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Abstract. We study here a Fokker–Planck equation with variable coefficient
of diffusion and boundary conditions which appears in the study of the wealth
distribution in a multi-agent society [2, 9, 21]. In particular, we analyze the
large-time behavior of the solution, by showing that convergence to the steady
state can be obtained in various norms at different rates.

1. Introduction. Among the mathematical models introduced in recent years to
study the evolution of wealth distribution in a multi-agent society [21], Fokker–
Planck type equations play an important role. Let f(v, t) denote the density of
agents with personal wealth v ≥ 0 at time t ≥ 0. The prototype of these Fokker–
Planck equations reads

∂f

∂t
= J(h) =

σ

2

∂2

∂v2

(
v2f
)

+ λ
∂

∂v
((v − 1)f) , (1)

where λ and σ denote two positive constants related to essential properties of the
trade rules of the agents. Equation (1) has been first derived by Bouchaud and
Mezard [2] through a mean field limit procedure applied to a stochastic dynamical
equation for the wealth density. The same equation was subsequently obtained
by one of the present authors with Cordier and Pareschi [9] via an asymptotic
procedure from a Boltzmann-type kinetic model for trading agents. This procedure
also furnished the existence (without uniqueness) of a weak solution to equation
(1).

One of the main features of equation (1) is that it possesses a unique stationary
solution of unit mass, given by the (inverse) Γ-like distribution [2, 9]

f∞(v) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

v

)
v1+µ

, (2)
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where

µ = 1 + 2
λ

σ
> 1.

This stationary distribution, as predicted by the analysis of the Italian economist
Vilfredo Pareto [22], exhibits a power-law tail for large values of the wealth variable.

Equation (1) differs from the classical Fokker–Planck equation in two important
points. First, the domain of the wealth variable v takes only values in R+. Second,
the coefficient of diffusion depends on the wealth variable. This makes the analysis
of the large-time behavior of the solution to equation (1) very different from the
analogous one studied in [23] for the classical Fokker–Planck equation.

Indeed, Fokker–Planck equations with variable coefficients and in presence of
boundary conditions have been rarely studied. Maybe the first result in this di-
rection can be found in a paper by Feller [12], who treated the case v ∈ R+ and
coefficient of diffusion v, with a general drift term (cf. also the book [13] for a
general view about boundary conditions for diffusion equations). In particular, the
importance of the boundary conditions has been shown in [12] to be related to the
action of the drift term.

More recently, Fokker-Planck type equations with almost general coefficient of
diffusions have been studied by Le Bris and Lions in [18]. Unlikely, their analysis
does not apply to equation (1).

As far as the large-time behavior is concerned, the main argument in the standard
Fokker–Planck equation is to resort to entropy decay, and to logarithmic Sobolev
inequalities [1]. However, as discussed in [19], this type of inequalities do not seem
available in presence of variable diffusion coefficients.

In the following, we will try to give a satisfactory answer to some of the open
questions. As we shall see, various properties of the solution to equation (1) can
be extracted from the limiting relationship between the Fokker–Planck description
and its kinetic level, given by the bilinear Boltzmann-type equation introduced in
[9]. We will discuss this aspect in Section 2, by means of a detailed Fourier analysis.
In particular, we will show that, at least for some range of the parameters λ and σ,
the Fokker–Planck equation (1) can be rigorously obtained in the asymptotic limit
procedure known as quasi-invariant trade limit. Then, convergence to equilibrium
will be discussed in Section 3. The essential argument here will be to resort to an
inequality of Chernoff type [8, 17], that allows to prove convergence with exponential
rate in the case of initial data sufficiently close to the steady state, and to a rate at
least 1/t for a large class of initial data.

2. Kinetic model and Fokker-Planck equation.

2.1. Main properties of the Fokker–Planck equation. To start with the anal-
ysis of the initial value problem for the Fokker–Planck equation (1), it is essential to
consider, together with a suitable decay of the solution at infinity, physical bound-
ary conditions at the point v = 0. Let φ(v) be a smooth function, bounded at v = 0.
Then, a simple computation shows that

d

dt

∫
R+

φ(v)f(v, t)dv =

∫
R+

[σ
2
v2φ′′(v)− λ(v − 1)φ′(v)

]
f(v, t) dv +[

σ

2

(
φ(v)

∂

∂v
(v2f(v, t))− v2φ′(v)f(v, t)

)
+ λφ(v)(v − 1)f(v, t)

]∞
0

.
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While the vanishing of the boundary term at infinity follows by choosing initial data
with a smooth and rapid decay, at the boundary v = 0 it is required that

v2f(v, t) |v=0 = 0, t > 0 (3)

and

λ(v − 1)f(v, t) +
σ

2

∂

∂v

(
v2f(v, t)

)∣∣∣∣
v=0

= 0, t > 0. (4)

Condition (3) is automatically satisfied for a sufficiently regular density f . On the
contrary condition (4) requires an exact balance between the so-called advective
and diffusive fluxes on the boundary v = 0. This condition is usually referred to as
the no-flux boundary condition. If both conditions (3) and (4) hold, we can pass
from equation (1) to its weak form, given by

d

dt

∫
R+

φ(v)f(v, t)dv = (φ, J(f)) =

∫
R+

[σ
2
v2φ′′(v)− λ(v − 1)φ′(v)

]
f(v, t) dv. (5)

By choosing φ(v) = 1, v shows that the solution to (1) satisfies

d

dt

∫
R+

f(v, t)dv = 0,
d

dt

∫
R+

vf(v, t)dv = λ

(
−
∫
R+

vf(v, t) dv +

∫
R+

f(v, t) dv

)
.

Therefore, if the (nonnegative) initial value ϕ(v) of equation (1) is a density function
satisfying the normalization conditions∫

R+

ϕ(v) dv = 1;

∫
R+

vϕ(v) dv = 1 (6)

the solution to (1) still satisfies conditions (6). In other words, if the initial datum
is a probability density with unit mean, then the solution at any subsequent time
remains a probability density with unit mean. For n ∈ N+ let us define

Mn(t) =

∫
R+

vnf(v, t)dv.

An elementary computation shows that, if ϕ satisfies conditions (6) and its second
moment is bounded, the second moment of the solution follows the law

d

dt
M2(t) = (σ − 2λ)M2(t) + 2λ. (7)

Hence, the value of the second moment stays bounded when σ < 2λ, while it diverges
in the opposite case. In the former case, solving equation (7) we obtain

M2(t) = e(σ−2λ)t

(
M2(0) +

2λ

σ − 2λ

)
+

2λ

2λ− σ
, (8)

which implies

lim
t→∞

M2(t) =
2λ

2λ− σ
.

It is clear that the principal moments of the solution to the Fokker–Planck equation
can be obtained recursively, and explicitly evaluated at the price of increasing length
of computations. Since it will be useful in the following, we evaluate here the third
moment M3(t). We obtain

d

dt
M3(t) = 3(σ − λ)M3(t) + 3λM2(t).
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Then, if the initial density ϕ(v) has the third moment bounded, the evolution law
for M3(t) is given by

M3(t) = e3(σ−λ)t

{
M3(0) + 3λ

∫ t

0

e−3(σ−λ)rM2(r)dr

}
. (9)

Using (8), the third moment is evaluated as

M3(t) = M3(0)e3(σ−λ)t +
2λ2

(σ − 2λ)(λ− σ)

(
1− e3(σ−λ)t

)
+

(
3λ

(λ− 2σ)
M2(0) +

6λ2

(σ − 2λ)(λ− 2σ)

)(
e(σ−2λ)t − e3(σ−λ)t

)
. (10)

Therefore the third moment is uniformly bounded in time if σ < λ and it grows to
+∞ in the opposite case.

Last, choosing φ(v) = e−iξv we obtain the Fourier transformed version of the
Fokker–Planck equation (1)

∂

∂t
f̂(ξ, t) = Ĵ(f̂) =

σ

2
ξ2 ∂

2

∂ξ2
f̂(ξ, t)− λξ ∂

∂ξ
f̂(ξ, t)− iλξf̂(ξ, t), (11)

where, as usual ĝ(ξ) denotes the Fourier transform of g(v), v ∈ R+. In this case

ĝ(ξ) =

∫
R+

e−iξvg(v) dv.

2.2. The kinetic model. The basic model discussed in this section has been in-
troduced in [9] within the framework of classical models of wealth distribution in
economy.

As shown in [9], the Fokker–Planck equation (1) is strongly related to a bilinear
kinetic model of Boltzmann type, modelling the evolution of wealth in a multi-agent
society in which agents interact through binary trades [21]. This model belongs to
a class of models in which the interacting agents are indistinguishable. The agent’s
state at any instant of time t ≥ 0 is completely characterized by his current wealth
v ≥ 0 [10, 11]. When two agents encounter in a trade, their pre-trade wealths v, w
change into the post-trade wealths v∗, w∗ according to the rule [5, 6, 7]

v∗ = p1v + q1w, w∗ = q2v + p2w.

The interaction coefficients pi and qi are non-negative random variables. While
q1 denotes the fraction of the second agent’s wealth transferred to the first agent,
the difference p1 − q2 is the relative gain (or loss) of wealth of the first agent due
to market risks. It is usually assumed that pi and qi have fixed laws, which are
independent of v and w, and of time. This means that the amount of wealth an
agent contributes to a trade is (on the average) proportional to the respective agent’s
wealth.

In [9] the trade has been modelled to include the idea that wealth changes hands
for a specific reason: one agent intends to invest his wealth in some asset, property
etc. in possession of his trade partner. Typically, such investments bear some risk,
and either provide the buyer with some additional wealth, or lead to the loss of
wealth in a non-deterministic way. An easy realization of this idea consists in
coupling the saving propensity parameter [5, 6] with some risky investment that
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yields an immediate gain or loss proportional to the current wealth of the investing
agent. The interactions rules for this model are obtained by fixing

p1 = 1− ελ+ ηε, q1 = ελ

p2 = ελ, q2 = 1− ελ+ η̃ε,
(12)

where 0 ≤ λ ≤ 1 is the parameter which identifies the saving propensity, namely the
intuitive behavior which prevents the agent to put in a single trade the whole amount
of his money, while ε is a small positive parameter, which measures the quantity
of money exchanged in a single trade. The coefficients ηε, η̃ε are independent and
identically distributed random parameters, such that always ηε, η̃ε ≥ ελ− 1. This
clearly implies v∗, w∗ ≥ 0. Therefore, the collision rule in [9] reads

v∗ = (1− ελ)v + ελw + ηεv,

w∗ = (1− ελ)w + ελv + η̃εw.
(13)

Remark 1. In the rest of the paper, the mean value of a random quantity θ will
be denoted by 〈θ〉. A simple way to characterize the ε-dependence of the random
parameters is to define ηε and η̃ε as independent copies of a random variable η with
finite variance σ, with ηε = η̃ε =

√
εη. If the random parameters are even, so that

〈ηε〉 = 〈η̃ε〉 = 0

〈v∗ + w∗〉 = (1 + 〈ηε〉)v + (1 + 〈η̃ε〉)w = v + w, (14)

implying conservation of the average wealth. In the remaining cases, it is imme-
diately seen that the mean wealth is not preserved, but it increases or decreases
exponentially (see the computations in [9]). Various specific choices for the random
parameters have been discussed in [20]. Note that, when 〈η〉 = 0, 〈η2

ε〉 = 〈η̃2
ε〉 = εσ.

Owing to classical arguments of kinetic theory [21], it has been shown in [9]
that the evolution of the wealth density consequent to the binary interactions (13)
obeys to a Boltzmann-type equation. To outline the dependence on ε, let us denote
with hε(v, τ) the distribution of the agents wealth v ≥ 0 at time τ > 0. Then,
the equation for the evolution of hε can be fruitfully written in weak form. It
corresponds to say that, for any smooth function φ, hε satisfies the equation

d

dτ

∫
R+

φ(v)hε(v, τ)dv =

1

2

〈∫
R+×R+

hε(v, τ)hε(w, τ)
(
φ(v∗) + φ(w∗)− φ(v)− φ(w)

)
dvdw

〉
.

(15)

Existence and uniqueness of the solution to equation (15) has been proven in [20].
We will detail later on some of these results for their connection with the Fokker–
Planck equation (1). The weak form (15) allows to evaluate moments of the solution
in a closed form. The choice φ(v) = 1 immediately gives mass conservation. In ad-
dition, if φ(v) = v, in view of (14) one obtains that the mean value of the solution
is preserved in time. Therefore, if the initial value satisfies the normalization con-
ditions (6) it follows that the solution hε(v, τ) still satisfies the same conditions at
any subsequent time τ > 0.

Let us choose now φ(v) = v2. A simple computation gives

〈v∗2 + w∗2 − v2 − w2〉 = 2(ε2λ2 − ελ)(v − w)2 + εσ(v2 + w2).
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Therefore
d

dτ

∫
R+

v2hε(v, t)dv = ε
[
σ − 2

(
λ− ελ2

)] ∫
R+

v2hε(v, τ)dv + 2ε(λ− ελ2). (16)

The evolution law of the second moment of hε(v, τ) depends explicitly on ε, and
clearly changes with ε. This is due to the fact that changing the value of ε in
the binary collision (13) we change the quantity of wealth which is involved into
the trade. In the limit case ε → 0, we have a trade in which the post interaction
wealths are left unchanged. This suggests to scale time in such a way to maintain
an effective law of evolution of the second moment even in the limit ε → 0. This
can be easily done by setting t = ετ , while hε(v, τ) = fε(v, t) [9]. One then obtains
that fε(v, t) satisfies

d

dt

∫
R+

φ(v)fε(v, t)dv = (φ,Qε(fε, fε)) , (17)

where we defined

(φ,Qε(fε, fε)) =
1

2ε

〈∫
R+×R+

fε(v, t)fε(w, t)
(
φ(v∗) + φ(w∗)− φ(v)− φ(w)

)
dvdw

〉
.

(18)
In this case, (16) changes into

d

dt

∫
R+

v2fε(v, t)dv =
[
σ −

(
λ− ελ2

)] ∫
R+

v2fε(v, t)dv + 2(λ− ελ2). (19)

Remark 2. Note that the conservation of the mean value is not modified by this
scaling. However, in (19) the dependence on ε remains in the factor λ−ελ2. One can
easily eliminate this dependence by choosing in (13) a different value (ε-dependent)
of the saving propensity λ. This can be obtained by the choice

λ̃ = λ̃(ε) =
2λ

1 +
√

1− 4ελ
, (20)

which is such that λ̃− ελ̃2 = λ. Moreover

λ̃ > λ, lim
ε→0

λ̃ = λ.

Clearly, definition (20) requires to choose ε small enough.

2.3. The invariant trade limit of the Boltzmann equation. The close re-
lation between the kinetic equation (17) and the Fokker–Planck equation (5) has
been outlined in [9], where it was shown that in the limit ε → 0 a subsequence of
solutions fε(v, t) to (17) converges to f(v, t), solution of (5). In this section we aim
in improving these results.

In the rest, we will fix a time T > 0, and we will consider both equations (17)
and (1) in the time interval 0 ≤ t ≤ T . In addition, let the even random variable
η which defines the random part of the trade possess the third moment bounded,
and let us set 〈|η|3〉 = σ3. Analogously, let 〈|η|〉 = σ1. Using a Taylor’s formula at
the second order, one can write φ(v∗) as

〈φ(v∗)− φ(v)〉 = φ′(v)〈v∗ − v〉+
1

2
φ′′(v)〈v∗ − v〉2 +

1

3!
〈φ′′′(ṽ)(v∗ − v)3〉
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where, for some α such that 0 ≤ α ≤ 1, ṽ = αv + (1− α)v∗. Then, by (13) and the
properties of the random variable η it holds
〈v∗ − v〉 = ελ(w − v),

〈(v∗ − v)2〉 = ε2λ2(w − v)2 + εσv2,

〈|v∗ − v|3〉 ≤ ε3/2
[
σ3v

3 + 3ε1/2σλv2|w − v|+ 3εσ1λ
2v(w − v)2 + ε3/2λ3|v − w|3

]
.

(21)
In particular, (17) can be rewritten as

d

dt

∫
I

φ(v)fε(v, t)dv =∫
R+

fε(v, t)
[σ

2
v2φ′′(v)− λ(v − 1)φ′(v)

]
dv +

∫
R+

Rε(φ(v), t) fε(v, t) dv,
(22)

where the last integral (the remainder) accounts for all the higher order ε-dependent
terms in the expansion

Rε(φ(v), t) =

∫
R+

[
1

2
ελ2(w − v)2φ′′(v) +

1

ε 3!
〈φ′′′(ṽ)(v∗ − v)3〉

]
fε(w, t) dw. (23)

Therefore, for any given (smooth function) φ(v) and density f(v), v ∈ R+, we have
the identity

(φ,Qε(f, f)− J(f)) =

∫
R+

Rε(φ(v), t) f(v, t) dv. (24)

Remark 3. In reason of the fact that the solution to the kinetic model (17) satisfies
conditions (6) for all times t ≥ 0, it follows from (22) that∫

R+

Rε(φ(v)) fε(v, t) dv = 0

whenever φ(v) = 1, v.

For m ∈ N+, let Cm(R+) be the set of m-times continuously differentiable func-
tions, endowed with its natural norm ‖ · ‖m. Then for f = f(v), v ∈ R+, let us
define

‖f‖∗m = sup {|(φ, f)| , φ ∈ Cm(R+), ‖φ‖m ≤ 1} . (25)
Let m ≥ 3. Thanks to (21) , whenever f(v) is a probability density with the third
moment bounded

‖Qε(f, f)− J(f)‖∗m = sup
φ

∣∣∣∣∣
∫
R+

Rε(φ(v)) f(v) dv

∣∣∣∣∣ ≤ ε1/2Cε(M1(f),M2(f),M3(f)),

and
lim
ε→0
‖Qε(f, f)− J(f)‖∗m = 0. (26)

Let the initial datum of the Fokker–Planck equation possess moments bounded up
to the order three. Thanks to (10) the moments up to the third order of the solution
to the Fokker-Planck equation remain uniformly bounded in the time interval 0 ≤
t ≤ T . Therefore, if f(v, t) is a solution to the Fokker–Planck equation (5), for
0 ≤ t ≤ T

‖Qε(f, f)− J(f)‖∗m (t) = sup
φ

∣∣∣∣∣
∫
R+

Rε(φ(v)) fε(v, t) dv

∣∣∣∣∣ ≤ ε1/2Cε(T ), (27)



8 MARCO TORREGROSSA, GIUSEPPE TOSCANI

where the constant Cε(T ) depends on moments of f(v, t) up to the order three.
Let us consider a family of metrics that has been introduced in the paper [15] to

study the trend to equilibrium of solutions to the space homogeneous Boltzmann
equation for Maxwell molecules, and subsequently applied to a variety of problems
related to kinetic models of Maxwell type. For a more detailed description, we
address the interested reader to the lecture notes [4].

Given s > 0 and two probability densities f1 and f2, their Fourier based distance
ds(f1, f2) is given by the quantity

ds(f1, f2) := sup
ξ∈Rn

∣∣∣f̂1(ξ)− f̂2(ξ)
∣∣∣

|ξ|s
. (28)

The distance is finite, provided that f1 and f2 have the same moments up to order
[s], where, if s /∈ N+, [s] denotes the entire part of s, or up to order s− 1 if s ∈ N+.
Moreover ds is an ideal metric. Its main properties are the following

1. Let X1, X2, X3, with X3 independent of the pair X1, X2 be random variables
with probability distributions f1, f2, f3. Then

ds(f1 ∗ f3, f2 ∗ f3) ≤ ds(f1, f2)

where the symbol ∗ denotes convolution;
2. Define for a given nonnegative constant a the dilation

fa(x) =
1

a
f
( v
a

)
.

Then, given two probability densities f1 and f2, for any nonnegative constant
a

ds(aX1, aX2) = ds(f1,a, f2,a) ≤ as ds(f1, f2) = as ds(X1, X2).

3. Let ds(f1, f2) be finite for some s > 0. Then the following interpolation
property holds [4]

dp(f1, f2) ≤ 2

(
s− p

2p

)p/s
s

s− p
[ds(f1, f2)]p/s = Cp,s[ds(f1, f2)]p/s, (29)

for any 0 < p < s.
Since the equation for the Fourier transform of the density fε(v, t), solution of the
kinetic equation (17) takes the form [20]

∂

∂t
f̂ε(ξ, t) = Q̂ε(fε, fε)(ξ, t) =

1

ε

[
〈f̂ε
(
(1− ελ+ ηε)ξ

)
〉f̂ε(ελξ)− f̂ε(ξ, t)

]
, (30)

in reason of (24) we can write

Ĵ(f̂) = Q̂ε(f̂ , f̂) + R̂ε(f̂), (31)

where
R̂ε(f̂) = Ĵ(f̂)− Q̂ε(f̂ , f̂).

As proven in [24], the metric d2 is equivalent to ‖ · ‖∗m, m ∈ N+, that is

d2(f, g)→ 0 if and only if ‖f − g‖∗m → 0.

Let the initial datum of the Fokker–Planck equation possess moments bounded up
to the order three. Thanks to (27), if f(v, t) is the corresponding solution to the
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Fokker–Planck equation, in the time interval 0 ≤ t ≤ T , for a suitable constant Dε

d2

(
Ĵ(f̂(t)), Q̂ε(f̂(t), f̂(t))

)
= sup

ξ

1

|ξ|2
|R̂ε(f̂)(t)| ≤ rε(T ), (32)

where
lim
ε→0

rε(T ) = 0.

Using the expression (31) for the Fokker–Planck operator in (5), we obtain that the
difference between the solution fε of (30) and the solution f to the Fokker–Planck
equation (11) satisfies

∂

∂t

(
f̂ε − f̂
|ξ|2

)
+
f̂ε − f̂
|ξ|2

=

1

ε

f̂ε
(
(1− λ+ η)ξ

)
f̂ε(λξ)− f̂

(
(1− λ+ η)ξ

)
f̂(λξ)

|ξ|2
+

1

|ξ|2
R̂ε(f̂).

(33)

Let fε(v, t) and f(v, t) solutions departing from initial value f̃0 and f0 satisfying
conditions (6) and such that their distance d2(f̃0, f0) is finite. Let us set

hε =
f̂ε − f̂
|ξ|2

,

which is such that ‖hε(·, t)‖∞ = d2(fε, f). Since |f̂ε| = |f̂ | = 1 we obtain for any
0 ≤ t ≤ T∣∣∣∣ ∂∂thε +

1

ε
hε

∣∣∣∣ ≤1

ε

∣∣∣∣∣ f̂ε
(
(1− λε+ ηε)ξ

)
− f̂

(
(1− λε+ ηε)ξ

)
〈|1− λε+ ηεξ|2〉

∣∣∣∣∣ 〈|1− λε+ ηε|2〉

+
1

ε

∣∣∣∣∣ f̂ε(λξ)− f̂(λξ)

|λεξ|2

∣∣∣∣∣ (λε)2 +
1

|ξ|2
|R̂ε(f̂)|

≤ 1

ε
‖hε(·, t)‖∞

[
〈(1− λε+ ηε)

2〉+ (λε)2
]

+ rε(T ).

(34)

Consider that, if σ < 2λ, for ε sufficiently small

〈(1− λε+ ηε)
2〉+ (λε)2 = 1 + ε [σ − 2λ(1− λε)] ≤ 1. (35)

If this is the case, hε(t) satisfies∣∣∣∣ ∂∂thε +
1

ε
hε

∣∣∣∣ ≤ 1

ε
‖hε(·, t)‖∞ + rε(T ) (36)

Proceeding as in [24], Theorem 5, we conclude by Gronwall inequality that (36)
implies

‖hε(·, t)‖∞ ≤ ‖hε(·, 0)‖∞ + rε(T ) t. (37)

Letting ε going to 0 we obtain

lim
ε→0

d2(fε, f)(t) ≤ d2(f̃0, f).

Hence, if we start with the same initial value f̃0 = f0, limε→0 d2(fε, f)(t) = 0 for
0 ≤ t ≤ T .
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Analogous reasoning can be used to prove uniqueness of the solution to the
Fokker–Planck equation (5). By resorting to the approximation (31) of the Fokker–
Planck operator in (5), we obtain that the difference between two solutions f(v, t)
and g(v, t) to the Fokker–Planck equation (11), for any given small value of ε satisfies

∂

∂t

(
f̂ − ĝ
|ξ|2

)
+
f̂ − ĝ
|ξ|2

=

1

ε

f̂
(
(1− λ+ η)ξ

)
f̂(λξ)− ĝ

(
(1− λ+ η)ξ

)
ĝ(λξ)

|ξ|2
− 1

|ξ|2
R̂ε(f̂) +

1

|ξ|2
R̂ε(ĝ).

(38)

Let f(v, t) and g(v, t) solutions departing from initial value f0 and g0 satisfying
conditions (6) and such that their distance d2(f0, g0) is finite. If the third moments
of f0 and g0 are finite, proceeding as before we conclude with the bound

d2(f, g)(t) ≤ d2(f0, g0),

that clearly implies uniqueness of the solution. We can resume the previous result
in the following.

Theorem 2.1. Let f0(v) be a probability density in R+ satisfying conditions (6),
and such that its third moment is finite. Assume moreover that the random part
η in the binary collision (13) is even, and such that 〈|η|3〉 is finite. Then, for any
finite time T , as ε → 0, the unique solution fε(v, t) to the kinetic model (17) with
initial datum f0 converges to the solution f(v, t) of the Fokker–Planck equation (5)
with the same initial datum f0, and

d2(fε, f)(t)→ 0, 0 < t ≤ T.

Moreover, the solution to the Fokker–Planck equation is unique.

2.4. A regularity result. Theorem 2.1 shows that, for any given datum with
a suitable decay at infinity, the Fokker–Planck equation (5) possesses a unique
solution. However, if the initial datum belongs to Ḣp(R+), we can conclude that
the solution maintains the same regularity for any subsequent positive time. Let
f̂(ξ, t) = a(ξ, t)+ib(ξ, t). Starting from the Fourier transform version of the Fokker-
Planck equation (11), let us split it into the real and imaginary part. We obtain

∂

∂t
a(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
a(ξ, t)− λξ ∂

∂ξ
a(ξ, t) + λξb(ξ, t),

∂

∂t
b(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
b(ξ, t)− λξ ∂

∂ξ
b(ξ, t)− λξa(ξ, t).

(39)

Multiplying equations (39) respectively by 2a and 2b and summing up, we get

∂

∂t
|f̂ |2 = σξ2

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
− λξ ∂|f̂ |

2

∂ξ
. (40)

Hence, multiplying by |ξ|p and integrating over R with respect to ξ, we obtain the
evolution equation of the Ḣp/2−norm of f(v, t), where, as usual, the homogeneous
Sobolev space Ḣs, for s > 0 is defined by the norm

‖f‖Ḣs
=

∫
R
|ξ|2s |f̂ |2(ξ) dξ.
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We have

∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = σ

∫
R
|ξ|2+p

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
dξ − λ

∫
R
ξ|ξ|p ∂|f̂ |

2

∂ξ
dξ. (41)

Integrating by parts the two integrals, it results

∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = (p+1)

[
σ

2
(p+2)+λ

] ∫
R
|ξ|p|f̂ |2dξ−σ

∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2+
∣∣ ∂
∂ξ
b
∣∣2]dξ.
(42)

The last integral in (42) can be estimated from below as follows∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2 +

∣∣ ∂
∂ξ
b
∣∣2]dξ ≥ (p+ 1)2

2

∫
R
|ξ|p|f̂ |2.

Indeed, for all µ > 0 it holds

0 ≤
∫
R
|ξ|p

(
ξ
∂a

∂ξ
+ µa

)2

dξ =

∫
R
|ξ|2+p

∣∣∣∣∂a∂ξ
∣∣∣∣2 +

(
µ2 − µ(p+ 1)

) ∫
R
|ξ|2+pa2 dξ.

Optimizing over µ we get∫
R
|ξ|2+p

∣∣∣∣∂a∂ξ
∣∣∣∣2 dξ ≥ (p+ 1)2

4

∫
R
|ξ|2+pa2 dξ.

An analogous computation works for b. Hence

∂

∂t

∫
R
|f̂ |2|ξ|pdξ ≤ p+ 1

2

[
σ + 2λ

] ∫
R
|ξ|p|f̂ |2dξ. (43)

The inequality (43) implies that if the initial data has finite Ḣp−norm, then for all
finite t > 0, the Ḣp−norm of the solution remains finite and it grows up to +∞ for
t→ +∞.

3. Convergence to equilibrium.

3.1. L1-convergence. In this section, we will be concerned with the study of the
large-time behaviour of the Fokker–Planck equation (1). The main argument here
will be the study of the time evolution of various Lyapunov functionals, starting
from Shannon entropy of the solution f(v, t) relative to the steady state f∞(v). We
recall that the relative Shannon entropy of the two probability density functions f
and g is defined by the formula

H(f, g) =

∫
I

f(v) log
f(v)

g(v)
dv. (44)

As a first step in this analysis, we will introduce in the following equivalent for-
mulations of the Fokker–Planck equation, that result to be very useful to justify
rigorously the behaviour of these Lyapunov functionals.

Indeed, equation (1) admits many equivalent formulations, each of them well
adapted to different purposes [14]. To this extent, recall that the equilibrium dis-
tribution f∞ defined in (2) satisfies

∂

∂v
(v2f∞) + (v − 1)f∞ = 0, (45)

or, equivalently
∂

∂v
log(v2f∞) = −v − 1

v2
. (46)
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Then, for v > 0

∂

∂v

(
v2f
)

+ (v − 1) f = v2f

(
∂

∂v
log(v2f) +

v − 1

v2

)
=

v2f

(
∂

∂v
log(v2f)− ∂

∂v
log(v2f∞)

)
= v2f

∂

∂v
log

f

f∞
= v2f∞

∂

∂v

f

f∞
.

Hence, we can write the Fokker–Planck equation (1) in the equivalent form

∂f

∂t
=

∂

∂v

[
v2f

∂

∂v
log

f

f∞

]
, (47)

which enlightens the role of the logarithm of the quotient f/f∞, and

∂f

∂t
=

∂

∂v

[
v2f∞

∂

∂v

f

f∞

]
. (48)

In particular, owing to (45), the form (48) allows us to obtain the evolution equation
for the quotient F = f/f∞. Indeed

∂f

∂t
= f∞

∂F

∂t
= v2f∞

∂2

∂v2

f

f∞
+

∂

∂v
(v2f∞)

∂

∂v

f

f∞
=

= v2f∞
∂2F

∂v2
− (v − 1)f∞

∂F

∂v
,

which shows that F satisfies the equation

∂F

∂t
= v2 ∂

2F

∂v2
− (v − 1)

∂F

∂v
. (49)

If mass conservation is imposed on equation (1), we obtain at v = 0 the boundary
conditions (3) and (4). In analogous way, the boundary conditions of the equivalent
form (49) are now written in the form

v2f∞(v)F (v, t)
∣∣
v=0

= 0, (50)

and

v2f∞(v)
∂

∂v

f(v, t)

f∞(v)

∣∣∣∣
v=0

= v2f∞(v)
∂F (v, t)

∂v

∣∣∣∣
v=0

= 0. (51)

In view of the decay property at v = 0 of the steady state f∞, the boundary
conditions (50) and (51) are satisfied any time the solution to equation (49) is
bounded together with its derivative at zero.

To proceed, and to avoid inessential difficulties, for any given initial density f0(v)
and positive constant δ � 1, let us consider a regular approximation fδ0 (v) satisfying
the conditions

fδ0 (v) = f∞(v) if v ≤ δ and v ≥ 1/δ, δ2 ≤ fδ0 (v) ≤ 1/δ2 if δ ≤ v ≤ 1/δ, (52)

while ∫
R+

fδ0 (v) dv = 1. (53)

Then, in a time interval (0, T ) the (unique) solution F δ(v, t) of the initial-boundary
value problem for equation (49) corresponding to the initial value F δ0 = fδ0/f∞ is
such that

F δ(v, t) = 1 if v ≤ δ and v ≥ 1/δ, δ2/∆+ ≤ F δ(v, t) ≤ δ2/∆−if δ ≤ v ≤ 1/δ,
(54)
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where we denoted

∆+ = max
v

f∞(v), ∆− = min
δ≤v≤1/δ

f∞(v) > 0.

Indeed, a solution constant in the interval v ≤ δ satisfies both the boundary con-
ditions (50) and (51), and equation (49), and converges to the right initial value
as t → 0. Analogous conclusion can be drawn in the interval v ≥ 1/δ. Consider
now the solution to equation (49) in a bounded interval (v−, v+), where v− ≤ δ and
v+ ≥ 1/δ, with boundary conditions F (v−, t) = 1 and F (v+, t) = 1 for t ≤ T , and
initial value F δ0 = fδ0/f∞. Since in this interval the coefficient of the second-order
term is strictly positive, the second condition in (54) follows from the maximum
principle for the solution to a uniformly parabolic equation.

The previous discussion shows that, since the initial datum F δ0 satisfies

mδ ≤ F δ0 (v) ≤Mδ (55)

for some positive constants mδ < Mδ, the same condition holds at any subsequent
time t ≤ T , so that

mδ ≤ F δ(v, t) ≤Mδ. (56)

As remarked in [14], condition (56) allows to recover rigorously the time decay of
various Lyapunov functionals. Indeed, the following holds (cf. Theorem 3.1 of [14])

Theorem 3.1. Let the smooth function Φ(x), x ∈ R+ be convex. Then, if F (v, t) is
the solution to equation (49) in R+, and c ≤ F (v, t) ≤ C for some positive constants
c < C, the functional

Θ(F (t)) =

∫
I

f∞(v)Φ(F (v, t)) dv

is monotonically decreasing in time, and the following equality holds

d

dϑ
Θ(F (t)) = −IΘ(F (t)), (57)

where IΘ denotes the nonnegative quantity

IΘ(F (t)) =

∫
R+

v2f∞(v)Φ′′(F (v, t))

∣∣∣∣∂F (v, t)

∂v

∣∣∣∣2 dv. (58)

We can couple Theorem 3.1 with the so-called Chernoff inequality with weight,
recently proven in [14] (cf. Theorem 3.3). In our case, this result reads

Theorem 3.2. Let X be a random variable distributed with density f∞(v), v ∈ R+,
where the probability density function f∞ satisfies the differential equality

∂

∂v

(
v2f∞

)
+ (v − 1) f∞ = 0, v ∈ R+. (59)

If the function φ is absolutely continuous on R+ and φ(X) has finite variance, then

V ar[φ(X)] ≤ E
{
X2[φ′(X)]2

}
(60)

with equality if and only if φ(X) is linear in X.

Choose now Φ(x) = x log x, x ≥ 0. Then, Θ(F δ(t)) coincides with the entropy
of fδ relative to f∞. If the relative entropy is finite at time t = 0, by Theorem 3.1
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it decays, and its rate of decay is given by the expression

I(F δ(t)) =

∫
R+

v2f∞(v)
1

F δ(v, t)

∣∣∣∣∂F δ(v, t)∂v

∣∣∣∣2 dv = 4

∫
R+

v2f∞(v)

∣∣∣∣∣∂
√
F δ(v, t)

∂v

∣∣∣∣∣
2

dv.

(61)
If we apply inequality (60) with φ(v) =

√
F δ(v, t) with fixed t > 0 we get

I(F δ(t)) = 4

∫
R+

v2f∞(v)

(
∂v

√
fδ(v, t)

f∞(v)

)2

dv ≥

4

∫
R+

fδ(v, t)

f∞(v)
f∞(v) dv −

(∫
R+

√
f(v, t)

f∞(v)
f∞(v) dv

)2
 =

4

1−

(∫
R+

√
fδ(v, t) f∞(v) dv

)2
 .

(62)

On the other hand, as remarked in [16], whenever f and g are probability density
functions, the square of their Hellinger distance

dH(f, g) =

[∫
R+

(√
f −√g

)2

dv

]1/2

(63)

satisfies

= dH(f, g)2 =

∫
R

(
f(v) + g(v)− 2

√
f(v) g(v)

)
dv =

2

(
1−

∫
R

√
f(v) g(v) dv

)
≤ 2

(
1−

(∫
R

√
f(v) g(v) dv

)2
)
.

(64)

The last inequality in (64) follows by Cauchy–Schwartz inequality. Finally, for t > 0

I(F δ(t)) ≥ 2dH(fδ(t), f∞)2, t > 0. (65)

that implies the differential inequality

d

dt
H(fδ(t)|f∞) ≤ −2dH(fδ(t), f∞)2, (66)

and, consequently, the bound∫ ∞
0

dH(fδ(t), f∞)2 dt ≤ 1

2
H(fδ0 |f∞). (67)

Now, let us apply again Theorem 3.1 to the convex function φ(x) = (
√
x− 1)2. In

this case Θ(F δ(t)) coincides with the square of the Hellinger distance (63) between
fδ and f∞, which in consequence of (57) is shown to decay in time.

Therefore, inequality (67) coupled with the time decay of the Hellinger distance
shows that for large times

dH(fδ(t), f∞)2 = o(1/t). (68)

Note that to obtain the decay we need the boundedness of the relative entropy
H(fδ0 |f∞). Last, by Cauchy–Schwartz inequality we can bound the L1 distance
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between two densities f and g in terms of the Hellinger distance dH(f, g). Indeed∫
I

|f(v)− g(v)| dv =

∫
I

∣∣∣√f(v)−
√
g(v)

∣∣∣ (√f(v) +
√
g(v)

)
dv

≤
(∫

I

(√
f(v)−

√
g(v)

)2

dv

) 1
2
(∫

I

(√
f(v) +

√
g(v)

)2

dv

) 1
2

= dH(f, g)

(∫
I

(
f(v) + g(v) + 2

√
f(v)g(v)

)
dv

) 1
2

=
√

2dH(f, g)

(
1 +

∫
I

√
f(v)g(v) dv

) 1
2

.

Therefore
‖f − g‖L1 ≤ 2dH(f, g). (69)

Finally, in view of (68), the L1-distance between fδ(t) and f∞ decays to zero as
time goes to infinity,

‖fδ(t)− f∞‖2L1 ≤ o(1/t), (70)
and ∫ ∞

0

‖fδ(t)− f∞)‖2L1
dt ≤ 2H(fδ0 |f∞). (71)

Let us now proceed to remove the lifting of the initial value. The following lemma
will be useful

Lemma 3.3. Let f(v, t) be a solution of the initial-boundary value problem for the
Fokker–Planck equation (1), corresponding to an initial value f0(v) such that, as
in Theorem 2.1 |f0(v)| ∈ L1(R+) and v3|f0(v)| ∈ L1(R+). Then, the L1-norm of
f(v, t) is non-increasing for t ≥ 0.

Proof. For a given ε > 0, let us consider a regularized increasing approximation of
the sign function signε(z), with z ∈ R, and let us define the regularized approxi-
mation |f |ε(z) of |f |(z) via the primitive of signε(f)(z). We now multiply equation
(1) by signε(f(t)) to obtain, after integrating by parts

d

dt

∫
R+

signε(f(t))f(t) dv = −
∫
R+

sign′ε(f)

[
σ

2

∂f

∂v

∂(v2f)

∂v
+ λ(v − 1)f

∂f

∂v

]
dv

= −
∫
R+

sign′ε(f)
σ

2
v2

∣∣∣∣∂f∂v
∣∣∣∣2 dv − ∫

R+

(λ+ σ)v − λ
2

sign′ε(f)f
∂f

∂v
dv.

(72)
Indeed, the border term contribution vanishes in view of condition (4). Moreover,
since we have the equality

sign′ε(f)f
∂f

∂v
=

∂

∂v
[f signε(f)− |f |ε]

after another integration by parts in the last term of the right-hand side of (72) we
obtain

−
∫
R+

(λ+ σ)v − λ
2

sign′ε(f)f
∂f

∂v
dv =

λ

2

[
(f signε(f)− |f |ε) (v = 0) +

∫
R+

(f signε(f)− |f |ε) dv

]
,
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and this contribution, in the limit ε→ 0 vanishes. Hence

d

dt

∫
R+

|f(v, t)| dv ≤ 0.

In reason of lemma 3.3, for any given initial datum f0(v) satisfying the hypotheses
of theorem 2.1, and its modification (52), we have that, at any subsequent time t > 0

‖f(v, t)− fδ(v, t)‖L1 ≤ ‖f0(v)− fδ0 (v)‖L1 .

Hence, since fδ0 (v) converges to f0(v) in L1-norm and in relative entropy, letting
δ → 0 inequality (70) implies

‖f(t)− f∞‖2L1 ≤ o(1/t). (73)

Moreover, for each finite time T , inequality (71) yields∫ T

0

‖f(t)− f∞)‖2L1
dt ≤ 2

∫ T

0

‖fδ(t)− f∞)‖2L1
dt+ 2

∫ T

0

‖fδ(t)− f(t))‖2L1
dt ≤

2

∫ T

0

‖fδ(t)− f∞)‖2L1
dt+ 2T‖fδ0 − f0‖2L1

≤ 4H(fδ0 |f∞) + 2T‖fδ0 − f0‖2L1
.

Hence, letting δ → 0 we obtain, for each T > 0 the inequality∫ T

0

‖f(t)− f∞)‖2L1
dt ≤ 4H(f0|f∞). (74)

We proved

Theorem 3.4. Let f(v, t) be a solution of the initial-boundary value problem for
the Fokker–Planck equation (1), corresponding to an initial density f0(v) such that,
as in Theorem 2.1 f0(v) ∈ L1(R+) and v3f0(v) ∈ L1(R+). Then, if the relative
entropy between f0 and f∞ is bounded, f(v, t) converges in L1(R+) towards the
steady state f∞, and both (73) and (74) hold.

3.2. Further convergence results. The analysis of the previous section shows
that the solution to the Fokker–Planck equation converges towards the stationary
state in the L1-norm for a large class of initial data, but with a polynomial rate
of decay. However, stronger results of convergence can be obtained by suitably
restricting the allowed initial data, or, in alternative, by relaxing the distance in
which the decay holds.

Let us apply Theorem 3.1 to the convex function φ(x) = (x − 1)2. In this case
Θ(F δ(t)) coincides with the weighted (with weight f∞) L2-norm between fδ and
f∞

Θ(F δ(t)) =

∫
R+

|fδ(v, t)− f∞(v)|2f−1
∞ (v) dv.

Then

IΘ(F δ(t)) = 2

∫
R+

v2f∞(v)

∣∣∣∣∂F δ(v, t)∂v

∣∣∣∣2 dv,
and application of Chernoff inequality with weight (60) gives

IΘ(F δ(t)) ≥ 2Θ(F δ(t)).
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Hence, exponential decay follows, and∫
R+

|fδ(v, t)− f∞(v)|2f−1
∞ (v) dv ≤ e−2t

∫
R+

|fδ0 (v)− f∞(v)|2f−1
∞ (v) dv. (75)

Proceeding as before, and removing the lifting on the initial data we obtain the
following

Theorem 3.5. Let f(v, t) be a solution of the initial-boundary value problem for
the Fokker–Planck equation (1), corresponding to an initial density f0(v) such that,
as in Theorem 2.1 f0(v) ∈ L1(R+) and v3f0(v) ∈ L1(R+). Then, if the the weighted
L2-norm

‖f0 − f∞‖∗2 =

∫
R+

|f0(v)− f∞(v)|2f−1
∞ (v) dv

is bounded, f(v, t) converges in L∗2(R+) towards the steady state f∞, and

‖f(t)− f∞‖∗2 ≤ e−2t‖f0 − f∞‖∗2. (76)

Last, we analyze the rate of decay towards equilibrium in the weak d2-distance
defined in (28). Proceeding as in Section 2.3, it is immediate to compute the rate
of convergence of two different solution of Boltzmann equation (15). Let fε(t) and
gε(t) denote two solutions of the kinetic model (15), departing from initial data f̃0

and g̃0 respectively. Let us suppose in addition that the distance in the Fourier
metric d3(fε, gε) is initially bounded, and let us define

hε(ξ, t) =
f̂ε(ξ, t)− ĝε(ξ, t)

|ξ|3
.

Then, proceeding as in section 2.3, we obtain∣∣∣∣ ∂∂thε +
1

ε
hε

∣∣∣∣ ≤ 1

ε
‖hε‖∞

[
〈|1− λε+ η̃ε|3〉+ |λε|3

]
.

Since by construction the quantity 1− λε+ η̃ε is nonnegative, and 〈η̃3
ε〉 = 0

〈|1− λε+ η̃ε|3〉+ |λε|3 = 1− 3ε(λ− σ)(1− λε).

Therefore Gronwall inequality yields

d3(fε(t), gε(t)) ≤ d3(f̃0, g̃0)e−3(λ−σ)(1−λε)t. (77)

Clearly, if λ > σ, and ε� 1 so that λε ≤ δ < 1, the distance between the solutions
d3(fε, gε), for each ε > 0 decays exponentially with a rate bigger than 3(λ−σ)(1−δ).
The decay of two different solutions to the Kinetic Boltzmann-type equation (15)
allows to prove a similar result for the Fokker–Planck equation. To this aim, we
recall a result on the Fourier distance proven in [3], adapted to the present situation

Lemma 3.6. Let {fn(v)}n≥0 and {gn(v)}n≥0, v ∈ R+, be two sequences of prob-
ability density functions with moments bounded up to the second order, such that
fn ⇀ f and gn ⇀ g. Suppose in addition that, for some r > 2∫

R+
|v|rf(v) < +∞,

∫
R+
|v|rg(v) < +∞.

If
dr(fn, gn) < +∞,

then for all s < r,
ds(f, g) ≤ lim inf ds(fn, gn).
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Thanks to the interpolation formula (29) with s = 3 and p = 2, we obtain from
(77) the bound

d2(fε(t), gε(t)) ≤
[
d3(f̃0, g̃0)

]2/3
e−2(1−δ)(λ−σ)t. (78)

Thus, by Lemma 3.6, letting ε→ 0, we conclude that, if f(t) and g(t) are solutions
of the Fokker-Planck equation (1), corresponding to initial values f̃0 and g̃0 such
that d3(f̃0, g̃0) is finite, the distance d2(f(t), g(t)) decays to zero with the explicit
exponential rate 2(1−δ)(λ−σ). We can resume the previous result in the following.

Theorem 3.7. Let f(v, t) be a solution of the initial-boundary value problem for the
Fokker–Planck equation (1), corresponding to an initial density f0(v) such that, as
in Theorem 2.1 f0(v) ∈ L1(R+) and v3f0(v) ∈ L1(R+). Then, provided d3(f0, f∞)
is finite, the solution f(v, t) converges towards the equilibrium density in the Fourier
distance d2, and for each constant δ such that 0 < δ < 1, the following bound holds

d2(f(t), f∞) ≤ [d3(f0, f∞)]
2/3

e−2(1−δ)(λ−σ)t.

4. Conclusions. In this paper, we studied existence, uniqueness and asymptotic
behavior of a Fokker–Planck equation for wealth distribution first derived in [2].
In particular, we investigated the connections between a bilinear kinetic model for
wealth distribution introduced in [9] and the Fokker–Planck equation (1). In various
cases, these connections allow to pass results which have been found for the kinetic
model to the Fokker–Planck equation.

Some problems, however, remain open. In particular, the invariant trade limit
which allows to obtain the Fokker–Planck equation has been proven to hold only
when the initial values in the kinetic equation possess moments bounded up to
the order three. This condition reflects also on the limit Fokker–Planck equation,
where, for example, the exponential decay towards equilibrium obtained in Theorem
3.7 requires the boundedness of the d3-distance between the initial datum and the
corresponding equilibrium density. Thus, convergence results towards equilibrium
in absence of a sufficiently high number of moments initially bounded is unknown.

References

[1] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the
rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Diff.
Equa. 26 (2001), 43–100.

[2] J.F. Bouchaud and M. Mézard, Wealth condensation in a simple model of economy. Physica
A, 282 (2000) 536–545.

[3] M.J. Cáceres and G. Toscani. Kinetic approach to long time behavior of linearized fast diffu-
sion equations. J. Stat. Phys. 128 (2007) 883–925.

[4] J.A. Carrillo and G. Toscani. Contractive probability metrics and asymptotic behavior of
dissipative kinetic equations. Riv. Mat. Univ. Parma (7) 6, (2007) 75–198.

[5] A. Chakraborti, Distributions of money in models of market economy. Int. J. Modern Phys.
C 13, (2002) 1315–1321.

[6] A. Chakraborti and B.K. Chakrabarti, Statistical Mechanics of Money: Effects of Saving
Propensity. Eur. Phys. J. B 17, (2000) 167–170.

[7] A. Chatterjee, B.K. Chakrabarti and R.B. Stinchcombe, Master equation for a kinetic model
of trading market and its analytic solution. Phys. Rev. E 72, (2005) 026126.



ON A FOKKER–PLANCK EQUATION FOR WEALTH DISTRIBUTION 19

[8] H. Chernoff, A note on an inequality involving the normal distribution. Ann. Probab. 9 (3)
(1981) 533–535.

[9] S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy. J.
Stat. Phys. 120, (2005) 253-277.

[10] B. Düring, D. Matthes and G. Toscani, Kinetic Equations modelling Wealth Redistribution:
A comparison of Approaches. Phys. Rev. E, 78, (2008) 056103.

[11] B. Düring, D. Matthes and G. Toscani, A Boltzmann-type approach to the formation of
wealth distribution curves. (Notes of the Porto Ercole School, June 2008) Riv. Mat. Univ.
Parma (1) 8 (2009) 199–261.

[12] W. Feller, Two singular diffusion problems. Ann. Math. 54 (2) (1951) 173–182.
[13] W. Feller, An introduction to probability theory and its applications. Vol. I. John Wiley &

Sons Inc., New York 1968.
[14] G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani. Fokker–Planck equations in the mod-

elling of socio-economic phenomena. Math. Mod. Meth. Appl. Scie. (in press) (2017).
[15] G. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend

to equilibrium for solutions of the Boltzmann equation. J. Statist. Phys. 81 (1995) 901–934.
[16] O. Johnson and A. Barron, Fisher information inequalities and the central limit theorem.

Probab. Theory Related Fields 129 (3) (2004) 391–409.
[17] C. A. Klaassen, On an Inequality of Chernoff. Ann. Probability 13 (3) (1985) 966–974.
[18] C. Le Bris and P.L. Lions Existence and Uniqueness of Solutions to Fokker–ÂŰPlanck Type

Equations with Irregular Coefficients, Communications in Partial Differential Equations 33
(7) (2008) 1272–1317.

[19] D. Matthes, A. Juengel and G.Toscani, Convex Sobolev inequalities derived from entropy
dissipation. Arch. Rat. Mech. Anal. 199 (2) (2011) 563–596.

[20] D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative
economies. J. Stat. Phys. 130 (2008) 1087–1117.

[21] L. Pareschi and G. Toscani, Interacting multiagent systems. Kinetic equations & Monte Carlo
methods. (Oxford University Press, Oxford, 2013).

[22] V. Pareto, Cours d’Économie Politique. Tome Premier, Rouge Éd., Lausanne 1896; Tome
second, Pichon Éd., Paris 1897.

[23] G. Toscani, Entropy dissipation and the rate of convergence to equilibrium for the Fokker-
Planck equation, Quart. Appl. Math., LVII (1999), 521–541

[24] G. Toscani, C. Villani, Probability Metrics and Uniqueness of the Solution to the Boltzmann
Equation for a Maxwell Gas, J. Statist. Phys. 94 (1999) 619–637.

Received xxxx 20xx; revised xxxx 20xx.
E-mail address: marcotorr1986@gmail.com
E-mail address: giuseppe.toscani@unipv.it

mailto:marcotorr1986@gmail.com
mailto:giuseppe.toscani@unipv.it

	1. Introduction
	2. Kinetic model and Fokker-Planck equation
	2.1. Main properties of the Fokker–Planck equation
	2.2. The kinetic model
	2.3. The invariant trade limit of the Boltzmann equation
	2.4. A regularity result

	3. Convergence to equilibrium
	3.1. L1-convergence
	3.2. Further convergence results

	4. Conclusions
	References

