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Flocks of birds exhibit a remarkable degree of coordination and
collective response. It is not just that thousands of individuals fly,
on average, in the same direction and at the same speed, but that
even the fluctuations around the mean velocity are correlated over
long distances. Quantitative measurements on flocks of starlings,
in particular, show that these fluctuations are scale-free, with
effective correlation lengths proportional to the linear size of the
flock. Here we construct models for the joint distribution of velocities
in the flock that reproduce the observed local correlations between
individuals and their neighbors, as well as the variance of flight
speeds across individuals, but otherwise have as little structure as
possible. These minimally structured or maximum entropy models
provide quantitative, parameter-free predictions for the spread of
correlations throughout the flock, and these are in excellent agree-
ment with the data. These models are mathematically equivalent to
statistical physics models for ordering in magnets, and the correct
prediction of scale-free correlations arises because the parameters—
completely determined by the data—are in the critical regime. In
biological terms, criticality allows the flock to achieve maximal
correlation across long distances with limited speed fluctuations.

collective behavior | statistical mechanics

In a flock of birds, thousands of individuals will fly in the same
direction and at the same speed, for long periods of time. How-

ever, this average behavior is not enough for flocking to be ad-
vantageous. The entire flock must respond to dangers that may
be visible only to a small fraction of individuals, requiring in-
formation to propagate over long distances. Although it is dif-
ficult to measure this information flow directly (1), we know that
attacks by predators on a flock have very low success rates (2–4),
and that the evasion of predators by starling flocks is associated
with the triggering and propagation of waves through the flock (5).
Even in the absence of predators, we can see deviations of in-
dividual behavior from the average behavior of the flock, and cor-
relations in these fluctuations provide a signature of information
flow through the flock. Strikingly, observations on flocks of star-
lings show that these correlations extend over very long distances,
comparable to the size of the flock itself (6).
It is generally believed that the interactions among birds in a

flock are local—each bird aligns its flight direction and speed to
those of its near neighbors (7). If this is correct, then we have to
understand how local interactions can generate correlations over
much longer distances. In physics, we have two very different
mechanisms for local interactions to produce long–ranged cor-
relations. If the system spontaneously breaks a continuous sym-
metry, for example when all of the spins in a magnet select a
particular direction in space along which the macroscopic mag-
netization will point, then the fluctuations in the system are domi-
nated by Goldstone modes that do not decay on any fixed length
scale (8). If we can think of the alignment of flight directions in
a flock as being like the alignment of spins in a magnet (9–11), then
we can understand the emergence of scale-free correlations via

Goldstone’s theorem. We have shown that this is more than a
metaphor (12): the minimally structured model consistent with the
observed correlations among flight directions of neighboring birds is
equivalent to a model of spins in a magnet, and the resulting (pa-
rameter-free) prediction of long-ranged correlations among fluctu-
ations in flight direction agrees quantitatively with the data.
Not just the fluctuations in flight direction, but also the fluc-

tuations in flight speed are correlated over long distances (6).
Now there are no Goldstone modes, because choosing a speed
does not correspond to breaking any plausible symmetry of the
system. However, there is a second mechanism by which physical
systems generate scale-free correlations, and this is by tuning
parameters to a critical point (8, 13). As we explore the parameter
space of a system (e.g., changing temperature and pressure), we
encounter phase transitions, where small changes in parameters
produce qualitative changes in behavior of a macroscopic sample
(e.g., between liquid and gas). Along the lines in parameter space
where these phase transitions exist, there are special points, called
“critical points,” where the dependence on parameters becomes,
for very large systems, singular but not discontinuous. At these
points, fluctuations (e.g., in the density of the liquid) become
correlated on all length scales, from the molecular scale of the
interactions to the macroscopic scale of the sample as a whole.
Tuning to a critical point provides a potential explanation for

scale-free correlations in speed of flocking birds, but this is just
an analogy; the goal of this paper is to construct a quantitative
theory. Our strategy follows ref. 12: we construct the least
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structured models that are consistent with measured correlations
among neighboring birds, and then see if these models can cor-
rectly predict the persistence of correlations over much longer
distances, comparable to the size of the flock. We will see that this
works, and that the underlying mechanism really is the tuning
of the system to a critical point. From a biological point of view,
this means that individuals in a flock combine individual speed
control and social interactions with their neighbors to achieve a
maximal range of influence while keeping speed variability low.

Building a Model from Data
We consider flocks of European starlings, Sturnus vulgaris, in the
field. The work of refs. 14 and 15 provides a detailed description of
these flocks, resulting in the assignment of 3D positions and veloc-
ities, at each moment in time, to each individual bird in flocks with
up to several thousand members (for a summary, see SI Text, section
I). From these raw data, one can extract a variety of features that
serve to characterize the nature of the ordering in the flock (6, 16).
The positions and velocities of all of the birds in the flock are

stochastic—with elements of randomness, but correlated. In
making a model, we want to predict the probability distribution
out of which these random variables are drawn. One approach is
to consider a detailed model for the dynamics of the flock, typi-
cally with many parameters to describe the interactions that cause
the flock to cohere and align. However, the connection between
the model dynamics and the joint distribution of velocities in the
flock can be complicated, and fitting the parameters of the
interactions is difficult (17); there also is a problem of whether we
should take such models seriously as description of the “micro-
scopic” interactions among individuals, or whether they are to be
considered as effective interactions in the spirit of statistical
physics. As an alternative, we can take some set of observations on
the flock as given and try to construct models that reproduce these
observations exactly; among the (generally infinite) set of models
that can do this, we want to choose the one that has the least
structure. Minimizing structure means that the velocities we
choose out of the distribution are as random as they can be while
still matching the properties of the flock that we have chosen as
essential. As emphasized by Jaynes (18, 19), these minimally
structured distributions have maximum entropy, providing a con-
nection to the ideas of statistical physics (SI Text, section II).
A realistic model for a flock might or might not lead to a

maximum entropy distribution. Also, the maximum entropy
method is not in itself a model: to use the method we have to
choose some set of experimental observations as constraints,
and it is easy to imagine choosing the wrong ones. Thus, the
maximum entropy approach is a source of hypotheses, and these
must be tested. If the maximum entropy model consistent with
a limited set of experimental constraints is accurate, correctly
predicting experimental observations that were not part of its
formulation, then we can take the model seriously and ask what
it teaches us about the system.
The maximum entropy approach to model building is far from

new, but there has been a resurgence of interest in the use of
these ideas to describe biological systems (20–29). In ref. 12, we
took a first step toward a maximum entropy description of flocks,
building models for the distribution of flight directions that
match the average local correlation between the direction of a
bird and its nearest neighbors. Surprisingly, fixing this one number
leads to a model that, with no free parameters, provides an es-
sentially complete, quantitative description of the propagation of
directional order throughout the entire flock. Here we generalize
this approach to consider not just flight directions, but also speed.
As explained above, we expect that accounting for the properties
of speed ordering is a qualitatively different problem from the case
of directional ordering.
Given the positions of the birds in space, the state of the flock

is defined by the velocity ~vi of each bird. This 3D vector is

composed of the speed, vi ≡
��~vi��, and a unit vector,~si =~vi=vi, that

points in the direction of flight. Our intuition is that the most
important interactions are local, between a bird and its imme-
diate neighbors. If this is correct, then the essential features of
the system should be captured by measuring local correlations, as
in ref. 12.
We can quantify local correlations in the flock by asking how

similar, on average, the velocity of each bird is to its neighbors.
To do this, we define

Qint =
1

2v20N

XN
i=1

1
nc

X
j∈N i

��~vi −~vj��2: [1]

Here N i is the relevant neighborhood of bird i, which we take to
be its first nc nearest neighbors (12, 16). We compare a bird to
each of its neighbors, average over the neighborhood, and then
average over all N birds in the flock; we normalize the result by a
typical speed v0 so that we have a dimensionless measure of
correlation or similarity. If we take v0 to be the average speed of
birds in the flock, then typical values forQint are ∼ 10−2 (Table S1),
showing that birds indeed fly with velocities very similar to those of
their neighbors.
The definition of Qint quantifies the similarity of each bird’s

flight vector to that of its neighbors, but if we add a constant to
all of the velocities, so that the flock flies faster or slower, then
Qint is unchanged. We would like to fix the average speed of the
birds in the flock, V = ð1=NÞPN

i=1vi, to its observed value hV iexp.
In addition, we know that individual birds have speeds that vary
around the mean, so we would also like to match the variance of
speeds. This is equivalent to fixing the mean square speed,
V2 = ð1=NÞPN

i=1v
2
i . In what follows, we will refer also to the

fractional variance in speed,

σ2 =
1

NV 2

XN
i=1

ðvi −V Þ2: [2]

The maximum entropy distribution consistent with measured
values of Qint, V, and V2 has the form (SI Text, section III),

P
��
~vi
��

=
1
Z
exp 

"
−

J
4v20

XN
ij=1

nij
��~vi −~vj��2 + μ

v0

XN
i=1

vi −
g
2v20

XN
i=1

v2i

#
;

[3]

where Z is a constant that ensures the normalization of the
probability distribution, and we have inserted factors of v0 so
that other parameters are dimensionless. The matrix nij maps
the connections between birds: n̂ij = 1 if bird j is in the neighbor-
hood of bird i (j∈N i), and zero otherwise; we symmetrize to give
nij = ðn̂ij + n̂jiÞ=2. The parameters J, μ, and g must be adjusted so
that the average values of Qint, V, and V2 computed from the
probability distribution match those observed for the flock; as
explained in SI Text, section IV, these computations can be done
analytically. The only remaining parameter is the number of
relevant neighbors nc, which we fix by requiring that the proba-
bility of the observed velocities be as large as possible. We expect
that birds on the boundary of the flock will experience different
signals than those in the interior; rather than making an explicit
model, we fix the velocities of the boundary birds (12), so that
Eq. 3 provides a theory for the propagation of order through
the flock.
Fig. 1 shows one example of our solution to the inverse problem

of determining the parameters J, g, and nc. Importantly, the quan-
tities that we are trying to match are averages over all of the birds in
the flock, and so they are determined with small errors even from
a single snapshot of the velocities. The parameters in turn are
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determined very precisely, and are consistent for a single flock
across time and across multiple flocking events, as in ref. 12 and SI
Text, section V. In particular, values of nc are independent of the
size of the flock (Fig. S1) and of the distance between birds (Fig.
S2), supporting the idea that birds interact with a fixed number of
neighbors.

Some Intuition
Maximum entropy distributions are mathematically equivalent to
the Boltzmann distribution for systems in thermal equilibrium,
and we can use this identity to gain some intuition for the pre-
dictions of the model. We recall that a system described by the
Boltzmann distribution will occupy a state s with probability
Ps ∝ exp  ð−Es=kBTÞ, where Es is the energy of the state and kBT
is the typical thermal energy; for our purposes we can choose
units so that kBT = 1. Thus, Eq. 3 defines an energy function or
Hamiltonian on the space of the birds’ velocities, and this can be
written as

H��
~vi
��

=
J

4V 2

XN
ij=1

nij
��~vi −~vj��2 + g

2V 2

XN
i=1

ðvi −V Þ2; [4]

where we have eliminated the parameter μ in favor of the mean
speed V, which is now fixed to its experimental value hV iexp, and
we have set the arbitrary scale v0 =V .
The first term in this Hamiltonian describes the tendency of

the individual velocities to adjust both direction and modulus to
their neighbors, while the second term forces the speed to have,
on average, the value V. From this perspective, we can interpret J
as the stiffness of an effective “spring” that ties each bird’s velocity
to that of its neighbors, and g as the stiffness of a competing spring
that ties each speed to the desired mean. Larger J means a tighter
connection to the neighbors, and larger g means a tighter indi-
vidual control over speed.
There are interesting limiting cases that give us a sense for

what this model predicts. If the parameter g is very large, then
the speed of individual birds hardly fluctuates at all. In this limit,
we can rewrite the Hamiltonian as

H��
~vi
��

≈Hdir
��
~si
��

= −
J
2

XN
ij=1

nij~si ·~sj: [5]

This describes the tendency of individual birds to align with their
neighbors, and is exactly the model in ref. 12.
If there are nonzero but small fluctuations in speed, then we

can write vi =V ð1+ eiÞ, and expand in powers of e. The result (SI
Text, section IV) is that

H��
~vi
��

≈Hdir
��
~si
��

+HspðfeigÞ; [6]

where the speed Hamiltonian

HspðfeigÞ= 1
2

XN
i;j=1

�
gδij + JNij

�
eiej; [7]

Nij = − nij + δij
XN
k=1

nik: [8]

Thus, our full model breaks into two pieces, one describing
fluctuations in flight direction, and one describing fluctuations in
speed. However, the strength of the springs that tie the speed of
each bird to that of its neighbors is determined by the same
parameter J which enters the description of directional fluctua-
tions in Eq. 5. Thus, we have a unified model for how birds adjust
their vector velocities to those of their neighbors, rather than
separate models (with separate parameters) for the adjustment
of direction and speed.
To get a sense for the structure of Hsp, it is useful to imagine a

continuum limit in which the variations in speed from bird to
bird are so smooth that we can picture the speed fluctuations as a
continuous function of position in the flock, eð~xÞ. In this limit (SI
Text, section VI), we have

Hsp ≈
ρ

2

Z
d3x

h
Jncr2c ð∇eÞ2 + ge2

�
~x
�i
; [9]

where rc is the typical distance to a neighboring bird, and ρ is the
density of the flock. This model predicts that

�
e
�
~x
�
e
�
~x′
��

∝ exp 
�
−
��~x−~x′��	ξbulk�; [10]

where correlation length

ξbulk ∼ rc
ffiffiffiffiffiffiffiffiffiffiffi
Jnc=g

p
[11]

determines the distance over which the fluctuations in speed will
be correlated; the subscript reminds us that we are treating the
flock as a bulk material, with no boundaries. In this simple picture,
there is a critical point at g= 0 where the correlation length ξbulk
becomes infinite.
As we have written our model, we need to have g> 0. On the

other side of the critical point at g= 0, we need to constrain the
speed distribution more fully (that is, more than just fixing the mean
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Fig. 1. Inference of the three interaction parameters g, J, and nc . (A) For fixed values of J and nc , the value of the speed control parameter g is found by
equating the theoretical prediction for the variance of fractional speed fluctuations, σ2 (red line) from Eq. 2, to its experimental value (black horizontal line).
(B) Once the value of g is determined for all possible values of J and nc , the interaction strength J can be set by equating the theoretical prediction for Qint (red
line) to its experimental value (black horizontal line). (C) Once g and J are computed for given values of nc , the log-likelihood of the data, hln  Pðf~vigÞiexp
becomes a function of nc only, and the interaction range nc can be evaluated by maximizing this function. All panels refer to the same single snapshot of one
flock (frame 2 of 25-10 in Tables S1 and S2), and mathematical details can be found in SI Text, section IV.
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and the variance) to have a well-normalized distribution of ve-
locities. If we make these extensions, then g< 0 will describe
a flock in which there is a bimodal distribution of speeds, which
seems unnatural. Thus, in this case, the critical point likely is also
the boundary of the biologically relevant parameter space.
To summarize, J determines the propagation of directional

order through the flock, and to describe the speed fluctuations we
have only one extra parameter g. The value of g is set by matching
the observed variance in speed across the birds in the flock (Fig.
1A). However, J and g also compete to determine the distance
over which speed fluctuations will be correlated, Eq. 11. Impor-
tantly, we are not free to adjust this correlation length by fitting:
either the model gets it right, or it does not.

Scale-Free Correlations
Once the parameters J, g, and nc are determined (Fig. 1), Eq. 3
provides a model for the joint distribution of velocities for all of
the birds in the flock; everything that we compute from this dis-
tribution is a parameter-free prediction. We start by measuring the
similarity of the vector velocities among birds that are not just
nearest neighbors, but are separated by greater distances. By
analogy with Eq. 1, we can define

QðrÞ= 1
V 2

D��~vi −~vj��2E
rij=r

; [12]

where the average is over all pairs of birds separated by a distance
rij = r. The predicted QðrÞmatches the data very closely (Fig. 2A),
out to distances comparable to the size of the flock, more than 10
times farther than the nearest neighbors.
We next decompose the relationships among velocities into

contributions from direction and speed. If we average all of the
unit vectors~si we obtain the overall polarization of the flock,

~P=
1
N

XN
i=1

~si; [13]

and we can characterize the fluctuations around this overall
direction by a correlation function

CdirðrÞ=
��
~si −~P

�
·
�
~sj −~P

��
rij=r

: [14]

In Fig. 2B we compare the data with the predictions of the
model, and again find good agreement on all scales.
By analogy with Eq. 14, we can define correlations among the

fluctuations in speed,

CspðrÞ=
�ðvi −V Þ · �vj −V

��
rij= r: [15]

Fig. 2C shows that the observed correlations are in agreement
with the predictions of the model, again over the full range of
distances. Thus, we have succeeded in constructing a model based
on local interactions that generates correlations over long distan-
ces, matching the data quantitatively.
The discussion above suggests that long-ranged correlations

are associated with the approach to a critical point at g= 0. To
see if this intuition is correct, we show in Fig. 3A what happens to
the predicted CspðrÞ as we change g. Large values of g correspond
to small variances in speed, and to correlation functions that
decay very rapidly with distance. As g becomes smaller, both the
speed variance and the correlation length increase, until, for
sufficiently small g, there really is no characteristic scale to the
decay of the correlations, and CspðrÞ is almost a straight line. This
is what we observe, and the success of the theory is that the value
of g that matches the observed speed variance is in this regime.
We can quantify the approach to criticality by the dimension-

less ratio g=ðJncÞ that enters Eq. 11. From Fig. 1, we see that
g=ðJncÞ∼ 10−3, and this is typical (Table S2). This suggests that
real flocks are very close to criticality, and that this is why we
observe scale-free speed correlations. Note that g cannot be exactly
zero, otherwise there is nothing to fix the mean speed of the flock
(Eq. 3), and hence the variance in speed relative to a fixed observer
(i.e., ground speed) would be infinite. In contrast, the model pre-
dicts that the variance of individuals relative to the flock remains
finite as g→ 0, and the actual value is quite small, σ2 ∼ 0:005 in Fig.
1. This measured value of σ2, together with Qint, fixes the ratio
g=ðJncÞ to be small enough to generate scale-free correlations.
To be more precise we need to take into account the finite size

of the flocks. Eqs. 10 and 11 hold only for an infinite system; for
a finite system, the range of the correlation is limited by the
system size. As g is lowered, the behavior of the correlations is
influenced more and more by these finite size effects: the ex-
ponential decay in Eq. 10 is modified, and the typical distance
over which correlations extend is no longer described by ξbulk. A
more faithful estimate of the correlation length ξ is given instead
by the zero of the correlation function (6), and the theoretical
prediction depends in a nontrivial way on g and the system size L.
For small enough values of g, however, the system is effectively
critical, and we should see ξ∝L. In Fig. 3A we show that de-
creasing g below the level required to match the speed variance
of the real flock has essentially no effect, and curves with smaller
values of g “pile up” as shown in yellow. Repeating the analysis
on flocks of different sizes (Fig. 3B), the correlation length does
scale with size, and this pattern is captured perfectly by our
maximum entropy models.
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We conclude that flocks exhibit critical behavior, being close
enough to the critical point to achieve maximum speed corre-
lation length while maintaining a well-defined cruising speed.
These conclusions also hold in more general maximum entropy
models where speed and flight directions are regulated by dif-
ferent interaction parameters (SI Text, section VII, and Fig. S3).

Dynamical Model
The fact that maximum entropy models are equivalent to the
Boltzmann distribution suggests a natural dynamical model, in
which the various degrees of freedom in the system execute
Brownian motion on the energy landscape:

γ
d~viðtÞ
dt

= −∇iH
��
~vj
��

+~ηiðtÞ; [16]

where ∇i indicates the derivatives with respect to the compo-
nents of the velocity~vi, γ is a constant to set the time scale of the
dynamics, and the Langevin force ~ηiðtÞ is a random, white noise
function of time. These dynamics are guaranteed, if the positions
of the birds are fixed, to generate velocities that are drawn from
the probability distribution in Eq. 3. However, to give a more
realistic model we should add to Eq. 16 forces that depend on
the positions of the birds (30–32), so as to fix the overall density of
the flock (SI Text, section VIII), and the velocities should drive the
birds’ positions,

d~xi
dt

=~vi: [17]

Eqs. 16 and 17 define a self-propelled particle model of interact-
ing birds, and is similar to the Vicsek model, so often used to
describe flocking particles (33, 34). In contrast to that model and
to most of flocking models in the literature, the speed of the
individual particles is not fixed, but regulated by the control
parameter g.
Simulations of the dynamical model defined by Eqs. 16 and 17

are shown in Fig. 4. As expected from the (static) maximum
entropy model, fluctuations in speed have a correlation length
that grows as g is reduced. If g is not too small, correlations decay

exponentially (Eq. 10), and the correlation length varies with
g=ðJncÞ as expected. When g is sufficiently small, the exponential
decay is modified by finite size corrections, and the correlation
length—now computed as the zero-crossing point of the correla-
tion function—keeps decreasing until a maximal, size-dependent
saturation value is reached. In this regime, the correlations extend
over a distance determined by the system size, and ξ grows linearly
with L, corresponding to scale-free behavior (Fig. 4B, Inset). This
scenario confirms that the mechanism identified in the previous
section produces scale-free correlations in the speed even when
the full dynamical behavior of the flock is taken into account.

Conclusions
The understanding of collective behavior in matter at thermal
equilibrium provides a touchstone for thinking about emergent
phenomena in biological systems. Flocking is an especially attrac-
tive example, in which the alignment of birds in a flock reminds us
of the alignment of spins in a magnet or molecules in a liquid
crystal. However, birds are vastly more complex than spins, and
this might be nothing more than a metaphor. The goal of this
paper and our previous work (12) has been to show that we can go
beyond metaphor, that there is a statistical mechanics description
of flocks which makes quantitative, parameter-free predictions
that are in detailed agreement with the data.
One dramatic collective phenomenon that can emerge in sta-

tistical mechanics is a critical point. At such points, distant ele-
ments of a system become correlated with one another, far beyond
the range of local interactions among the individual elements. At
generic parameter values, correlations are expected to decay on
some characteristic spatial scale ξ, so that a very large system is
composed of many nearly independent pieces of volume ξ3; often,
ξ is not much larger than the range of the interactions themselves.
However, at a critical point, the correlation length ξ becomes
(formally) infinitely large, and the scale over which correlations
extend becomes comparable to the linear size L of the entire
system; rather than having many independent pieces, the system
acts (almost) as one.
The idea that biological systems might be poised near a critical

point is not new (35), but has languished for lack of detailed
comparison with experiment. The emergence of more extensive
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data, as well as ideas about how to connect theory and experi-
ment, has led to a reexamination of criticality in a wide variety of
biological systems (36). In this context, the observation of long-
ranged or scale-free correlations in the velocities of starlings in
a flock (6) is very suggestive. Our results here show that these
correlations are not just analogous to the correlations at a critical
point: we have a very accurate description of the entire distri-
bution of speed and direction fluctuations in the flock, this de-
scription is mathematically equivalent to a statistical mechanics
model of a magnet, and the observed scale-free correlations are
predicted correctly because the parameters of this model are in
the critical regime.
Our approach is not a fit to the observed scale-free behavior

of the flock. Instead we take from the data a measurement of
local correlations, and the variance of individual birds’ speeds
relative to the average over the flock, and build the least struc-
tured model that is consistent with these two measurements. Thus,
rather than thinking of criticality as occurring in the neighborhood
of a special point in the space of model parameters, we can think
of it as a statement about the behavior of the flock itself. In
particular, as emphasized in Fig. 3, even a factor-of-2 change in
the variance of the speeds would predict correlations that decay
much more rapidly with distance, inconsistent with what we see in
real flocks.
Biologically, birds may vary their speeds either for individual

reasons (37), or to follow their neighbors. In this language, the
critical point is the place where social forces overwhelm individual

preferences. More broadly, the critical regime is one in which
individuals achieve maximal coherence with their neighbors while
still keeping some control over their speeds.
Why do flocks organize themselves to be critical? There has

been much more speculation about the advantages of criticality
for biological systems than there has been direct evidence, so we
do not want to add too much here. We note, however, that in the
statistical mechanics framework, long-ranged correlations at crit-
icality are mathematically equivalent to the statement that in-
formation can propagate over similarly long distances. Away from
criticality, a signal visible to one bird on the border of the flock can
influence just a handful of near neighbors; at criticality, the same
signal can spread to influence the behavior of the entire flock.
Such susceptibility seems advantageous, but it would be attractive
to have more direct measurements of the propagating signal (1).
The critical point is a place where many quantities are extremal; it
remains to be seen which of these is most meaningful to the birds.
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I. Data
The data that we analyze here were obtained from observations
on large flocks of starlings, Sturnus vulgaris, in the field. Using
stereometric photography and innovative computer vision tech-
niques (1, 2) the individual 3D coordinates and velocities were
measured in cohesive groups of up to 4,268 individuals (3, 4). As
summarized in Table S1, we have data from 21 distinct flocking
events, with flock sizes ranging from 122 to 4,268 individuals and
linear extensions from 9.1 to 85:7 m. Each event consists of up to
80 consecutive 3D configurations (individual positions and ve-
locities) at time intervals of 1=10  s. All events correspond to
strongly ordered flocks, with polarization [from Eq. 13 of the main
text] between j~Pj= 0:844 and j~Pj= 0:992. The border of each flock
at each instant of time has been computed using the α-shape al-
gorithm (5), as explained in detail in ref. 2.

II. The Maximum Entropy Approach
The concept of entropy has its roots in thermodynamics, roughly
150 y ago. The idea that we can use maximum entropy as a strategy
to construct simplified models outside of equilibrium thermody-
namics is now more than 50 y old (6). Here, so that our discussion
is self-contained, we review this general strategy (see also ref. 7
and appendix A.7 in ref. 8).
We assume that the state of the system can be described by a set

of variables that we shall call v≡f~v1;~v2⋯;~vNg, by analogy with
the velocities of birds in a flock. Although we can measure, for
example, the velocity of every bird in a flock, we typically can not
collect enough data to make reliable estimates of very compli-
cated quantitates. As an example, with N variables describing the
state of the system, we need more than N independent mea-
surements to be sure that the covariance matrix of these varia-
bles is not artificially singular. What does seem reasonable is to
assume that there is a much smaller set of observables, fOμðvÞg
with μ= 1; 2;⋯;K , that we can extract from the system, and that
we have enough data to make reliable statements about the
average values of these observables, fhOμðvÞiexpg.
Our task is to build a probability distribution PðvÞ such that

we reproduce, exactly, the expectation values of the K observ-
ables, that is

�
OμðvÞ

�
P ≡

X
v

PðvÞOμðvÞ=
�
OμðvÞ

�
exp; [S1]

for all μ= 1; 2;⋯;K ; it is useful to phrase the normalization of
the distribution as a similar constraint, the statement that the
average of the function O0ðvÞ= 1 must equal the experimental
value of 1.
The problem is that that there are infinitely many distributions

that can satisfy the constraints in Eq. S1. Out of all these dis-
tributions, we want to find the one that has as little structure as
possible, so that we can derive the minimal consequences of the
experimental observations fhOμðvÞiexpg. Asking for a probability
distribution PðvÞ that has as little structure as possible is equiv-
alent to asking that the variables v that we draw out of this dis-
tribution be as random as possible. Shannon proved that the
only measure of (lack of) structure or randomness that is
consistent with several simple constraints is the entropy of the
distribution (9, 10),

S½P�=−
X
v

PðvÞln  PðvÞ: [S2]

Thus, we are looking for the distribution PðvÞ that maximizes the
entropy in Eq. S2 while obeying the experimental constraints
from Eq. S1. Such constrained optimization problems can be
solved using the method of the Lagrange multipliers (11): we
introduce a generalized entropy function,

S½P; fλνg�= S½P�−
XK
μ=0

λμ
h�
OμðvÞ

�
P −
�
OμðvÞ

�
exp

i
; [S3]

where a multiplier λμ appears for each constraint to be satisfied,
and then we maximize S both with respect to the probability
distribution PðvÞ and with respect to the parameters fλμg.
Maximizing with S respect to PðvÞ gives

PðvÞ= 1
ZðfλνgÞ exp

"
−
XK
μ=1

λμOμðvÞ
#
; [S4]

where ZðfλνgÞ= exp  ðλ0 − 1Þ. Since optimizing with respect to λ0
will enforce normalization of the distribution, we can write,
explicitly,

ZðfλνgÞ=
X
v

exp

"
−
XK
μ=1

λμOμðvÞ
#
: [S5]

Maximizing with respect to fλνg gives us the set of K simultaneous
equations in Eq. S1, which we can now write more explicitly as

�
OμðvÞ

�
exp =

1
ZðfλνgÞ

X
v

OμðvÞexp
"
−
XK
ν=1

λνOνðvÞ
#
: [S6]

We note that, in general, this is a very nonlinear set of equations
for the parameters fλνg, and very hard to solve. In section IV we
exploit special features of the flock problem—in particular, the
strong polarization of the flock—to simplify this problem so that
we can make analytic progress.
Maximum entropy distributions are mathematically equivalent

to the Boltzmann distribution in statistical physics. We recall that
if a physical system in state v has energy EðvÞ, then when it comes
to equilibrium at temperature T the probability that is in any
particular state is given by

PBoltzðvÞ= 1
Z
exp
�
−
EðvÞ
kBT

�
; [S7]

where kB is Boltzmann’s constant, and serves to convert between
conventional units of temperature and energy. Comparing with
Eq. S4, we see that the maximum entropy distribution is equiv-
alent to a Boltzmann distribution with an effective energy

EðvÞ
kBT

=
XK
μ=1

λμOμðvÞ: [S8]

We note that this energy is the sum of several terms, one for each
of the observables whose expectation value we fix based on exper-
imental data.
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It also is useful to note the connection of the maximum entropy
approach with more conventional model building. If we take the
form of the probability distribution in Eq. S4 as given, then our
problem is only to fit the parameters fλνg. A standard method is
maximum likelihood. If we have Ns independent samples of the
system’s state, vð1Þ; vð2Þ;⋯; vðNsÞ, then the probability that the
model generates these data is given by

PmodelðdataÞ=
YNs

i=1

P
�
vðiÞ
�
: [S9]

Substituting from Eq. S4 we can make this more explicit:

PmodelðdataÞ= 1
ZNsðfλνgÞ

YNs

i=1

exp

"
−
XK
μ=1

λμOμ

�
vðiÞ
�#

=
1

ZNsðfλνgÞ
exp

"
−
XK
μ=1

λμ
XNs

i=1

Oμ

�
vðiÞ
�#

:

[S10]

Then we can form the normalized log probability,

1
Ns

ln  PmodelðdataÞ= − ln ZðfλνgÞ−
XK
μ=1

λμ

"
1
Ns

XNs

i=1

Oμ

�
vðiÞ
�#

[S11]

= − ln ZðfλνgÞ−
XK
μ=1

λμ
�
OμðvÞ

�
exp; [S12]

where in the last step we recognize the normalized sum over sam-
ples as the experimental expectation value. Now if we want to
maximize the probability, or likelihood, we should differentiate
with respect to the parameters and set the result to zero:

∂ln  PmodelðdataÞ
∂λμ

= 0⇒
∂ln ZðfλνgÞ

∂λμ
= −

�
OμðvÞ

�
exp: [S13]

However, with the explicit expression for Z in Eq. S5, we can
compute

∂ln ZðfλνgÞ
∂λμ

=
1

ZðfλνgÞ
∂ZðfλνgÞ

∂λμ

=
1

ZðfλνgÞ
∂
∂λμ

X
v

exp

"
−
XK
ν=1

λνOνðvÞ
# [S14]

= −
1

ZðfλνgÞ
X
v

exp

"
−
XK
ν=1

λνOνðvÞ
#
OμðvÞ [S15]

= −
X
v

1
ZðfλνgÞ exp

"
−
XK
ν=1

λνOνðvÞ
#
OμðvÞ [S16]

= −
X
v

PðvÞOμðvÞ: [S17]

We recognize this as the expectation value of OμðvÞ with respect
to the probability distribution PðvÞ. Thus, we have

∂ln ZðfλνgÞ
∂λμ

= −
�
OμðvÞ

�
P; [S18]

and hence Eq. S13 becomes

�
OμðvÞ

�
P =
�
OμðvÞ

�
exp: [S19]

That is, once we have the form of the maximum entropy distribu-
tion in Eq. 3 of the main text, maximizing the likelihood of the
data with respect to parameters is equivalent to imposing the
constraints in Eq. S1.

III. Maximum Entropy Model for Flocks
Let us now apply the maximum entropy approach to the case of
bird flocks. The state of the system is characterized by the set
v≡f~v1;~v2⋯;~vNg of the individual bird velocities. As discussed in
the main text, we consider observables that measure the local
correlations between birds and their neighbors, and the mean
and variance of flight speeds.
When we look at a snapshot of the flock, we can identify bird j

as being in the neighborhood of bird i (j∈N i) if it is one of the
closest nc neighbors. Then we measure the mean square differ-
ence in velocity between a bird and those in its neighborhood,

Qint =
1

2Nv20

XN
i=1

1
nc

X
j∈N i

j~vi −~vjj2; [S20]

where we have normalized by a scale v0 to obtain a dimensionless
measure; in solving the model we shall see that it is natural to set
this scale equal to the observed mean speed of the birds. It will
be convenient to write this in a slightly different form, so we in-
troduce matrix n̂ij = 1 if j∈N i and n̂ij = 0 otherwise. Then we have

Qint =
1

2Nv20

1
nc

XN
i=1

XN
j=1

n̂ijj~vi −~vjj2: [S21]

We notice that the indices i and j appear symmetrically, but the
matrix n̂ij is not symmetric, since being in the neighborhood is
not a symmetrical relationship (if you are my nearest neighbor, I
might not be your nearest neighbor). Only the symmetric part
survives the summation, so we can write

Qint =
1

2Nv20

1
nc

XN
i=1

XN
j=1

nijj~vi −~vjj2; [S22]

where nij = ðn̂ij + n̂jiÞ=2.
In addition to Qint, we chose as observables the mean speed

and the mean square speed across the flock,

V =
1
N

XN
i=1

vi [S23]

V2 =
1
N

XN
i=1

v2i ; [S24]

where vi = j~vij is the speed of bird i.
Eq. S8 tells us that the effective energy function or Hamilto-

nian for a maximum entropy model is composed of one term for
each of the observables whose expectation values we match to
the data. Thus, we should have

HðvÞ= λ1Qint + λ2V + λ3V2; [S25]

and the probability distribution

PðvÞ= e−HðvÞ

Zðλ1; λ2; λ3Þ: [S26]
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It will be useful to absorb factors of N so that the effective energy
becomes extensive, that is proportional (on average) to the num-
ber of birds in the flock, while the parameters of the model
remain formally independent of N. Similarly, we would like to
separate the choice of units for velocity from the dimensionless
parameters of our model, so we introduce a scale v0 as above.
Thus, we write

HðvÞ= J
4v20

XN
i;j=1

nijj~vi −~vjj2 + g
2v20

XN
i=1

v2i −
μ

v0

XN
i=1

vi: [S27]

With PðvÞ∝ exp ½−HðvÞ�, we obtain Eq. 3 of the main text.

IV. Solving the Model
Maximum entropy methods involve building models grounded in
measurements of average quantities. Since the state of our system
is defined by the velocities of all of the individual birds, it might
seem that to define an average we need many snapshots of the
entire flock. However, the quantities that interest us are local—
they describe the behavior of individual birds (V1 and V2) or
of individuals relative to their neighbors (Qint). Thus, we can
compute averages of these local operators over all of the birds in
the flock, and since the flocks are large we expect that this will be
equivalent to averaging over an ensemble of snapshots. Indeed,
we shall see that the expectation values computed over the many
birds in a single snapshot do not fluctuate much from moment to
moment, and correspondingly the parameters J and g also do not
vary systematically with time during the flocking events, or even
across different flocks. This is similar to what we found in the
analysis of directional ordering alone (7).
The first step in using themaximum entropymodel is to compute

the partition function ZðJ; g; μÞ. Since the role of ZðJ; g; μÞ is to
enforce normalization, we have

ZðJ; g; μÞ=
Z

d v  e−HðvÞ; [S28]

where d v is the volume element in the space of all of the (3D)
velocities, dv=

Q
id

3~vi.

A. Computation with Free Boundary Conditions.We begin by treating
all birds as equivalent, without regard to their location in the in-
terior or on the boundary of the flock, and we return to this below.
It will be useful to think of the velocity as being composed of a
speed and a direction, ~vi = vi~si, where j~sij= 1. Translating into
these variables, we obtain from Eq. S27:

HðvÞ= J
4v20

XN
i;j=1

nijjvi~si − vj~sjj2 + g
2v20

XN
i=1

v2i −
μ

v0

XN
i=1

vi [S29]

=
J
4v20

XN
i;j=1

nij
h
v2i − 2vivj~si ·~sj + v2j

i
+

g
2v20

XN
i=1

v2i −
μ

v0

XN
i=1

vi [S30]

=−
J
2v20

XN
i;j=1

nijvivj~si ·~sj+
1
2v20

XN
i=1

 
g+ J

XN
k=1

nik

!
v2i −

μ

v0

XN
i=1

vi:

[S31]

Notice that the term controlling the mean square speed now has
two contributions, one from the direct control parameter g and
one from the social interactions with neighbors, ∝ J.
In addition to rewriting the Hamiltonian, we also need to

express the volume element dv in terms of the new direction and
speed variables. For each bird,

d3vi = v2i dvid
3~siδ
�j~sij− 1

�
; [S32]

where the delta function enforces the constraint that~si is a unit
vector, and the factor v2i is the Jacobian of the transformation. In
the limit that speed fluctuations are small—which they are in the
flock—the effect of the Jacobian can always be absorbed into
a redefinition of the parameters μ and g, so we drop this term
here. Thus, we have

ZðJ; g; μÞ=
Z YN

i=1

dvid3~siδ
�j~sij− 1

�
exp

"
J
2v20

XN
i;j=1

nijvivj~si ·~sj

−
1
2v20

XN
i=1

 
g+ J

XN
k=1

nik

!
v2i +

μ

v0

XN
i=1

vi

#
:

[S33]

Now we want to use the fact that fluctuations are small to
simplify our calculation; we can verify, at the end, that the
fluctuations predicted by the model really are small, and hence
that our approximations are consistent. This is a now classical
approximation scheme in the theory of magnetism (12), but we go
through the details here in the hopes of making the calculation
accessible to a broader audience.
We can write the speeds as

vi =V ð1+ eiÞ; [S34]

where V is the mean speed over the flock from Eq. S23,

V =
1
N

XN
i=1

vi; [S35]

and ei is the fractional fluctuation around this mean; we expect
jeij � 1. Notice that with this definition we have

XN
i=1

ei = 0: [S36]

Transforming from integrating over speeds to integrating over
their fluctuations, we have

YN
i=1

dvi =VNdV

 YN
i=1

dei

!
δ

 XN
j=1

ej

!
: [S37]

To say that fluctuations in direction are small requires a bit
more care. We can average the unit vectors ~si to obtain the
polarization of the flock as in Eq. 13 of the main text,

~P=
1
N

XN
i=1

~si: [S38]

This polarization has a magnitude P and a direction that we will
denote by the unit vector n̂, so that ~P= P̂n. We expect that flight
directions of individual birds will be close to n̂, so we can write

~si = sLi n̂+~πi; [S39]

where ~πi is a (small) vector perpendicular to n̂, and the longi-
tudinal term sLi is necessary to be sure that ~si remains a unit
vector. As with the ei above, not all N of these variables are
independent, since the definition of the polarization in Eq. S38
requires that
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P=
1
N

XN
i=1

sLi ; [S40]

and

XN
i=1

~πi = 0: [S41]

Thus, we have

YN
i=1

d3~siδ
�j~sij− 1

�

=
Z

d2~n
4π

Z
dP

"YN
i=1

d2πidsLi δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sLi

2 + j~πij2

q
− 1Þ

#

δ

 
P−

1
N

XN
i=1

sLi

!
δ

 XN
i=1

~πi

!
: [S42]

Now, if we substitute into Eq. S31, we have

HðvÞ= −
JV 2

2v20

XN
i;j=1

nijð1+ eiÞ
�
1+ ej

��
sLi s

L
j +~πi ·~πj

�

+
V 2

2v20

XN
i=1

 
g+ J

XN
k=1

nik

!
ð1+ eiÞ2 −Nμ

v0
V : [S43]

Although we have changed variables in a way that makes it
easy to make the approximation that fluctuations are small,
we have not actually used this approximation yet in simplifying
the Hamiltonian.
We notice that one set of delta functions in Eq. S42 enforces

sLi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− j~πij2

q
≈ 1− j~πij2=2+⋯; [S44]

where we now use the approximation that j~πij is small. If
we substitute this into Eq. S43, then to be consistent we
should keep only terms up to second order in ~πi and ei. The
result is

HðvÞ= −
JV 2

2v20

XN
i;j=1

nijð1+ eiÞ
�
1+ ej

�

+
V 2

2v20

XN
i=1

 
g+ J

XN
k=1

nik

!
ð1+ eiÞ2 −Nμ

v0
V

−
JV 2

2v20

XN
i;j=1

nij
�
−j~πij2=2− j~πjj2=2+~πi ·~πj

�
:

[S45]

A crucial simplification is that the terms related to speed fluctua-
tions ðeiÞ are decoupled from those related to directional fluctua-
tions ð~πiÞ. Thus, we have, as in Eq. 6 of the main text,

HðvÞ=Hdir
�
~πi
��

+HspðfeigÞ+E0ðV Þ; [S46]

where E0ðV Þ is the effective energy when all ei = 0,

E0ðV Þ=N
�
gV 2

2v20
− μV

�
: [S47]

Collecting terms, and dropping constants independent of f~πig
and feig, we find that

Hdir
�
~πi
��

=
JV 2

2v20

XN
i;j=1

Nij~πi ·~πj [S48]

HspðfeigÞ= V 2

2v20

XN
i;j=1

�
gδij + JNij

�
eiej; [S49]

where the matrix Nij has the form

Nij = − nij + δij
XN
k=1

nik: [S50]

In trying to compute the partition function, we will need to
integrate not just over the local variables fei;~πig, but also—as can
be seen from the volume elements in Eqs. S37 and S42—over
the global variables V, P, and n̂. The integral over the direction
of polarization is simple because there is no dependence of the
integrand on n̂; this is a consequence of the overall rotational
invariance in our formulation of the problem. The integral over
the magnitude of the polarization is also simple, since the delta
function just gives us

P=
1
N

XN
i=1

sLi ≈ 1−
1
2N

XN
i=1

j~πij2: [S51]

The integral over V is more interesting, since the V dependence
of the integrand is dominated by E0ðV Þ. Thus, we need to do an
integral of the form

ZV ≈
Z

dV   e−E0ðV Þ: [S52]

The key point is that E0 ∝N, and so the integrand is very sharply
peaked around some Vp. However, the average of V is one of the
quantities that we are fixing from the data, so we must have
Vp = hV iexp, and this serves to set the parameter μ, as explained
in the main text. Importantly, the factor of N ensures that the
variations in V around Vp will be very small in large flocks, and
hence we can replace V →Vp = hV iexp everywhere else in our
calculations. We are also free to choose the scale v0 = hV iexp,
and then we can simplify

Hdir
�
~πi
��

=
J
2

XN
i;j=1

Nij~πi ·~πj; [S53]

HspðfeigÞ= 1
2

XN
i;j=1

�
gδij + JNij

�
eiej: [S54]

This separation of direction and speed variables in the Ham-
iltonian means that the partition function can be factorized,

ZðJ; g; μÞ∝ZdirðJÞZspðJ; gÞeNg=2; [S55]

where

ZdirðJÞ=
Z "YN

i=1

d2πi

#
δ

 XN
i=1

πi

!
e−HdirðfπigÞ [S56]
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ZspðJ; gÞ=
Z "YN

i=1

dei

#
δ

 XN
j=1

ej

!
e−HspðfeigÞ: [S57]

Now we have to do the integrals in Eqs. S56 and S57,
but these are not very difficult because they are Gaussians.
The behavior of these integrals is determined by the structure
of the matrix Nij. To understand this structure, imagine that
the birds are in a line, and the relevant neighborhood is just
the two nearest neighbors along the line. Then we can see that
Nij is the discrete approximation to the (negative) second
derivative along the line. In higher dimensions this becomes
the Laplacian operator, and so Nij is called a “Laplacian ma-
trix.” As with the negative Laplacian, the eigenvalues fΛag of
Nij are positive, except for the smallest one, which is exactly
zero (Λ1 = 0). If we define the eigenvectors of Nij by wa

i such
that

XN
j=1

Nijwa
j =Λawa

i ; [S58]

then the eigenvector associated with the zero eigenvalue is the
uniform mode, w1

i = constant. However, displacements along this
direction are fixed to zero by the delta functions that appear in
the integrals of Eqs. S56 and S57, and this is crucial for doing
the integrals.
We recall that, for a general N ×N matrix Mij,

Z
dNx  exp

 
−
1
2

XN
i;j=1

xiMijxj

!
=

"
ð2πÞN
det M

#1=2

∝ exp

 
−
1
2

XN
a=1

ln ½λaðMÞ�
!
;

[S59]

where λnðMÞ are the eigenvalues of M. In the case of Zsp,
we have

ZspðJ; gÞ=
Z "YN

i=1

dei

#
δ

 XN
j=1

ej

!
exp

"
−
1
2

XN
i;j=1

ei
�
gδij + JNij

�
ej

#
:

[S60]

The relevant matrix is now Mij = gδij + JNij, and the eigenvalues
are λaðMÞ= g+ JΛa, where again Λa are the eigenvalues of the
Laplacian matrix Nij. We note that the integral runs over N
dimensions, but the delta function fixes one combination of
the feig to be zero, and as noted above this combination is
parallel to the first eigenvector. So, up to constant factors, the
effect of the delta function is to exclude the first (zero) eigen-
value from the sum in Eq. S59, so that

ZspðJ; gÞ∝ exp

 
−
1
2

XN
a=2

ln  ½g+ JΛa�
!
: [S61]

Since the effective Hamiltonian for speed fluctuations in Eq. S54
is a quadratic function of the feig, the probability distribution of
the speed fluctuations is Gaussian,

PðfeigÞ= 1
ZspðJ; gÞ δ

 XN
j=1

ej

!
exp

"
−
1
2

XN
i;j=1

eiMijej

#
: [S62]

Thus, we can calculate the correlations between the values of e for
different birds i and j in a standard way: we rotate our coordi-
nates into the eigenvectors of the matrixMij, and note that in this
basis fluctuations along each coordinate are independent with
variance 1=λnðMÞ; to recover the correlations in the original
basis we rotate back. Again we have to be careful to respect
the delta function, which serves to eliminate the fluctuations
along w1

i . The end result is that

�
eiej
�
=
XN
a=2

wa
i w

a
j

g+ JΛa
: [S63]

This result, or more precisely its generalization to the case where
we treat the birds on the boundary of the flock separately, Eq. S90,
is the basis for our prediction of the speed correlations as a func-
tion of the distance between birds, in Fig. 2C of the main text.
We can carry through the same calculation for the direction

fluctuations. The only differences are that the vector ~πi has two
components, so there are twice as many variables, and that the
matrix which controls the fluctuations is now simple Mij = JNij.
The results are

ZdirðJÞ∝ exp

 
−
d− 1
2

XN
a=2

ln ½JΛa�
!
; [S64]

and

�
~πi ·~πj

�
= ðd− 1Þ

XN
a=2

wa
i w

a
j

JΛa
; [S65]

where we give the result for motion in d dimensions; here d= 3.
As noted at the end of section II, the constraint that expecta-

tions values in our model equal those in the data is equivalent to
maximum likelihood inference. Thus, to complete our calculation
and find the parameters of our model, we should compute the
probability of the data in themodel as a function of the parameters
J, g, and nc. Putting together the results in this section, we can
write the log of the full probability distribution as

Φ≡ ln  Pðdata j modelÞ= −ln Z − hHðvÞiexp [S66]

= −ln ZdirðJÞ−ln ZspðJ; gÞ−
*

J
4V 2

XN
i;j=1

nijj~vi −~vjj2
+
exp

−

*
g

2V 2

XN
i=1

ðvi −V Þ2
+
exp

[S67]

=
XN
a=2

ln  ½JΛa�+ 1
2

XN
a=2

ln ½g+ JΛa�−N
Jnc
2
hQintiexp −N

g
2
�
σ2
�
exp;

[S68]

where h⋯i denotes an average over the data. We have identified
Qint from Eq. 1 of the main text, and σ2 is the fractional variance
of individual birds’ speeds around the flock mean, from Eq. 2 of
the main text.
The result for Φ in Eq. S68 is simple enough that we can maxi-

mize to give explicit equations that determine the parameters. Thus

∂Φ
∂g

= 0 [S69]
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⇒
1
N

XN
a=2

1
g+ JΛa

=
�
σ2
�
exp; [S70]

and similarly

∂Φ
∂J

= 0 [S71]

⇒
ðN − 1Þ

J
+
1
2

XN
a=2

Λa

g+ JΛa
=N

nc
2
hQintiexp [S72]

d
�
1−

1
N

�
− g
�
σ2
�
exp = JnchQintiexp: [S73]

Finally, we can substitute the solutions to these equations, Jp and
gp, back into Eq. S68 and maximize with respect to nc, as in Fig.
2C of the main text.

B. Computation with Fixed Boundary Conditions. So far, we have
assumed free boundary conditions, corresponding to the ideal
situation where speed and orientations of all individuals in a flock
can fluctuate in the same manner, exploring the whole accessible
space of possible fluctuations, given the interaction between birds.
In natural flocks this is not very realistic: individuals on the
boundary are constantly subject to environmental stimuli, so that
they will adjust their direction and speed not only in response to
neighboring birds, but also in response to external cues. To cope
with this fact, we now perform the computation of the partition
functions and of the likelihood using fixed boundary conditions,
where the velocities of the birds on the boundary of the flock are
held fixed at their observed values.We note that for large systems,
such as the flocks we are considering, boundary individuals are
a negligible fraction of all individuals. As discussed more fully in
ref. 7, the values of the inferred parameters do not change much
when changing the boundary conditions. Fixed boundary con-
ditions are however necessary to adequately take into account
the effects of boundary on the correlations.
To perform the computations with fixed conditions on the

border, it is convenient to divide the birds in two groups: internal
birds i; j∈ I and birds belonging to the border a; b∈B. Then, Eq.
S27 becomes

HðvÞ= J
2v20

X
i;j∈I

�
Nij +

g
J
δij
�
~vi ·~vj −

J
v0

X
i∈I

~hi ·~vi +HBðJ; gÞ− μ

v0

XN
i=1

vi;

[S74]

where

~hi =
1
v0

X
a∈B

nia~va [S75]

HBðJ; gÞ= J
2v20

X
a;b∈B

�
Nab +

g
J
δab
�
~va ·~vb: [S76]

We can see from these expressions that holding velocities~va fixed
on the border of the flock is equivalent to considering a flock in
presence of a field ~hi acting on those birds who see the border
birds as their neighbors. Note that birds deep in the interior do
not couple directly to the field, but may feel its influence if it
propagates through the flock. It will be useful to decompose

these fields in relation to the mean flight direction n̂, as in
Eq. S39,

~hi = hLi n̂+~h
⊥
i : [S77]

The computation of the partition function now proceeds exactly
as in subsection IV.A. The only difference is that integrations
must now be performed on internal variables only; the algebra is
slightly more complicated, but the conceptual steps are the same.
Corresponding to Eq. S55 we have

ZðJ; g; ncÞ= e−HBðJ; gÞZdirðJÞZspðJ; gÞeNg=2; [S78]

and in place of Eqs. S56 and S57 we have

ZdirðJÞ=
Z "Y

i∈I
d2πi

#
δ

 XN
i=1

~πi

!
e−Hdirðf~πi∈IgÞ [S79]

ZspðJ; gÞ=
Z "Y

i∈I
dei

#
δ

 XN
j=1

ej

!
e−Hspðfei∈ I gÞ; [S80]

where we note that the integration is only over internal variables,
but the delta function constraints involve all of the variables. As in
the case of free boundaries, we first integrate over global varia-
bles, which has the effect of pinning the mean velocity to its
observed value, and then we can choose the scale v0 = hV iexp,
simplifying all of the expressions. The reduced Hamiltonians
for the internal variables, analogs of Eqs. S53 and S54, then
become

Hdir
�
~πi∈I

��
=
J
2

X
i;j∈I

Nij~πi ·~πj − J
X
i∈I

~h
⊥
i · ~πi [S81]

Hspðfei∈IgÞ= J
2

X
i;j∈I

�
Nij +

g
J
δij
�
eiej − J

X
i∈I

biei; [S82]

where

bi = hLi −
X
a∈B

nia =
X
a∈B

niaea [S83]

is the fluctuating part of the longitudinal component of the bor-
der field.
Although we have the same matrix Nij in these equations as in

subsection IV.A, the indices ij are restricted to the interior of the
flock, and on this restricted space the matrix has different
properties. To remind us of this fact, it is convenient to introduce
the two matrices Aij =Nij and Bij =Nij + ðg=JÞδij, with indices that
refer only to birds internal to the flock, i∈ I . Then the partition
functions that we need to evaluate are again Gaussian integrals,
controlled by the properties of these matrices. We find, corre-
sponding to Eqs. S61 and S64,

ln ZdirðJÞ= J
2

X
i;j∈I

�
A−1�

ij
~h
⊥
i ·~h

⊥
j −

d− 1
2

ðNI − 1Þln ðJÞ

−
d− 1
2

ln 

"X
i;j∈I

�
A−1�

ij

#
−
d− 1
2

ln  det A

−
J
2

�����
X
a∈B

~πa +
X
i;j∈ I

�
A−1�

ij
~h
⊥
i

�����
2

1P
i;j∈I ðA−1Þij

; [S84]
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and

ln ZspðJ; gÞ= J
2

X
i;j∈I

�
B−1�

ijbibj −
1
2
ðNI − 1Þlog  ðJÞ

−
1
2
log 

"X
i;j∈I

�
B−1�

ij

#
−
1
2
ln  det  B

−
J
2

�����
X
a∈B

ea +
X
i;j∈ I

�
B−1�

ijbi

�����
2

1P
i;j∈I ðB−1Þij

: [S85]

Similarly, the probability distributions of the variables fei;~πig
again are Gaussian, and we can find, by analogy with Eqs. S63
and S65, the correlation functions. One new feature is that birds
in the interior can have nonzero averages of these fluctuations,
since they are responding to the birds on the boundary. Instead
of rotating to the basis of eigenvectors, it is useful to define
the matrices

~Aij =
�
A−1�

ij −

P
l∈I
�
A−1�

il

P
m∈I
�
A−1�

jmP
l;m∈I ðA−1Þlm

; [S86]

~Bij =
�
B−1�

ij −

P
l∈I
�
B−1�

il

P
m∈I
�
B−1�

jmP
l;m∈I ðB−1Þlm

: [S87]

Then we find the mean directional fluctuation and the correla-
tions in these fluctuations to be

�
~πi · ~πj

�
=
d− 1
J

~Aij +
�
~πi
�
·
�
~πj
�
; [S88]

s
�
~πi
�
=
X
j∈I

~Aij~h
⊥
j −

P
j∈I
�
A−1�

ijP
l;m∈I ðA−1Þlm

X
a∈B

~πa: [S89]

Similarly, we find themean speed fluctuation and correlations to be

�
ei · ej

�
=
1
J
~Bij + heii · heji; [S90]

heii=
X
j∈I

~Bijbj −

P
j∈I
�
B−1�

ijP
l;m∈I ðB−1Þlm

X
a∈B

ea: [S91]

The correlation functions that we present in Figs. 2 and 3 of the
main text are based on these expressions.
Finally, we need to find the conditions that set the values of the

parameters. By analogy with Eqs. S70 and S73, we find

1
J

�
d
NI − 1

N
− g
�
σ2
�
exp

�
= nchQintiexp +

1
N

X
i;j∈I

�
A−1�

ij
~h
⊥
i · ~h

⊥
j

+
1
N

X
i;j∈I

�
B−1�

ijbibj−
1
N

����X
a∈B

~πa +
X
i;j∈ I

�
A−1�

ij
~h
⊥
j

����
2 1P

i;j∈I ðA−1Þij

−
1
N

 X
a∈B

ea +
X
i;j∈ I

�
B−1�

ijbj

!2
1P

i;j∈I ðB−1Þij

−
1

2NhV i2exp
X
a;b∈B

nabj~va −~vbj2 + g

NJhV i2exp
X
a∈B

�
va − hV iexp

�2
;

[S92]

and

�
σ2
�
exp =

1
NJ

X
i∈I

~Bii +
1
N

X
a∈B

e2a +
1
N

P
i;j∈I
�
B−2�

ijP
i;j∈I ðB−1Þij

 X
a∈B

ea

!2

:

[S93]

Finally, the optimal value of nc can be found by maximizing the
log-likelihood

ΦðJ; g; ncÞ= − ln ZdirðJÞ− ln ZspðJ; gÞ+HBðJ; gÞ− JncN
2

hQintiexp
−N

g
2
�
σ2
�
exp; [S94]

where we substitute for J and g the (nc-dependent) solutions of
Eqs. S92 and S93. An example of the likelihood as a function of
nc is given in the main text.

V. Summary of Model Parameters
Eqs. S88–S94 give us all of the ingredients needed to determine
the parameters J, g, and nc, as in Fig. 1 of the main text. A
summary of these results is given in Table S2.
As in our previous work (7), we find that parameters do not

vary dramatically from flock to flock. In particular, as shown in
Fig. S1, our estimate of the neighborhood size nc does not vary
systematically with the linear dimensions of the flock. This is
important because we want to be sure that our account of scale-
free correlations does not hinge on adjusting the range of in-
teractions to the size of the flock.
The next important point is that the neighborhood size is in-

dependent of the typical distance between birds (Fig. S2). This
reinforces the conclusion (4, 7) that birds interact with a fixed
number of neighbors, independent of distance—a “topological”
rather than metric interaction.
Most important for our present discussion is the consistently

small value of the ratio g=ðJncÞ, which is a sign of the approach to
criticality. In fact we can even see that g=ðJncÞ is slightly negative,
which is at first sight surprising. In fact, from Eq. S63 we see that
what must be positive is not g, but rather g+ JΛ2. The lowest
nonzero eigenvalue Λ2 becomes smaller as the flock becomes
larger, so that only modestly negative values of g are allowed.
There is a correction to this picture when the birds on the border
are fixed, but the idea is the same: g can be slightly negative if
this is compensated by other sources of stiffness.

VI. Goldstone Modes and the Continuum Limit
In this section we would like to make some of the mathematics
behind the intuitions described in Some Intuition of the main text
more explicit. Our discussion is for the case (section IV, A) with
free boundary conditions.
We start by looking at the effective Hamiltonian for the di-

rectional variables f~πig, in Eq. S53,

Hdir
�
~πi
��

=
J
2

XN
i;j=1

Nij~πi · ~πj:

As explained in the discussion leading up Eq. S58, the matrix Nij
has a zero eigenvalue, but in fact the whole eigenvalue spectrum
has a special structure. To see this, it is useful to imagine that the
birds are arranged along a line, and that the neighborhood is
only the very nearest neighbor. Then we can label the birds by n,
and the bird n+ 1 is the neighbor of bird n; we can rearrange the
terms in the sum to give
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Hdir
�
~πi
��

=
J
2

XN
n=1

j~πn −~πn+ 1j2: [S95]

Now suppose that the direction of flight varies only very slowly, so
that we can picture a continuous function of position x in the
flock, despite the fact that the birds are located at discrete posi-
tions xn = nrc, where rc is the typical distance between the nearest
birds. Then we have ~πðxÞ, and

Hdir
�
~πi
��

≈
Jr2c
2

XN
n=1

����∂~πðxÞ∂x

����
2

: [S96]

Since we are assuming that variations are smooth, we can turn the
sum into an integral,

Hdir
�
~πi
��

=
Jr2c
2
ρ

Z
dx
����∂~πðxÞ∂x

����
2

  ; [S97]

where ρ is the density of birds along the line. If we do the same
calculation with birds on a regular lattice in 3D space rather than
birds along a line, we find

Hdir
�
~πi
��

=
Jncr2c
2

ρ

Z
d3x j∇~πðxÞj2; [S98]

where we also include the more realistic possibility that the neigh-
borhood is not just one neighbor but a group of nc neighbors.
The crucial point about Eq. S98 is that if we consider variations

in flight direction on a scale ℓ, such as ~πðxÞ∼A sinð2πx=ℓÞ, then
we have Hdir ∝A2=ℓ2. Thus, as the length scale of variations
becomes large ðℓ→∞Þ, the stiffness which resists the variations
goes to zero. This vanishing stiffness at long wavelengths is the
signature of a Goldstone mode, which arises because the
original model allowed flight in any direction, but the actual
state of the flock breaks this symmetry by selecting a particular
direction (13).
If the stiffness that opposes variations (in the Hamiltonian)

goes down, then the variance of these fluctuations (in the prob-
ability distribution) goes up. Thus, in the presence of Goldstone
modes we will see a large variance of fluctuations corresponding to
variations over long-length scales. In other words, we will see long-
ranged correlations. It is important these correlations not only be
long ranged, but also genuinely scale-free. To see this, it is useful
to remember several mathematical facts about Gaussian random
functions (see, for example, appendix A.2 in ref. 8).
Suppose that we have a function ϕðxÞ, with zero mean. If all

points x are equivalent, we can characterize the statistics of
fluctuations in ϕðxÞ using the correlation function,

Cϕ

�
x− x′

�
=
�
ϕðxÞϕ�x′��: [S99]

It is also useful to consider the Fourier transform of the correla-
tion function, the power spectrum,

SϕðkÞ=
Z

dx  e+ikxCϕðxÞ: [S100]

Importantly, we can write the entire probability distribution for
the functions ϕðxÞ using the power spectrum,

P½ϕðxÞ�= 1
Z
exp

"
−
1
2

Z
dk
2π

j~ϕðkÞj2
SϕðkÞ

#
; [S101]

where

~ϕðkÞ=
Z

dx  e+ikxϕðxÞ [S102]

is the Fourier transform of the function ϕðxÞ.
Since we have P∝ exp  ½−H�, Eq. S98 tells us that

P
	
~πðxÞ
= 1

Z
exp
�
−
Jncr2c
2

ρ

Z
d3x
��∇~π�~x���2�: [S103]

We can also write this in terms of the Fourier transforms,

~π
�
~k
�
=
Z

dx  e+i~k·~x~π
�
~x
�
; [S104]

and then Eq. S103 becomes

P
	
~πðxÞ
= 1

Z
exp
�
−
Jncr2c
2

ρ

Z
d3k

ð2πÞ3   j~kj
2j~πð~kÞj2

�
: [S105]

However, now we can read off the power spectrum, by comparing
Eqs. S105 and S101; we see that

Sπð~kÞ= 1
Jncr2cρ

·
1��~k��2: [S106]

If we transform back to give the correlation function, we have

Cπ

�
~x
�
=
Z

d3k

ð2πÞ3 e
−i~k·~xSπð~kÞ [S107]

=
1

Jncr2cρ

Z
d3k

ð2πÞ3 e
−i~k·~x 1��~k��2: [S108]

The key point about this result is that there is nothing in
the integral to set a characteristic scale for ~x. In fact, if we
double the value of j~xj we make up for this by cutting the value
of j~kj in half so that ~k ·~x stays fixed, but since we are inte-
grating over all possible values of ~k, only the whole integral is
reduced by a factor of 2. This dimensional analysis argument
tells us that

Cπ

�
~x
�
∝

1
j~xj: [S109]

This is a power-law decay of correlations with distance (here the
power is 1), and it has no characteristic scale. Thus, scale-free
correlations in directional fluctuations are a consequence of the
Goldstone modes.
The predictions for speed fluctuations are very different

from those for directional fluctuations. In taking the limit
of smooth, continuous variations for directional variations,
we found

Hdir
�
~πi
��

=
J
2

XN
i;j=1

Nij~πi ·~πj

→
Jncr2c
2

ρ

Z
d3xj∇~πðxÞj2:

[S110]

The same argument for speed fluctuations starts with Eq. S49,
and gives
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HspðfeigÞ= 1
2

XN
i;j=1

�
gV 2

v20
δij + JNij

�
eiej

→
1
2
ρ

Z
d3x
h
Jncr2c

��∇e�~x���2 + ge2
�
~x
�i [S111]

=
1
2
ρ

Z
d3k

ð2πÞ3
h
Jncr2c j~kj2 + g

ij~eð~kÞj2; [S112]

where in the last step we transform to the Fourier representation.
With the same argument that leads to Eq. S106, we recognize the
predicted power spectrum for fluctuations in the speed,

Seð~kÞ= 1
Jncr2cρ

·
1

j~kj2 + g=
�
Jncr2c

�: [S113]

Thus, where S~π grows without bound as the wave vector ~k be-
comes small, Seð~kÞ stops growing once ~k is smaller than a char-
acteristic scale kc = 1=ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðJncr2c Þ

p
. We note that ξ is a length,

and we expect that this defines the distance across which signif-
icant correlations can be observed. Indeed, if we transform back
to get the correlation function, we have

Ce

�
~x
�
=
Z

d3k

ð2πÞ3e
−i~k·~xSeð~kÞ [S114]

=
1

Jncr2cρ

Z
d3k

ð2πÞ3e
−i~k·~x 1��~k��2 + g=

�
Jncr2c

� [S115]

∝ e−j~xj=ξ; [S116]

corresponding to Eq. 10 of the main text.
From these results we can see that, for generic values of g=J, the

maximum entropy model predicts very different kinds of corre-
lations for directions and speeds. In the case of directions, the
correlations have a dominant contribution from long wavelength
modes, there is no intrinsic length scale, and we see scale-free
behavior. On the contrary, in the case of speed fluctuations the
contribution of the long wavelength modes is cut off by the term
g/J, which by analogy with field theory we can think of as a mass
(13); this results in correlations that decay exponentially with the
distance between birds. However, when g=J goes to zero, or,
more precisely, when the predicted correlation length ξ becomes
comparable to the linear dimensions of the flock as whole, our
analysis breaks down. We have described an essentially infinite
system, with no boundaries. When g=Jnc is small enough that
ξ∼ rc

ffiffiffiffiffiffiffiffiffiffiffi
Jnc=g

p
∼L, then the whole flock is effectively correlated, and

a more detailed analysis is needed. We shall see that, in this critical
regime, it is possible for the speed fluctuations also to be scale-free.

VII. Decoupling Speeds and Flight Directions
The approachwe have taken thus far is to build the least structured
models that are consistent with the observed similarity of velocities
between birds and their near neighbors. Importantly, we treat the
velocities as vectors, and use a measure of similarity that is a
rotationally invariant, analytic function of these vectors, Qint in
Eq. 1 in the main text and Eq. S20 above. One could imagine,
however, that real birds do not obey these symmetries. In par-
ticular, they could have very separate mechanisms for adjusting
their speeds and directions in relation to those of their neighbors,
or their perceptual apparatus for estimating speeds and directions
may introduce errors that are not equivalent to an isotropic
vector error. Under these conditions, it would make more sense

to build models that have separate constraints for the observed
degree of speed and direction similarity among neighbors, and
this is what we explore here below.
We can measure the degree of similarity or correlation among

directions in the same way that we did in ref. 7, defining

Cint =
1
N

XN
i=1

1
ndirc

X
j∈N dir

i

~si ·~sj; [S117]

where we allow that the neighborhood for measuring directional
similarity may have a size ndirc that differs from the correspond-
ing neighborhood for measuring speed similarity, nspc . We can
also define a (dis)similarity measure for the speeds, by analogy
with Qint,

Qsp
int =

1
2Nv20

XN
i=1

1
nspc

X
j∈N sp

i

�
vi − vj

�2
: [S118]

If we build the maximum entropy model consistent with measured
values of these quantities, plus the mean and variance of individ-
ual speeds across the flock, we obtain, instead of Eq. S27,

HðvÞ= Jsp

4v20

XN
i;j=1

nspij
�
vi − vj

�2 − Jdir

2v20

XN
i;j=1

ndirij ~si ·~sj

+
g
2v20

XN
i=1

v2i −
μ

v0

XN
i=1

vi;

[S119]

where nspij is defined as nij above, but with neighborhoods of size
nspc , and similarly for ndirij . Notice that we now have two different
coupling strengths, Jsp and Jdir, controlling speed and directional
ordering, respectively.
Because our original model breaks into separate pieces for

directional and speed fluctuations, we can carry over all of the
calculations, being careful about the values of the parameters. If
we set Jsp = Jdir we are back to our original model. With the two
separate parameters we find the log-likelihood, by analogy with
Eq. S94,

Φ=− ln Zdir
�
Jdir; ndirc

�
−ln Zsp

�
Jsp; g; nspc

�
+HB −

Jspnspc N
2

�
Qsp

int

�
exp

+
Jdirndirc N

2
hCintiexp −N

g
2
�
σ2
�
exp:

[S120]

We can then infer, independently for speed and orientation, the
interaction parameters, and compare them to see how different
they are. We can also check whether and how much the predic-
tions for the correlation functions are better than in the simpler,
unified model. Results are shown in Fig. S3. We can see that
for most flocks the global interaction strength Jnc for the speed
and directional degrees of freedom are very similar to each other
(Fig. S3A): in this case the unified model discussed earlier is
basically equivalent to this more general model, both in terms
of values of inferred parameters and in terms of predictions
for the correlation functions. For a few flocks, however, we ob-
serve a decoupling between flight directions and speeds. This
typically occurs when the fractional speed fluctuations are on
a different scale from the directional fluctuations. In these cases,
the model that fixes the local similarities of speed and direction
separately provides better predictions for the speed correlations
than the unified model (Fig. S3B), although these differences are
not large.
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Building a model that fixes the local similarities of speed and
direction separately must provide a more accurate description of
the system, since it imposes two different ways in which our model
distribution PðvÞ has to match the real distribution of (vector)
velocities. The fact that the gain in accuracy usually is small
seems significant, and suggests that those rare instances where
differences are larger should have biological meaning. Indeed, in
most of the events where the decoupling is stronger (on the right
in Fig. S3A) the flocks are turning. Recent findings (14) show that
additional conservation laws must be taken into account to ex-
plain the dynamics during the turn. Even if such conservation
laws do not modify the form of the probability distribution we
are investigating in the present work, they might give rise to
different effective parameters for directions and speeds.

VIII. Dynamical Model
In this section we describe the dynamical model introduced in
Eqs. 16 and 17 of the main text and its numerical implementation
in more detail. We have

γ
d~viðtÞ
dt

= −∇iH
�
~vj
��

+~ηiðtÞ [S121]

= −
J
2v20

X
j

nij
�
~vi −~vj

�
−

g
v20

~vi
vi

�
vi − v̂

�

+
1
nc

X
j∈N i

~f ij +~ηiðtÞ
[S122]

d~xi
dt

=~vi; [S123]

where we have added, as described in the text, forces~f ij that serve
to hold the flock together. If we write the vector components of
~ηiðtÞ as ηνi ðtÞ, with ν= 1; 2; 3, thenD

ηνi ðtÞημj
�
t′
�E

= 2γTδijδμνδ
�
t− t′

�
; [S124]

where T is an effective temperature for the noisy dynamics. We
can chose our units of time so that γ = 1, and from the discussion
in section IV, we can chose v̂= v0 = hV iexp, the desired mean
speed of the flock.
In this form, the model that we are considering describes self-

propelled particles (SPPs), and is very similar to the Vicsek model
with attraction, which has been studied extensively in the liter-
ature (15–18). An attraction term is required to keep the flock
cohesive in open space and prevent fluctuations and/or pertur-
bations that disrupt the group. It has been shown that these ef-
fects are remarkably less important in models with topological
interactions (4, 18, 19), which are much more robust in cohesion
than SPP models with metric interactions. Nevertheless, even in
the topological case, an attraction force is the most controlled
way to fix the density of the group to a stationary value, therefore
we will include it. We choose the forces

~f ij = α
~rij
rij

(
1
4
rij − re
ra − rhc

if  rij < ra

1 otherwise;
[S125]

where~rij is the vector from bird i to bird j, rij = j~rijj is its length, re
is the equilibrium distance between birds where the force van-
ishes, while ra and rhc set spatial scales for the extent of the force.
In our simulations we choose re = 0:5, ra = 0:8, and rhc = 0:2, which
sets our units of length, and α= 0:95.
An important point is that, when we sum the contributions of

the forces ~f ij, we include only birds within a limited neighbor-
hood, j∈N i. As in the measure of similarity Qint, this neigh-
borhood is defined topologically, so that each bird feels the
effect of nc closest neighbors, rather than all of the birds within
a fixed physical distance. In addition, for these simulations we
introduced a balancing criterion, according to which a bird con-
siders interacting neighbors homogeneously around it to coor-
dinate with. This mimics the idea of a shell of relevant topological
neighbors, and is similar to using Voronoi neighbors, as in ref. 19,
but is much easier to implement numerically. A balanced in-
teraction enhances the stability of the flock (18), increasing the
range of parameters where Eqs. S122 and S123 give rise to re-
alistic behavior. However, we checked also the simple topological
case, obtaining qualitatively similar results.
Despite its similarity with other SPP models, the model we are

considering has a crucial new ingredient, namely that the speedsof
the individual birds are not fixed but can change in time. Accord-
ingly, Eq. S122 describes the evolution of the full velocity (rather
than the flight direction, as in ref. 15), with a term ∝ g that sets the
scale of the speed fluctuations. In addition, existing SPPmodels are
usually defined as discrete dynamical update equations, which do
not have a well-defined continuum limit. In contrast, we have de-
fined our model as a stochastic differential equation.
We simulate our model using a finite interval (Euler) dis-

cretization, and we checked that macroscopic properties of the
flock (e.g., the mean speed) remained the same if the size of the
time step was decreased. Parameters J and nc can be taken from
the discussion of real flocks, and the temperature T adjusted
until the polarization is in the range seen in the data (Table S1).
We simulated flocks of different sizes, and checked that the flock
had come to a stationary state before taking measurements. With
all other parameters fixed, we varied g, with the results shown in
Fig. 4 of the main text.
Long-ranged correlations can arise through one other mecha-

nism that we have not discussed, and this is the emergence of
hydrodynamic modes; it has been argued that such modes are an
essential feature of SPPmodels on the largest spatial and temporal
scales (20, 21). The simulations described here suggest, however,
that such effects become dominant only on much larger scales in
space and especially in time, and thus cannot explain the scale-
free speed correlations that we observe at equal times in real
flocks. We know that both metric and topological SPP/Vicsek
models exhibit giant density fluctuations on large scales (19), yet
we have seen that as long as g is finite, speed correlations are short
range and a critical value of g is necessary tomake them scale-free.
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Fig. S1. Inferred values of nc for flocks of different linear dimension. Inset shows that nc determined here agrees with earlier results for a model of directional
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Fig. S3. Model with independent interactions for speed and flight directions. (A) The inferred global interaction strength Jnc for the orientational degrees of
freedom (y axis) vs. the speed degrees of freedom (x axis). The straight line corresponds to y = x, i.e., to the global model where the interaction parameters are
the same for speed and flight directions. (B) Prediction for the speed correlation function of the unified model Eq. S27 and for the decoupled model based on
Eq. S119, for the flock corresponding to the rightmost point in A (28-10 in Tables S1 and S2).
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Table S1. Summary of experimental data

Event N Frames P hViexp;m=s L, m Qint

17–06 552 79 0.935 9.96 51.8 1.29e-01
21–06 717 37 0.973 12.06 32.1 1.22e-02
25–08 1,571 29 0.962 12.47 59.8 2.63e-02
25–10 1,047 27 0.991 12.57 33.5 8.36e-03
25–11 1,176 30 0.959 10.07 43.3 6.27e-02
28–10 1,246 14 0.982 11.22 36.5 6.43e-03
29–03 440 27 0.963 10.75 37.1 1.43e-02
31–01 2,126 19 0.844 8.13 76.8 5.50e-02
32–06 809 34 0.981 9.99 22.2 1.52e-02
42–03 431 58 0.979 10.68 29.9 1.62e-02
49–05 797 16 0.995 14.02 19.2 6.49e-03
54–08 4,268 28 0.966 19.17 78.7 4.29e-02
57–03 3,242 16 0.978 14.38 85.7 1.53e-02
58–06 442 16 0.984 10.13 23.1 1.34e-02
58–07 554 14 0.977 10.81 19.1 1.35e-02
63–05 890 24 0.978 10.24 52.9 1.86e-02
69–09 239 56 0.985 11.97 17.1 2.68e-02
69–10 1,129 53 0.987 12.04 47.3 2.35e-02
69–19 803 18 0.975 14.16 26.4 3.65e-02
72–02 122 57 0.992 13.24 10.6 1.12e-02
77–07 186 22 0.978 9.50 9.1 4.27e-02

Flocking events are labeled according to experimental session number
and to the position within the session to which they belong. The number
of birds N is the number of individuals for which we obtained a 3D recon-
struction of positions in space. The number of frames is the number of
consecutive 3D reconstructions of individual positions and velocities in the
flocking event at time intervals of 1=10  s. The polarization P is the global
degree of alignment, as defined in the text. The linear size L of the flock is
defined as the maximum distance between two birds belonging to the flock.
The speed hViexp is the average of the individual speeds over all of the
individuals in the flock, and Qint is as defined in Eq. 1 of the main text. All
values are averaged over several snapshots during the flocking event.

Table S2. Inferred parameters

Event nc Jnc g=ðJncÞ
17–06 31 32.6 −4.1e-03
21–06 18 193.36 2.4e-02
25–08 26 71.76 2.0e-01
25–10 17 230.93 8.5e-02
25–11 19 135.95 −1.6e-02
28–10 13 361.32 1.5e-02
29–03 18 166.49 6.2e-01
31–01 22 80.07 2.9e-02
32–06 18 254.34 7.6e-02
42–03 21 150.16 2.4e-02
49–05 22 286.77 −7.1e-02
54–08 40 26.5 6.4e-01
57–03 16 89.20 9.5e-02
58–06 16.5 324.14 −8e-04
58–07 28.5 147.93 8.4e-01
63–05 17 155.6 −5e-02
69–09 16 86.74 2.6e-01
69–10 34 138.56 −1.2e-01
69–19 22.5 42.17 7.0e-02
72–02 15 179.88 2.5e-01
77–07 15 105.12 9.0e-02

Given a flocking event, we infer the values of the parameters J, g, and nc

using maximum entropy equations with fixed boundary conditions for each
individual frame. We report in this table the median values (computed across
all frames in a single event) of nc , the global alignment strength Jnc , and the
effective control parameter g=ðJncÞ that regulates the balance between ad-
aptation and individual speed control.
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