind this representation is that the 3D center of mass of an
object corresponds to the 2D centers of mass of its images,
which is reasonable when dealing with not–occluded targets
but it fails when 2D and 3D occlusions occur, as shown in
Fig. 1. More specifically, whenever two or more objects are
part of a single occlusion, the SIPmethod associates one single
position to all of them, causing: i) loss of the actual targets
individual identities; ii) potential identity switches after the
occlusion; iii) an inaccurate positioning of the targets in 3D
space (see Fig. 1).

The COP representation, on the other hand, allows to
associate to each object (at each instant of time) a dense cloud
of 3D points and not only its center of mass. This dense
representation reconstructs the actual volumes occupied by
the detected objects: 2D occlusions are naturally solved,
while targets in a 3D occlusions are associated to only one
cloud of points, see Fig. 1, that may be divided into separated
sub–parts each representing the volume of a single target
using graph partitioning techniques. Discarding no informa-
tion about the actual targets volumes, and therefore creating
no simplified identities, COP representation is more suited
to prevent identity switches (problems i) and ii) above) and
definitely more accurate to locate the 3D positions of the tar-
gets. Besides, COP-based tracking (unlike SIP) is not forcibly
embedded within a multicamera framework and it is there-
fore a significantly more general approach than SIP: indeed,
COP tracking has been used in RGB–D systems [21], lidar
[22] and radar [23]. In the COP context, occlusions have been
tackled by different techniques, [24], [25], [26], [27], which,
however are designed for the specific nature of the data to be
tracked. Here, wewill introduce a novel COP-based tracking
method designed to be as general as possible.

3 OVERVIEW OF THE METHOD

SpaRTA works with ð3Dþ 1Þ (space + time) clouds of points
representing the 3D volume occupied in time by a group of
moving objects, without any limitation on the 3D system used
to collect the data.2 The goal of the algorithm is to partition the
ð3Dþ 1Þ cloud of points in ð3Dþ 1Þ sub–clouds, each corre-
sponding to the trajectory of a single target.

SpaRTA can be broken into the following steps:
1 – Building the graph. The cloud of 3D points is first clus-

tered in space at a static level (fixed instant of time): a clus-
tering algorithm based on the 3D nearest neighbor distance
[29] is used to detect the well–separated dense cloud of
points (clusters), which may represent the detected objects
at each instant of time. These reconstructed 3D clusters are

then connected in time through a dynamical linking proce-
dure, see Section 4.1 and Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2019.2946796 for
further details. In this way, we create a set of ð3Dþ 1Þ
clouds of points representing the volumes occupied by the
objects during the event, actually building the graph shown
in Fig. 2 with 3D clusters as nodes and links as edges.

2 – Tackling the occlusions.A breadth–first search routine [30]
is used to identify the connected components of the clusters
graph, which should represent the trajectories of the detected
targets. In the ideal situationwhere 3D occlusions do not occur,
each connected component is made of one single target at each
instant of time, therefore it is made only of one–to–one linked
nodes, see Fig. 2.However, in themore realistic situationwhere
3D occlusions do occur, two or more objects may belong to the
same connected component, sharing one or more nodes, as in
the last three cases in Fig. 2. These connected components, with
at least one multi-link, are due to occlusions, and they must be
solved. The philosophy of SpaRTA is to break up the ambigu-
ous connected components into different partitions, each corre-
sponding to the trajectory of a single actual target, by defining
and solving an optimization problem.

To this aim, points belonging to an ambiguous connected
component are linked in space and in time: the crucial idea is
to use attractive (positive) links connecting points that are
close to each other and thus with a high probability to belong
to the same target, and at the same time to penalize, with
repulsive (negative) links, pairs of points that are too far from
each other when compared with intrinsic space-time scales
of the data. Once the graph is built, SpaRTA defines a cost
function given by the negative sum of all links in each candi-
date partition, in such a way that the global minimum of this
function corresponds to the optimal partitioning of the occlu-
sion into bona fide 3D targets. The presence of both attractive
and repulsive links is crucially functional in associating the
correct partition to the actual targets; on the other hand,
using competing links is known to increase steeply the com-
plexity of an optimization method, by creating a prolifera-
tion of sub-optimal solutions (local minima) [31]. To deal
with this problem, SpaRTA uses an optimization routine
inspired by Semi-Definite Programming techniques that are

Fig. 2. Clusters graph. Gray circles represent 3D clouds of points
dynamically linked via black arrows. Distinct connected components are
highlighted in different colors. The first three components from the left
represent trajectories of not–occluded targets, since they are made of
only one–to–one linked clusters. Conversely the last three components
are ambiguous because they have at least one node with more than one
link from the past or to the future.

2. Note that when using a multicamera acquisition method, data are
not directly obtained as 3D clouds of points (unlike data acquired with
RGB-D, lidar or radar systems); hence, in that specific case, targets
images are converted into 3D clouds of points through a preprocessing
procedure as the one described in [28] and in Section 5.
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known towork efficiently in disordered systemswhose com-
plexity is severe [9], [32]. See Section 4.2 for details.

3 – Identifying 3D trajectories. Each non–ambiguous con-
nected component identified in Step 2 above, represents the
3D volume occupied by a single target during the dynamics
of the system. However, for many practical purposes it is
not convenient to work with 3D volumes, which may be
hard to be handled, and it is more desirable to associate a
single 3D position to each object at each instant of time.
Thus, we associate to each cluster its 3D center of mass posi-
tion, i.e., average 3D coordinates of the cluster points, and
we define the trajectories as the time sequence of the center
of mass coordinates. Notice that this is not the same as defin-
ing object positions through their center of mass in the SIP
framework, because here all occlusions have been already
solved, hence the center of mass is indeed a appropriate
representation to locate the target position; on the contrary,
centers of mass fail in SIP whenever one object corresponds
to several targets into an occlusion, as shown in Fig. 1.

4 METHOD DETAILS

In this section we describe in detail how we handle the
ð3Dþ 1Þ cloud of points to build the graphs and how we
solve 3D occlusions.

4.1 Building the Graph

The ð3Dþ 1Þ cloud of points is first analyzed at a static level
to identify well–separated clusters, which may represent
single objects or multi-objects during an occlusion. To this
aim, we use a standard clustering algorithm based on the
3D nearest neighbor distance [29]: two reconstructed 3D
points, Q1 and Q2 belong to the same cluster, C, if their 3D
distance dðQ1; Q2Þ is smaller than r1, with r1 equal to the
median of the targets nearest neighbor distance.3

Once all the 3D clusters of points are created at each
instant of time, we need to dynamically link points at subse-
quent instants of time, actually building the ð3Dþ 1Þ graph.
We have to be careful doing this, because missing dynam-
ical links may result in fragmented trajectories, while extra–
links increase the connectivity of the graph, creating false
occlusions and making the problem difficult to be solved.
We define point–to–point dynamical links using a dynam-
ical proximity method whose only assumption is that each
3D point moves with a constant velocity between two con-
secutive instants of time, see Fig. 3. Note that the constant
velocity assumption is reasonable when working on data
collected at a high frame–rate, as the ones used to test
SpaRTA, but it may need some refinements in a more gen-
eral scenario. Once we have built point–to–point dynamical
links, we use them to define cluster–to–cluster dynamical
links: two clusters C1 and C2 are connected in time if there
exists at least one point–to–point link between a point
p1 2 C1 and a point p2 2 C2, see Fig. 3. For the sake of clarity,
we omit here to describe all the details of the temporal link-
ing procedure and we refer the interested reader to
Appendix A, available in the online supplemental material.

4.2 Tackling the Occlusions

In this section we analyze in detail how we solve the ambig-
uous connected components, i.e., the occlusions. Here is the
core of the method, which overcomes the occlusions yet
keeping the identities of the objects involved.

We restrict our attention only to connected components
made of two objects in a 3D occlusion for one or more frames.
Themore general case ofmore than two trajectories belonging
to the same connected components can be reduced to the sim-
plest one solving each 3D occlusion in a restricted frame range
such that only two objects at the time are involved (under the
mild assumption that no more than two objects can be
involved in the same 3D occlusion at the same time).

In an ambiguous connected component, the trajectories
of the objects (involved in a 3D occlusion) are well–
separated for the most part of the event, sharing only few
clusters, just during the occlusion. Therefore an ambiguous
connected component due to a 3D occlusion has the
X–shape shown in Fig. 4, with the 4 branches of the X rep-
resenting the trajectories of the two objects before and after
the occlusion, which is instead the centre of the X. The two

Fig. 3. Cluster graph construction: Dynamic linking. At a generic frame t,
a point–to–point multi–linking procedure is performed: p0 at time t is con-
nected to p2 and p3 at frame ðtþ 1Þ, while p1 at frame t is connected with
p3 and p4. These point–to–point links are then used to define cluster–to–
cluster links: two clusters are connected if there exists at least one
point–to–point link between points belonging to the two clusters. There-
fore, C0 will be linked to both C1 and C2 (the two points p0 and p1 belong
to C0 and they are both linked to points belonging to C1 and C2). On the
opposite, C3 does not receive any link from the past, because none of its
points receive a point–to–point link.

Fig. 4. 3D occlusion. A X–shape connected component representing a
3D occlusion. The two objects are well–separated for the most part of
the event, but they share the same cluster during the occlusion. The four
branches of the X represent the two different trajectories of the two
objects before and after the occlusion, which is represented as a double
grey circle at the center of theX. During the SDP procedure the analysis
of the ambiguous component is restricted to a quite short interval,
highlighted in pink.

3. To compute r1 we should measure the distance between each
reconstructed point and its first neighbor, that has a computational
complexity of OðM2Þ, with M being the average number of 3D points
at each frame. We lower this computational complexity to OðMÞ using
the space-partitioning technique of [33]. To further reduce the computa-
tional complexity, we do not estimate r1 on the entire set of points, but
on a randomly chosen sub–set (� 20 percent of the total reconstructed
points), that we proved to be large enough to give an acceptable
approximation of the median nearest neighbor distance computed on
the entire set.
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occluded objects are not distinguishable and they are detected
as one cluster only. The goal of this step is then to identify and
separate the volumes occupied by the two objects during the
occlusion, i.e. to split the clusters in the two subsets represent-
ing the volumes of the two distinct objects.

To handle this situation we switch back from clusters to
3D cloud of points, representing the ambiguous compo-
nent as a graph with its 3D points as nodes connected by
links carrying static (equal time) and dynamic information
(consecutive frames). Following the literature about graph
bi–partitioning techniques [34], we address the partitioning
as an energy minimization problem. Therefore, we associ-
ate an energy, H, defined as follows:

H ¼ �
X
i;j

wijxixj; (1)

where i and j are two different points of the graph, xi ¼ �1
identifies to which partition the point i belongs, and wij is
the coefficient associated with the pair of points i and j:
because we want to minimize H, and it has a minus sign in
front of the sum, the key to solve the problem is that we
must use a positive coefficient wij when it is highly likely
that i and j belong to the same partition, i.e., i and j are at a
short 3D distance, but it is also essential to assign a negative
coefficient when it is likely that i and j belong to different
partitions, i.e., i and j are too far from each other compared
with the space–time scales of the data. Clearly, a sensible
definition of wij is of paramount importance and some heu-
ristics is inevitable in the choice. Despite this, there is a gen-
eral principle to follow: jwijj has to be large when i and j are
likely to belong to the same partition (large and positive wij)
or when i and j are likely to belong to distinct partitions
(large and negative wij) and it is reasonable to have a zero
value of wij whenever it is unclear what is the likely fate of i
and j. To implement this scenario, we use the simplest rule,
which amounts to link the coefficients wij to the spatio-tem-
poral proximity of the points i and j.

4.2.1 Static Coefficients

We first define the coefficients between points at the same
instant of time. We statically connect two points, i and j, at a
mutual distance dij, with the following weight:

wijðtÞ ¼ e�ðdij=r1Þb � dij � r0
r1

� �2

uðdij � r0Þ (2)

r1 is the median nearest neighbor distance, which is also
the only natural unit of length of the system of points, hence
all other lengths will be measured in units of r1 to make all
coefficients dimensionless; r0, on the other hand, is the
median size of the reconstructed clusters at that specific
instant of time, r0 � r1; uðxÞ is the Heaviside function. The
actual shape of wij in Eq. (2) as a function of the space dis-
tance dij is depicted in Fig. 5: the idea is to strongly and pos-
itively connect those points which are likely to belong to the
same cluster, i.e., with a mutual distance smaller than r1,
and to negatively connect those points which are likely to
belong to different clusters, i.e., at a mutual distance bigger
than the usual size of the objects; finally, all points with an
uncertain distance, namely r1 < dij < r0, have a non-

committal wij � 0. Hence, the exponent b simply rules how
sharp is the elbow around r1, and its value does not impact
significantly on the results as long as b � 2 (we use b ¼ 2:2Þ;
note, though, that any other sharp decay would do the job.

4.2.2 Dynamic Coefficients

Using an identical philosophy, we dynamically connect two
points, i at time t and j at time tþ 1, with the followingweight:

wijðt; tþ 1Þ ¼ e�Dij=r1 ; (3)

where,

Dijðt; tþ 1Þ ¼ j~riðtÞ þ D~riðt; tþ 1Þ �~rjðtþ 1Þj (4)

is the distance between the extrapolated position of i at time
ðtþ 1Þ, namely~riðtÞ þ D~riðt; tþ 1Þ, and the position of point j
at time tþ 1. The displacement D~riðt; tþ 1Þ is linearly extrap-
olated from past frames under the assumption that each point
moves at a constant velocity between two consecutive frames.
Notice that once again we have used the median nearest
neighbour distance r1 as the natural length scale of the system
to make the coefficient dimensionless. The meaning of these
links is to strongly connect, in time, those pairs of points
belonging to the same dynamic cluster, namely the points
belonging to the same branch of the ambiguousX–shape (see
Figs. 4 and 6), which are likely to belong to the same partition.

4.2.3 Graph Partitioning

In order to find the partitioningwhichminimizes the energyH
in Eq. 1 one could use standard approaches, such as integer lin-
ear programming or Montecarlo techniques; these, however,
are known to fail to find the correct solution (ground state)
when there are many local minima of H, which is the case of
the present problem. Therefore, we choose to approach the
problem by using a more robust algorithm based on Semi-
Definite Programming, whose details can be found in [9], and

Fig. 5. 3D occlusion: static linking. a) The static coefficient, wij between
two points i and j as a function of their mutual distance dij, with r0 and r1
of the specific 3D occlusion shown in Fig. 6. b), (c), and d) Points belong-
ing to the same frame are strongly connected if they are at a very short
mutual distance (static positive links), while they are strongly disjointed,
through a large but negative weight, when at a large mutual distance,
both within the same target (static negative links) or in two different tar-
gets (static negative links between clusters).
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which successfully finds the absolute minimum of complex
energy functions even in presence ofmulti-minima landscapes.

Once the 3D occlusion is solved through the SDP proce-
dure, the ambiguous X–shaped component is divided into
two partitions, connected both in space and in time, as shown
in Fig. 6. The occluded potential clusters are actually split into
two sub–clusters representing the volumes occupied by the
two objects during the occlusion. In this way, we successfully
solve the occlusion retrieving the two trajectories and main-
taining the identities during the entire event. Ideally the opti-
mization should be applied to the entireX–shape component,
but this would require high computational resources and
high computational time, since theminimization of the energy
H in Eq.(1) is anNP–hard problem, see [35]. Hence, in order to
reduce the number of variables of the problem, we restrict the
optimization to a shorter interval of time, namely from few
frames (3 in the specific case of the tests presented in Section 5)
before the occlusion starts, to few frames after the occlusion
ends, as shown in Figs. 4 and 6 (left panel) where the interval
to be analyzed is highlighted in red.

Note that by restricting the optimization to a short interval
of time around the occlusion, we have the advantage of suc-
cessfully applying themethod to connected components made
of more than two targets, as the one shown in Fig. 7. Multiple
connected components are generally due to occlusions occur-
ring at different instants of time but sharing at least one target,
see Fig. 7 where target A is in 3D occlusion with target B at
frame t, and with target C at frame t0 > t. We approach this
situation solving each 3D occlusion in a short interval and than
we identify the connected components, each corresponding to
a single target (see Appendix B, available in the online supple-
mental material where we investigate the effect of the time
interval length on the quality results of the method). Note that
the results presented in Section 5 are obtained restricting the
optimization to the interval of time going from10 frames before
the occlusion starts to 10 frames after the occlusion ends.

5 CONTRIBUTION

The architecture of SpaRTA is based on three essential ele-
ments: i) the COP-representation; ii) the interplay between
attractive (positive) and repulsive links in the graph of points
to be partitioned; iii) the use of a partitioning technique
SDP-based.

These three elements are not only the core of the method,
but they also represent the main contributions of SpaRTA in
the field of 3D tracking. The COP–representation is widely
spread for tracking vehicles and persons, where targets are
characterized by recognizable features such as color or shape,

while it is not used for featureless objects where all the state–
of–the–art methods (as the ones in Table 1) are based on the
SIP–representation. SpaRTA introduces the representation of
the targets as 3D clouds of points for featureless objects, there-
fore allowing the identification of multiple targets through an
occlusion, unlike the SIP–representation where occluded
objects correspond to a single 3D entity, seeAppendixC, avail-
able in the online supplementalmaterial for further details.

The latter two elements above, interplay of positive and
negative links and use of SDP–based technique, are much
more general and they represent a novelty in the field of track-
ing (of objects with and without features). Tracking is natu-
rally addressed as a partitioning problem on the graph of the
reconstructed objects linked in space and time, where the goal
is to find the sub–parts of the graph that share some particular
property, i.e., belong to the same target. To this aim, each link
is associated to a coefficient that quantifies the rate of similar-
ity between the points it connects (the higher the similarity
the smaller the coefficient) and the sub–graphs are found as
the ones that minimize an energy function, linear with respect
of the weights of the links. In SpaRTAwe propose tomeasure
not only the similarity between two points but also their dis-
similarity, using coefficients of opposite signs, and to solve
the minimization problem with SDP–based techniques, since
usual partitioning techniques do not work anymore due to
the non–convexity of the energy function. The different sign
of the coefficients push the optimization problem to find the
solutionwith similar points in the samepartition, and dissimi-
lar points in different partitions, hence imposing harder con-
straints to the problem. The generality of this approach relies
on the generality of the concept of similarity between points:
in the particular case of featureless objects, as the one
addressed by SpaRTA, the weights of the links can only be
related to the distance between the connected points, because
the distance in space and time is the only available informa-
tion, but in a more general case, similarity and dissimilarity
may be measured using information on the object features,
such as color or shape, and therefore making this approach
applicable to awide class of tracking problems.

Fig. 6. 3D occlusion solution. An example of a 3D occlusion from the
Davis-08 dense dataset [10] used to test the method. On the left: the
X–shape component, with the 3D occlusion and the sub–cloud analyzed
with the SDP technique highlighted in red. On the right: the same com-
ponent after the solution of the 3D occlusion, with the two separated
trajectories highlighted in blue and green.

Fig. 7.Multiple connected component. The three targets A, B, and C are
involved in the same connected component: target A is occluded at an
instant of time t with B and at a different instant of time t0 > t with C.
We identify the two occlusions and we define a minimization problems in
a short interval around each occlusion. Once the occlusions are solved,
we look for the connected components involved in the ambiguous origi-
nal one and we find the three components (the blue, the green, and the
orange) corresponding to the three different objects.
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6 EXPERIMENTS AND DISCUSSION

We tested the method on two public datasets, published by
Wu et al. in [10], of Brazilian bats colonies emerging from a
natural cave in Texas, acquired with a system of three syn-
chronized high–speed cameras. To the best of our knowledge
these are the only public 3D datasets of featureless objects, but
they are not in the form of ð3Dþ 1Þ cloud of points. Therefore
SpaRTA cannot be directly applied to the data, but a pre–
processing procedure on the images is needed. In the next
two paragraphswewill give a detailed description of the pre–
processing procedure and of the refinements on the method
that we used to work on multicamera data, while the last two
paragraphs of this section are devoted to the description of
the evaluationmetric used in the tests and to the discussion of
the results obtainedwith SpaRTA and comparedwith 4 state–
of–the–art algorithms.

6.1 From Stereo–Images to (3D+1) Cloud of Points

For the sake of simplicity, in the following we will refer to
data collected with a system of three cameras as for the pub-
lic datasets used to test SpaRTA, but the entire procedure
may be easily generalized to any multicamera system.

We obtain the ð3Dþ 1Þ cloud of points from the images
performing the following steps:

1 – Segmentation.We identify the active pixels in the images,
i.e. pixels representing the objects to be tracked, using a seg-
mentation routine based on standard background subtraction
over a sliding window (as suggested by Sobral and Vacavant
in [36]), because the datasetswe used to test SpaRTA consist of
monochromatic images of white objects (bats) moving over a
still and dark background (the sky). The segmentation routine
is a crucial step that could heavily affect the results of the track-
ing algorithm since miss–detected as well as false detected
objectsmay lead to fragmented or, evenworst, to ghost trajecto-
ries, i.e., not corresponding to any real object. Despite this, we
prefer to keep the segmentation routine as simple and general

as possible, so that it may be applied to different systems of
featureless objectswith onlyminormodifications.

2 – Pixels matching.At each instant of time, the sets of active
pixels, P1, P2 and P3 (one for each camera) identified at the
previous step, are analyzed to find the triplets t ¼ ðp1; p2; p3Þ
of 2D points (pixels) pi 2 Pi, projections of the same 3D point
in the three cameras. A triplet t is considered a good match if
its reprojection error, see [37], is smaller than few pixels. In
principle we should reconstruct and check all the possibleN3

triplets, with N being the average number of active pixels in
each camera. However, using the trifocal constraint [37] the
number of triplets to be checkedmay be reduced toOðNÞ.

3 – (3D+1) cloud of points creation.All the triplets t created at
the previous step are reconstructed in the 3D space, using a
standard DLT reconstruction procedure [37], thus forming a
ð3Dþ 1Þ cloud of points which represents the 3D volume
occupied by all the targets during the entire event of interest.

6.2 Ghost Points Formation and Trajectories
Removal

The pixel matching procedure described in Section 5.1 may
lead to the formation of ghost 3D points, representing points
not belonging to any real 3D object. Ghost points are a well–
known artifact, as shown by Theriault et al. in [38], intrinsi-
cally due to the method that, at this level, cannot discrimi-
nate between ghost and correct points, as shown in Fig. 8.
Therefore ghost 3D points are included in the overall
ð3Dþ 1Þ cloud of points, creating ghost clusters and hence
ghost trajectories, which has to be identified and removed to
not affect the quality of the retrieved solution.

For their nature, ghost trajectories last for very few frames,
so that not ambiguous ghost connected components can be
easily identified and eliminated removing all the trajectories
shorter than a certain time length (see Appendix D, available
in the online supplemental material where we investigate the
effect of the threshold on the trajectory length on the quality

TABLE 1
Comparison of the Quality of the Trajectories Retrieved by SpaRTA and the Algorithms: MHT, SDD-MHT [10], CP(LDQD) [2], and

GReTA [12] on the Public Datasets Labeled Davis-08 sparse and Davis-08 dense Published in [10]

Dataset Algorithm Class MOTA IDS MT ML FM

(%) (#) (%) (%) (#)

SpaRTA COP-RT 91:7 12 96:2 1:0 185
MHT SIP-RT 64.1 97 96.6 0 105

Davis–08 sparse SDD-MHT SIP-RT 78.9 126 95.2 0 145
CP(LDQD) SIP-RT 88.1 126 97.1 0 115
GReTA* SIP-TR 83.1 9 85.1 1.9 167

SpaRTA COP-RT 90:4 11 91:1 5:4 123
MHT SIP-RT �32:0 355 71.9 2.5 274

Davis–08 dense SDD-MHT SIP-RT 44.9 444 61.1 3.0 454
CP(LDQD) SIP-RT 80.5 156 84.2 0.5 176
GReTA* SIP-TR 79.4 7 80.3 3.9 358

In the table, we report the MOTA (Multiple Object Tracking Accuracy) and also, the number of switches of identities (IDS), the percentage of mostly tracked
(MT) and mostly lost (ML) trajectories corresponding to groundtruth trajectories which are correctly reconstructed respectively for more than the 80 percent and
for less than the 20 percent of their time length, the number of tracks fragments (FM) corresponding to the number of times that a groundtruth trajectory, cor-
rectly reconstructed, is interrupted. A perfect tracking algorithm produces MOTA¼ 100%, IDS ¼ 0, MT ¼ 100%, ML¼ 0%, and FM¼ 0. In order to compute
a match between groundtruth and reconstructed trajectories, we chose a miss/hit threshold equal to 0.3m as suggested in [10]. GReTA*: The results obtained by
GReTA presented in this table are not the ones published in [12]. This is because, performing the quality evaluation of our new algorithm SpaRTA, we found a
shift of one frame in the annotated file of the dataset published in [10]. We evaluated SpaRTA using the annotated file, but taking care of the time shift and for
coherency we also updated the results obtained by GReTA.
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results of the method), which has to be empirically chosen
depending on the dataset. In the tests presented in Section 5 of
themanuscript it is set to 10.

A more complicated situation occurs when a ghost and a
real object get in 3D proximity creating a ambiguous con-
nected component, with the typical Y –shape shown in
Fig. 9 with one of the two branches (the one corresponding
to the ghost trajectories) quite short. This kind of ambiguity
is essentially due to an error in the dynamical linking proce-
dure, which wrongly connects the ghost to a real cluster.

We identify the connected components with a Y –shape
graph and we solve the ambiguity removing the wrong link
(highlighted in red in Fig. 9) between the ghost and the real
trajectory, actually breaking the graph into two partitions,
representing a long and correct trajectory and a short ghost
trajectory which is removed.

6.3 Evaluation Metrics

The set of trajectories retrieved by SpaRTA, see Fig. 10, is
compared with the set of groudtruth trajectories (published

by Wu et al. in [10] together with the two datasets) and its
quality is assessed using the standard CLEAR MOT evalua-
tion method proposed by Bernardin and Stiefelhagen in [39]
and the metrics described in [10]. The most important met-
rics in this context is the so-called Multiple Object Tracking
Accuracy parameter (MOTA); this quantity combines three
observables, namely: i) the number of false–positive objects
(reconstructed objects not belonging to the groundtruth set);
ii) the number of missing objects (objects belonging to the
groundtruth but not reconstructed by the algorithm); iii) the
number of identity–switches (reconstructed trajectories
switching between two different groundtruth identities).

MOTA can be interpreted as the fraction of groundtruth
objects correctly reconstructed by the tracking method; its
ideal value is equal to 100 percent (note, however, that –
weirdly as it may seem – MOTA can have negative values
when the number of false–positive plus miss–reconstructed
objects plus identity switches exceeds the number of ground-
truth objects, quite clearly a rather bad scenario). The second
most important metrics is IDS (Identity Switches), which iden-
tifies how many times the identities of different actual targets
are switched, this is also a rather crucial parameter, as (the con-
sequences of IDS in data analysis are often themost severe).

The other evaluation parameters are the following: MT
(Mostly tracked) – fraction of groundtruth trajectories cor-
rectly reconstructed for more than the 80 percent of their time
length; ML (Mostly Lost) – fraction of groundtruth trajectories
that are correctly reconstructed, but for less than the
20 percent of their time length; FM (Fragmentation) – corre-
sponding to the number of times that a groundtruth trajectory,
correctly reconstructed, is interrupted. It was not possible to
evaluate the last parameter MOTP (Multiple Object Tracking
Precision), which measures the average distance in the 3D
space between the groundtruth and the reconstructed objects,
because the dataset do not give the actual 3D positions of the
targets but their estimates based on the SIP approach used by
the author in [10]. Hence, with the MOTP we would have not
evaluated the precision of our method, but only the difference
between the 3D positions obtained by SpaRTA with the ones
obtained in [10].

Fig. 8. Ghost objects formation. The blue and the green objects, namely,
Q1 andQ2 are reprojected in the two cameras as q1 and q2. The pair ðq1; q1Þ
is a goodmatch because the two pixels are the image of the same 3D point
Q1, and the pair ðq2; q2Þ is a good match as well. The two pairs ðq1; q2Þ and
ðq2; q1Þ do not represent any object of interest but they are good matches
from a epipolar perspective, see [37]. The pixel matching procedure will
then reconstruct the two correct objects Q1 and Q2 and the two ghost
objectsQ12 andQ21. The introduction of a third camera drastically reduces
the creation of ghost points working on triplets of pixels, but even in this
case ambiguities are not completely solved.

Fig. 9. Ghost trajectories removal. A Y –shape connected component
representing a real (blue) and a ghost (red) trajectories occluded at one
frame. This ambiguous component is due to a wrong dynamic link (the
red arrow), which can be easily identified from the peculiar Y –shape of
the component together with the short length of the ghost branch. The
wrong dynamic link is detected and removed as well as the ghost points.

Fig. 10. Dataset and results. First row: on the left an image from theDavis-
08 sparse dataset and on the right a sample of the 3D trajectories, each
with a different color, of the same dataset reconstructed by SpaRTA.
Second row: on the left an image from the Davis-08 dense dataset and on
the right a sample of the 3D trajectories reconstructed bySpaRTA
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6.4 Results

The performance of SpaRTA is reported in Table 1 and com-
pared with four other methods: MHT [10], SDD–MHT [10],
CP(LDQD) [2] and GReTA [12]. The difference between the
two datasets is that one of them is sparse, and the data
sequence is rather long (1100 frames), while the seconddataset
is dense, with a far shorter sequence (200 frames), see Fig. 10.4

The comparison with the state–of–the–art methods
shows the high performance of SpaRTA, especially in terms
of tracking accuracy (MOTA), number of identity switches
(IDS) and percentage of mostly tracked (MT) groundtruth
trajectories. The table shows that SpaRTA performs better
on the dense dataset (where SpaRTA produces the best set
of trajectories) than on the sparse one.

More in detail, the set of trajectories obtained by SpaRTA
shows the highest value of the MOTA parameters for both
datasets: 91.7 percent for the sparse dataset and 90.4 percent
for the dense one, while among the SIP methods CP(LDQD)
gives the best performance with MOTA ¼ 88:1% and
MOTA ¼ 80:5% respectively. For both datasets, SpaRTA
produces a very low number of IDS (12 for the sparse and
11 for the dense dataset) comparable with the ones pro-
duced by GReTA (9 and 7 for the sparse and the dense data-
set respectively) and outperforming all the SIP-RT methods.
In the sparse dataset the percentage of MT obtained by
SpaRTA (96.1 percent) is comparable with the 3 SIP-RT
methods MHT, SDD–MHT and CP(LDQD), while on the
dense dataset SpaRTA produces the highest percentage of
MT (91.1 percent).

Conversely, for both datasets SpaRTAgives a high number
of ML (1 and 5,4 percent respectively in the sparse and in the
dense dataset.). In the sparse datasets, ML are due to targets
that the segmentation routine described in Section 5.1 fails to
detect especially when bats are going out the field of view of
the cameras. Instead in the dense dataset themostly lost trajec-
tories are the groundtruth trajectories shorter than 10 frames.
These trajectories are naturally lost in SpaRTA, because we
remove from the final set all the trajectories shorter than 10
frames to avoid ghost trajectories, as decribed in Section 5.2.

Finally, on the sparse dataset SpaRTA produced the
highest number of FM (185) compared with all the other
methods. As for the ML, these FM are due to segmentation
failures: when a miss-detection occurs the corresponding
3D object cannot be reconstructed, causing the interruption
of the correspondent trajectory. This issue may be improved
by developing a detection algorithm designed for this data-
set; this, however, goes beyond the scope of the present
work. On the other hand, on the dense datasets SpaRTA
produces the lowest number of FM (123) confirming the
overall better performance of SpaRTA on the dense dataset
than on the sparse one.

7 CONCLUSION

We proposed a tracking method, SpaRTA (Spatiotemporal
Reconstruction Tracking Algorithm), designed to track large
and dense group of featureless objects, without any specific

prerequisites on the 3D system used to acquired the data.
SpaRTA works with ð3Dþ 1Þ dense clouds of points repre-
senting the volumes occupied in time by the targets of interest.
Each cloud of points is partitioned in spatio-temporal con-
nected components, corresponding to the trajectories of single
individuals in the group. The method is designed to handle
efficiently the ambiguities stemming from occlusions, i.e.,
objects getting too close in the 3D space to be detected as sepa-
rated entities; to this aim SpaRTA employs an optimization
routine inspired on Semi–Definite Programming techniques
introduced in the field of statistical mechanics [9]. Apart from
using in a proficousway for the first time SDP in the computer
vision context, the true core of SpaRTA is the novel way in
which the spatio-temporal graph is built: the key idea is to
define an energy (or cost) function based on the use of both
attractive and repulsive links between points within the cloud,
in such away to separate with relatively little numerical effort
the ambiguous cases byminimizing such energy.

SpaRTA was tested on two public datasets, [10], produc-
ing high quality results in terms of correctness of the trajec-
tories, evaluated through the standard quality parameter
MOTA, producing a low rate of identity switches and a
high percentage of mostly tracked groundtruth trajectories.
The retrieved trajectories were compared with the four
state–of–the–art tracking methods MHT [10], SDD-MHT
[10], CP(LDQD) [2] and GReTA [12]. The greatest advantage
of SpaRTA over the other methods is an outstanding
MOTA, combined with an excellent IDS (second only to
GReTA) and a very high MT. This means that, not only
SpaRTA is able to achieve a quantitatively satisfying cover-
age of the set of trajectories, but it does that with the lowest
number of false positives and a remarkably low number of
identity switches compared to most other methods. At the
level of data analysis, this kind of performance guarantees
that the completeness of the data coverage is not jeopar-
dized by a qualitative disruption of the results, due to the
severe consequences of having wrong trajectories.
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