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The problem of evaluating the performance of soccer players is attracting the interest of many companies
and the scientific community, thanks to the availability of massive data capturing all the events generated
during a match (e.g., tackles, passes, shots, etc.). Unfortunately, there is no consolidated and widely ac-
cepted metric for measuring performance quality in all of its facets. In this article, we design and implement
PlayeRank, a data-driven framework that offers a principled multi-dimensional and role-aware evaluation of
the performance of soccer players. We build our framework by deploying a massive dataset of soccer-logs
and consisting of millions of match events pertaining to four seasons of 18 prominent soccer competitions. By
comparing PlayeRank to known algorithms for performance evaluation in soccer, and by exploiting a dataset
of players’ evaluationsmade by professional soccer scouts, we show that PlayeRank significantly outperforms
the competitors. We also explore the ratings produced by PlayeRank and discover interesting patterns about
the nature of excellent performances and what distinguishes the top players from the others. At the end, we
explore some applications of PlayeRank—i.e. searching players and player versatility—showing its flexibility
and efficiency, which makes it worth to be used in the design of a scalable platform for soccer analytics.
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1 INTRODUCTION

Rankings of soccer players and data-driven evaluations of their performance are becoming more
central in the soccer industry [4, 14, 15, 20, 32, 34, 40, 46]. On the one hand, many sports com-
panies, websites, and television broadcasters—such as Opta, WhoScored.com, and Sky, as well as
the plethora of online platforms for fantasy football and e-sports—widely use soccer statistics to
compare the performance of professional players with the purpose of increasing fan engagement
via critical analyses, insights, and scoring patterns. On the other hand, coaches and team man-
agers are interested in analytic tools to support tactical analysis and monitor the quality of their
players during individual matches or entire seasons [11, 27]. Not least, soccer scouts and perfor-
mance analysts are continuously looking for data-driven tools to improve the retrieval of talented
players with desired characteristics, based on evaluation criteria that take into account the com-
plexity and the multi-dimensional nature of soccer performance. While selecting talents on the
entire space of soccer players is unfeasible (if not impossible!) for humans, data-driven perfor-
mance scores help select a small subset of the best players who meet specific constraints (e.g., age,
performance features and trends, roles). This allows scouts and performance analysts to analyze
a smaller set of players, thus saving considerable time and economic resources while broadening
scouting operations and career opportunities of talented players.
The problem of data-driven evaluation of player performance is gaining interest in the scientific

community, too, thanks to the availability of massive data streams generated by (semi-)automated
sensing technologies [4, 10, 15, 28–30, 40, 46, 48], such as the so-called soccer-logs that detail all
the spatio-temporal events related to players during amatch (e.g., tackles, passes, fouls, shots, drib-
bles, etc.). Ranking players means defining a relation of order between them with respect to some
measure of their performance over a sequence of matches. In turn, measuring performance means
computing a data-driven performance rating that quantifies the quality of a player’s performance
in a specific match. This is a complex task, since there is no objective and shared definition of
performance quality, which is an inherently multidimensional concept [36]. Several data-driven
ranking and evaluation algorithms have been proposed in the literature to date, but they suffer
from three main limitations.
First, existing approaches are mono-dimensional, in the sense that they propose metrics that

evaluate the player’s performance by focusing on one single aspect (mostly, passes or shots [6, 12,
23, 24, 39]), thus missing to exploit the richness of attached meta-information provided by soccer-
logs. Conversely, soccer scouts search for a talented player based on “metrics” that combine many
relevant aspects of their performance, from defensive skills to possession and attacking skills. Since
mono-dimensional approaches cannot meet this requirement, there is the need for a framework
capable to exploit a comprehensive evaluation of performance based on the richness of the meta-
information available in soccer-logs. Second, existing approaches evaluate performance without
taking into account the specificity of each player’s role on the field (e.g., right back, left wing), so
they compare players that comply with different tasks [6, 12, 23, 24, 39]. Since it is meaningless
to compare players who comply with different tasks and considering that a player can change
roles from match to match and even within the same match, there is the need for an automatic
framework capable of assigning a role to players based on their positions during a match or a
fraction of it. Third, missing a gold-standard dataset, existing approaches in the literature report
judgments that consist mainly of informal interpretations based on some simplistic metrics (e.g.,
market value or goals scored [6, 45, 47]). It is important instead to evaluate the goodness of ranking
and performance evaluation algorithms in a quantitative and thorough manner, through datasets
built with the help of human experts as done for example for the evaluation of recommender
systems in Information Retrieval.
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This article presents the results of a joint research among academic computer scientists and data
scientists of Wyscout,1 the leading company for soccer scouting. The goal has been to study the
limitations of existing approaches and develop PlayeRank, a new-generation data-driven frame-
work for the performance evaluation and the ranking of players in soccer. PlayeRank offers a prin-
cipled multi-dimensional and role-aware evaluation of the performance of soccer players, driven
only by the massive and standardized soccer-logs currently produced by several sports analytics
companies (i.e., Wyscout, Opta, Stats). PlayeRank is designed around the orchestration of the solu-
tions to three main phases: a learning phase, a rating phase, and a final ranking phase. PlayeRank
models the performance of a soccer player in a match as a multidimensional vector of features ex-
tracted from soccer-logs. In the learning phase, PlayeRank performs two main sub-tasks: (i) the
extraction of feature weights: since we do not have a ground-truth for “learning” the mapping from
the performance features to the players’ performance quality, we turn this problem into a classi-
fication problem between the multidimensional vector of features, aggregated over all players’ of
a team, and the result this team achieved in a match; (ii) the training of a role detector: given that
there are different player roles in soccer, we identify, in an unsupervised way, a set of roles from the
match events available in the soccer-logs. In the subsequent rating phase, a player’s performance
quality in a match is evaluated as the scalar product between the previously computed feature
weights and the values these features get in that match played by that player. In the final ranking
phase, PlayeRank computes a set of role-based rankings for the available players by taking into ac-
count their performance ratings and their role(s) as they were computed in the two phases before.
To validate our framework, we instantiated it over amassive dataset of soccer-logs that is unique

in the large number of logged matches and players and for the length of the period of observation.
In fact, it includes 31M of events covering around 20K matches and 21K players in the last four
seasons of 18 soccer competitions: Spanish first division, English first division, Italian first division,
German first division, French first division, Portuguese first division, Turkish first division, Greek
first division, Austrian first division, Swiss first division, Russian first division, Dutch first division,
Argentinian first division, Brazilian first division, European Champions League, Europa League,
World Cup 2018, and European Cup 2016. Then we performed an extensive experimental analysis
advised by a group of professional soccer scouts that showed that PlayeRank is robust in agreeing
with a ranking of players given by these experts, with an improvement up to 30% (relative) and
21% (absolute) with respect to the current state-of-the-art algorithms [6, 12].
One of themain characteristics of PlayeRank is that, by providing a score that meaningfully syn-

thesizes a player’s performance quality in a match or in a series of matches, it enables the analysis
of the statistical properties of soccer performance. In this regard, the analysis of the performance
ratings resulting from PlayeRank, for all the players and all the matches in our dataset, revealed
several interesting patterns. First, on the basis of the players’ average position during a match,
the role detector finds eight main roles (Section 4.3) and enables the investigation of the notion of
player’s versatility, defined as his ability to change role frommatch-to-match (Section 6.2). Second,
the analysis of feature weights reveals that there is no significant difference among the 18 compe-
titions, with the only exception of the competitions played by national teams (Section 4.4). Third,
the distribution of player ratings changes by role, thus suggesting that the performance of a player
in a match highly depends on the zone of the soccer field he is assigned to (Section 4.5). This is
an important aspect that will be exploited to design a novel search engine for soccer players (Sec-
tion 6.1). Fourth, we find that the distribution of performance ratings is strongly peaked around
its average, indicating that “outlier” performances are rare (Section 4.5). In particular, these outlier
performances are unevenly distributed across the players: While the majority of players achieve

1https://wyscout.com/.
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a few excellent performances, a tiny fraction of players achieve many excellent performances.
Moreover, we find that top players do not always play in an excellent way but, nonetheless, they
achieve excellent performances more frequently than the other players (Section 4.5).

In conclusion, our study shows that PlayeRank is an innovative data-driven framework that
goes beyond the state-of-the-art results in the evaluation and ranking of soccer players. This study
also provides the first thorough, and somewhat surprising, characterization of soccer performance.
The last section will start from PlayeRank to present a set of new challenging problems in soccer
analytics that we state and comment to stimulate the research interest from the community of data
scientists.
The Python source code of PlayeRank can be found at https://github.com/mesosbrodleto/

playerank. An online app to interact with the ratings generated by PlayeRank can be found at
http://playerank.d4science.org/. A dataset containing the PlayeRank scores for all players and
matches for one season of several soccer competitions can be found at https://doi.org/10.6084/
m9.figshare.9361148.v1.

2 RELATEDWORKS

The availability of massive data portraying soccer performance has facilitated recent advances in
soccer analytics. The so-called soccer-logs [4, 15, 40, 46], capturing all the events occurring during
a match, are one of the most common data formats and have been used to analyze many aspects
of soccer, both at team [8, 11, 25, 35, 50] and individual levels [6, 12, 33]. Among all the open
problems in soccer analytics, the data-driven evaluation of a player’s performance quality is the
most challenging one, given the absence of a ground-truth for that performance evaluation.

Data-driven Evaluation of Performance. While many metrics have been proposed to capture spe-
cific aspects of soccer performance (e.g., expected goals, pass accuracy, etc.), just a few approaches
evaluate a player’s performance quality in a systemic way. The flow centrality (FC) metric pro-
posed by Duch et al. [12], one of the first attempts in this setting, is defined as the fraction of times
a player intervenes in pass chains that end in a shot. Based on this metric, they rank all players
in UEFA European Championship 2008 and observe that 8 players in their top-20 list belong to
the UEFA’s top-20 list that was released just after the competition. Being based merely on pass
centrality, as the authors themselves highlight in the article, the FC metric mostly makes sense for
midfielders and forwards. Brooks et al. [6] develop the Pass Shot Value (PSV), a metric to estimate
the importance of a pass for generating a shot. They represent a pass as a vector of 360 features
describing the vicinity of a field zone to the pass’s origin and destination. Then, they use a super-
vised machine-learning model to predict whether or not a given pass results in a shot. The feature
weights resulting from the model training are used to compute PSV as the sum of the feature
weights associated with the pass’s origin and destination. They finally used soccer-logs to rank
players in the Spanish first division season 2012–’13 according to their average PSV, showing that
it correlates with the rankings based on assists and goals. Unfortunately, as the authors highlight
in the article, PSV is strongly biased towards offensive-oriented players. Moreover, PSV is a pass-
based metric that thus omits all the other kinds of events observed during a soccer match and lacks
of a proper validation. Instead of proposing their own algorithm for performance quality evalua-
tion, Nsolo et al. [33] extract performance metrics from soccer-logs to predict the WhoScored.com
performance rating with a machine-learning approach. The resulting model is more accurate for
specific roles (e.g., forwards) and competitions (e.g., English first division) when predicting if a
player is in the top 10%, 25%, or 50% of the WhoScored.com ranking.
The problem of evaluating players’ performance has received attention in other team sports,

too, such as hockey, basketball, and baseball. In hockey, Schulte and Zhao proposed the Scoring
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Impact metric [44] to rank ice hockey players in the NHL, depending on his team’s chance of
scoring the next goal. In basketball, the Performance Efficiency Rating2 is a widely used metric to
assess players’ performance by deploying basketball-logs (e.g., pass completed, shots achieved). In
baseball, a plethora of statistical metrics has been proposed to evaluate the performance of players
and teams [2].

Rating Systems for Sports Teams. Many studies focus on developing the so-called rating sys-
tems, such as Elo and TrueSkill [19, 21], which rank teams or players based on their past victo-
ries/defeats and the estimated strength of the opponent. Therefore, they do not take into account
player-observed match events nor other quantitative aspects of individual and collective perfor-
mance [35]. As a result, unlike PlayeRank, such rating systems are unable to provide an explicit
characterization of the performance of a player as well as to discern his contribution in a match.

Relations between Performance and Market Value. Another strand of literature focuses on quanti-
fying the relation between proxies of a player’s quality, such as market value, wage, or popularity,
and his performance on the field. Stanojevic and Gyarmati [45] use soccer-logs to infer the rela-
tion between a player’s typical performance and his market value as estimated by crowds. They
find a large discrepancy between estimated and real market values, due to the lack of important
information such as injury-proneness and commercialization capacity. Müller et al. [31] develop a
similar approach and use soccer-logs, as well as players’ popularity data and market values in the
preceding years, to estimate a player transfer fee. They show that for the low- and medium-priced
players the estimated market values are comparable to estimations by the crowd, while the lat-
ter performs better for the high-priced players. Torgler and Schmidt [47] investigate what shapes
performance in soccer, represented as a player number of goals and assists. They find that salary,
age, and team effects have a statistically significant impact on a player’s performance on the field.

Position of Our Work. Despite an increasing interest in this research field, our review of the
state-of-the-art highlights that there is no validated framework allowing for a multi-dimensional
and role-aware evaluation of soccer performance quality. In this article, we overcome this issue by
proposing PlayeRank, a framework that deploys the events described by soccer-logs to evaluate a
player’s performance quality and a player’s role in a match. In contrast to FC and PSV, which lack
a proper validation with domain experts, we test the framework against a humanly labeled dataset
we have specifically built for the purpose of evaluating soccer players’ performance. Finally, and
for the first time in the literature, we shed some light on the statistical patterns that characterize
soccer player performance by providing a novel and thorough analysis that exploits PlayeRank
scores and the large and unique dataset of competitions, teams, and players available to us.

3 THE PLAYERANK FRAMEWORK

Figure 1 shows how the PlayeRank framework operates. It is designed to work with soccer-logs, in
which a match consists of a sequence of events encoded as a tuple: 〈id, type,position, timestamp〉,
where id is the identifier of the player that originated/refers to this event, type is the event type (i.e.,
passes, shots, goals, tackles, etc.), position and timestamp denote the spatio-temporal coordinates
of the event over the soccer field. PlayeRank assumes that soccer-logs are stored into a database,
which is updated with new events after each soccer match (Figure 1(a)).
The key task addressed by PlayeRank is the “evaluation of the performance quality of a player

u in a soccer matchm.” This consists of computing a numerical rating r (u,m), called performance
rating, that aims at capturing the quality of the performance of u inm given only the set of events
related to that player in that match. This is a complex task, because of the many events observed in

2https://www.basketball-reference.com/about/per.html.
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Fig. 1. Schema of the PlayeRank framework. Starting from a database of soccer-logs (a), it consists of three
main phases. The learning phase (c) is an “offline” procedure: It must be executed at least once before the
other phases, since it generates information used in the other two phases, but then it can be updated sepa-
rately. The rating (b) and the ranking phases (d) are online procedures, i.e., they are executed every time a
new match is available in the database of soccer-logs. We refer to the text for the notation used in the figure.

a match, the interactions among players within the same team or against players of the opponent
team, and the fact that players’ performance is inextricably bound to the performance of their team
and possibly of the opponent team. PlayeRank addresses such complexity by means of a procedure
that hinges onto a massive database of soccer-logs and consists of three phases: a rating phase, a
ranking phase, and a learning phase.

3.1 Rating Phase

The rating phase (Figure 1, step b) is responsible for the computation of the performance rating
r (u,m), and it is run for each player u every time a new matchm becomes available in the soccer-
logs database. This phase exploits information computed “offline” and consists of two main steps:
individual performance extraction (Figure 1, step b1) and player rating (Figure 1, step b2).

Individual Performance Extraction. Given that a match m is represented as a set of events,
PlayeRankmodels the performance of a playeru inm by means of an n-dimensional feature vector
p
m
u = [x1, . . . ,xn], where xi is a feature that describes a specific aspect of u’s behavior in matchm
and is computed from the set of events played by u in that match. In our experiments in Section 4,
we provide an example of n = 76 features extracted from our dataset. Some features simply count
some events (e.g., number of fouls, number of passes, etc.), some others are at a finer level in that
they distinguish the outcome of those events—i.e., if they were “accurate” or “not accurate.”

Player Rating. The evaluation of the performance of a playeru in a single matchm is computed as
the scalar product between the values of the features referring to matchm and the feature weights
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w computed during the learning phase (Figure 1, step c2.2, described in Section 3.3). Each feature
weight models the importance of that feature in the evaluation of the performance quality of any
player. Formally speaking, given the multi-dimensional vector of features pmu = [x1, . . . ,xn] and
their weights w, PlayeRank evaluates the performance of a player u in a matchm as follows:

r (u,m) =
1

R

n∑
i=1

wi × xi . (1)

The quantity r (u,m) is called the performance rating ofu in matchm, where R is a normalization
constant such that r (u,m) ∈ [0, 1]. We decided to not include the number of goals scored in a
match into the set of features (for reasons that are explained in Section 3.3 (learning phase)), but,
since goals could themselves be important to evaluate the performance of some (offensive) players,
PlayeRank can be adapted to manage goals, too, via an adjusted-performance rating, defined as:

r ∗ (u,m) = α × norm_дoals + (1 − α ) × r (u,m), (2)

where norm_дoals indicates the number of goals scored by u in matchm normalized in the range
[0, 1], and α ∈ [0, 1] is a parameter indicating the importance given to goals into the new rating.
Clearly, r ∗ (u,m) = r (u,m) when α = 0, and r ∗ (u,m) = norm_дoals when α = 1.

Finally, PlayeRank computes the rating of a player u over a series of matchesM = (m1, . . . ,mд )
by aggregating u’s ratings over those matches according to a function μ (r (u,m1), . . . , r (u,mд )),
which, in this article, is set to the Exponential Weighted Smoothing Average (EWMA). This way,
the performance quality of player u after д matches is computed as:

r (u,M ) = r (u,mд ) = β × r (u,mд ) + (1 − β ) × r (u,mд−1), (3)

where β is a proper smoothing factor set in the range [0, 1]. In other words, the performance
quality of playeru after дmatches, i.e., r (u,mд ), is computed as the weighted average of the rating
r (u,mд ) reported by u in the last match mд and the previous smoothed ratings r (u,mд−1). This
way, we are weighting more the recent performances of players. Similarly, the goal-adjusted rating
r ∗ (u,mд ) of u given a series of д matches is computed as the EWMA of his adjusted performance
ratings. The quantity r (u,M ) is called the player rating of playeru givenM , while r ∗ (u,M ) is called
the adjusted-player rating of player u givenM .

Example. Let us assume that performance of soccer players is described by n = 3 features –
number of passes, number of shots, and number of yellow cards. Then, the performance of the
player “Ronaldo” who made in the match “Juve-Roma” 25 passes and 2 shots and got 1 yellow card
is described as:

p
(Juve-Roma)
Ronaldo

= [ 25︸︷︷︸
passes

, 2︸︷︷︸
shots

, 1︸︷︷︸
cards

].

Let us assume now that the feature weights computed during the learning phase are

w = [ 0.05︸︷︷︸
passes

, 0.5︸︷︷︸
shots

, −0.2︸︷︷︸
passes

],

so yellow cards are weighted negatively, whereas shots are weighted positively and five times
more than passes, and that R is the normalization factor. Then, the performance rating of player
“Ronaldo” in match “Juve-Roma” is computed as:

r (Ronaldo, Juve-Roma) =

passes︷�������︸︸�������︷
(25 × 0.05) +

shots︷����︸︸����︷
(2 × 0.5) +

cards︷������︸︸������︷
(1 × −0.2)

R
=

2.05

R
.
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3.2 Ranking Phase

Based on the players ratings computed in the previous phase, PlayeRank constructs a set of role-
based rankings R1, . . . ,Rz , each corresponding to one of the z roles identified by a role detector
(Figure 1, step c1.2, described in Section 3.3), an algorithm previously trained during the learning
phase that assigns to one or more roles each playeru in a matchm. PlayeRank assigns a playeru to
Ri if he has at least x% of the matches inM assigned to role i , where x is a parameter chosen by the
user. In our experiments in Section 4, we select x = 40%, a choice dictated by the fact that arguably
a soccer player may be assigned to at most two roles. Experiments showed this threshold is robust;
however, this parameter can be chosen by the user when running PlayeRank, possibly increasing
the number of assigned roles per player. Depending on the value of the threshold x , a player can
appear in more than one ranking and with different ranks, since they depend on r (u,M ).

3.3 Learning Phase

The learning phase (Figure 1, step c) is executed “offline” and generates information used in the
rating and the ranking phases. It consists of two steps: feature weighting and role detector training.

Feature Weighting. Performance evaluation is a difficult task, because we do not have an objec-
tive evaluation of the performance pmu of each playeru. This technically means that we do not have
a ground-truth dataset to learn a relation between performance features and performance quality
of u in matchm. However, the outcome of a match may be considered a natural proxy for eval-
uating performance quality at team level. Therefore, we overcome that limitation by proposing a
supervised approach: We determine the impact of the n chosen features onto a player performance
by looking in turn at the team-wise contribution of these features to the match outcome.
This idea is motivated by the fact that (i) a team’s ultimate purpose in a match is to win by

scoring one goal more than the opponent and (ii) some actions of players during a match have a
higher impact on the chances of winning amatch than others. For example, making a pass that puts
a teammate in position to score a goal (assist) is intuitively more valuable than making a pass to a
close teammate in the middle of the field. Conversely, getting a red card is intuitively less valuable
than, say, winning a dribble against an opponent. Therefore, those actions that strongly increase
(or decrease) the chances of winning a match must be weighted more during the evaluation, either
positively or negatively. While soccer practitioners and fans have in mind an idea of what the
most and the least valuable actions during a match are, it is important to develop a data-driven
and automatic procedure that quantifies how valuable an action is with respect to increasing or
decreasing the chances of winning a match.
PlayeRank implements this syllogism via a two-phase approach. In the first phase (Figure 1,

step c2.1) it extracts the performance vector pm
T
of teamT in matchm and the outcome om

T
of that

match: where om
T
= 1 indicates a victory for teamT in matchm and om

T
= 0 indicates a non-victory

(i.e., a defeat or a draw) for T . The team performance vector pm
T
= [x (T )

1 , . . . ,x
(T )
n ] is obtained by

summing the corresponding features over all the playersUm
T

composing team T in matchm:

p
m
T [i] =

∑
u ∈Um

T

p
m
u [i].

In the second phase (Figure 1, step 2.2), PlayeRank solves a classification problem between the
team performance vector pm

T
and the outcome om

T
. This classification problem has been shown in

Reference [35] to be meaningful, because there is a strong relation between the team performance
vector and the match outcome. We use a linear classifier, such as the Linear Support Vector Clas-
sifier (LSVC), to solve the previous classification problem, and then we extract from the classifier
the weightsw = [w1, . . . ,wn] that quantify the influence of the features to the outcomes of soccer
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matches, as explained above. These weights are then used in the rating phase (Figure 1, step b2)
to compute the performance ratings of players.

Role Detector Training.As pointed out in References [38, 44], performance ratings aremeaningful
only when comparing players with similar roles. In soccer, each role corresponds to a different
area of the playing field where a player is assigned responsibility relative to his teammates [3].
Different roles imply different tasks, hence it is meaningless to compare, for example, a player
that is asked to create goal occasions and a player that is asked to prevent the opponents to score.
Furthermore, a role is not a unique label, as a player’s area of responsibility can change from one
match to another and even within the same match. Given these premises, we decided to design
and implement an algorithm able to detect the role associated with a player’s performance in a
match based on the soccer-logs. We observe that there do exist methods, originally designed for
hockey [44], that compute the roles of players via an affinity clustering applied over a heatmap
describing their presence in predefined zones of the field. But these approaches are arguably not
effective in soccer, because it offers a lower density of match events w.r.t. hockey. Nonetheless we
experimented and discarded the approach of Reference [44], because it produces on our dataset a
clustering with a very low quality (i.e., silhouette score ss < 0.2).
Conversely, PlayeRank detects a player’s role in a match by looking at his average position. This

is motivated by the fact that a player’s role is often defined as the position covered by the player
relative to his teammates [3]. This is called the center of performance foru inm, and it is denoted as
c
m
u = (xmu ,y

m
u ), where xmu and ymu are the average coordinates of u’s events in matchm, as they are

extracted from the soccer-logs (step c1.1, Figure 1). Then PlayeRank deploys a k-means algorithm
[18] to group the centers of performance of all players in all matches (step 1.2, Figure 1).
PlayeRank also accounts for the possibility of having “hybrid” roles where a center of perfor-

mance is assigned to two or more clusters. This is useful in situations where the center of perfor-
mance of a playeru is between two or more clusters, and so the role ofu in matchm cannot be well
characterized by just one single cluster. Therefore, PlayeRank aims at a finer classification of roles
via a soft clustering. For every center of performance cmu occurring in some cluster Ci , PlayeRank
computes its k-silhouette sk (cmu ) with respect to every other cluster Ck (k � i) as:

sk
(
c
m
u

)
=

dk (c
m
u ) − di (cmu )

max (di (c
m
u ),dk (c

m
u ))
, (4)

where dz (cmu ) is the average distance between c
m
u and all other points in cluster Cz . PlayeRank

assigns cmu to every clusterCj forwhich sj (cmu ) ≤ δs , whereδs is a threshold indicating the tolerance
to “hybrid” centers. If no such j does exist, cmu is assigned to the clusterCi given by the partitioning
computed by the k-means algorithm.
For the sake of completeness, we mention that in approaching the task of role classification,

we have considered other, more sophisticated modeling of players’ performance such as heatmaps
(as in Reference [44]; see comments above) or events direction (as in Reference [3]). However,
we found that the resulting clusters were of lower quality in terms of the silhouette score. Note
that the PlayeRank works with any type of role classification. It is indeed sufficient to change the
role detector module with the preferred algorithm or static role labelling; the remainder of the
framework works the same.

4 EXPERIMENTAL RESULTS

We implemented the PlayeRank framework and executed it on a massive database of soccer-logs
provided by the company Wyscout. In this section, we show experiments for each of the modules
described in Section 3 and depicted in Figure 1.
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Table 1. For Each Competition, We Describe the Corresponding Geographic Area,
Total Number of Seasons, Matches, Events, and Players

competition seasons matches events players

Spanish first division 4 1,520 2,541,873 1,264
English first division 4 1,520 2,595,808 1,231
Italian first division 4 1,520 2,610,908 1499
German first division 4 1,124 2,075,483 1,042
French first division 4 1,520 2,592,708 1,288
Portuguese first division 4 1,124 1,720,393 1,227
Turkish first division 4 1,124 1,927,416 1,182
Greek first division 4 1,060 1,596,695 1,151
Austrian first division 4 720 1,162,696 593
Swiss first division 4 720 1,124,630 647
Russian first division 4 960 1,593,703 1,046
Dutch first division 4 1,248 2,021,164 1,177
Argentinian first division 4 1,538 2,450,170 1,870
Brazilian first division 4 1,437 2,326,690 1,790
European Champions League 3 653 995,363 3,577
Europa League 3 1,416 1,980,733 9,100
European Cup 2016 1 51 78,140 552
World Cup 2018 1 64 101,759 736

64 19,619 31,496,332 (*)21,361

The dataset covers 18 competitions, for a total of 64 soccer seasons and around 20K matches, 31M
events, and 21K players. (*) 21,361 indicates the number of distinct players, as some players play with
their teams in both national and continental/international competitions.

4.1 Soccer-logs Database

We use a database of soccer-logs provided by Wyscout consisting of 31,496,332 events, describing
19,619 matches, 296 clubs, and 21,361 players of several seasons of 18 prominent competitions
around the world (see Table 1): Spanish first division, English first division, Italian first division,
German first division, French first division, Portuguese first division, Turkish first division, Greek
first division, Austrian first division, Swiss first division, Russian first division, Dutch first division,
Argentinian first division, Brazilian first division, European Champions League, Europa League,
World Cup 2018, and European Cup 2016.
Each event records: (i) a unique event identifier; (ii) the type of the event; (iii) a time-stamp;

(iv) the player related to the event; (v) the team of the player; (vi) the match in which the event is
observed; (vii) the position on the soccer field, specified by a pair of integers in the range [0, 100]
indicating the percentage from the left corner of the attacking team; (viii) the event subtype and a
list of tags, which enrich the eventwith additional information (see Table 3).We do not consider the
goalkeeping events available from theWyscout APIs, as we discard goalkeepers from the analysis.3

Table 2 shows an example of an event in the Italian first division, corresponding to an accurate
pass by player 3,344 (Rafinha) of team 3,161 (Internazionale) made at second 2.41 in the first half
of match 2,576,335 (Lazio—Internazionale) started at position (49, 50) of the field. Figure 2 shows
a pictorial representation of the events produced by player Lionel Messi during a match in the
Spanish first division, where each event is drawn at the position of the field where it has occurred.

3Goalkeepers would need a dedicated analysis, since it is the only role having different game rules w.r.t. to all other players.
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Fig. 2. Example of events observed for Lionel Messi
(FC Barcelona) during a match in the Spanish first
division, season 2015/2016. Each event is shown on
the field at the position where it has occurred with a
marker indicating the type of the event.

Table 2. Example of Event in the Dataset
Corresponding to an Accurate Pass by Player
3,344 (Rafinha) of Team 3,161 (Internazionale)

Made at Second 2.41 of Match
2,576,335 (Lazio—Internazionale) Started

at Position (49, 50) of the Field

Table 3. Event Types with Their Possible Subtypes and Tags

type subtype tags

pass cross, simple pass accurate, not accurate, key pass,
opportunity, assist, (goal)

foul no card, yellow, red, 2nd yellow
shot accurate, not accurate, block, opportunity,

assist, (goal)
duel air duel, dribbles, tackles, ground

loose ball
accurate, not accurate

free kick corner, shot, goal kick, throw in,
penalty, simple kick

accurate, not accurate, key pass,
opportunity, assist, (goal)

offside

touch

acceleration, clearance, simple touch counter attack, dangerous ball lost, missed
ball, interception, opportunity, assist, (goal)

For further details, see the Wyscout API documentation at: https://apidocs.wyscout.com/.

In our dataset, a match consists of an average of about 1,600 events, and for each player there
are about 57 observed events per match (Figures 3(a)–(b)), with an average inter-time between
two consecutive events of 3.45s (Figure 3(c)). Passes are the most frequent events, accounting for
around 50% of the total events (Figure 3(d)). Wyscout soccer-logs adhere to a standard format for
storing events collected by semi-automatic systems [15, 40, 46] and do not include off-ball actions.
Moreover, given the existing literature on the analysis of soccermatches [6, 8, 16, 17, 35, 36], we can
state that the dataset we use in our experiments is unique in the large number of events, matches
and players considered, and for the length of the period of observation.

4.2 Performance Extraction

We compute the players’ performance vectors by a two-step procedure: First, we define a feature
for every possible combination of type, subtype, and tag shown in Table 3. For example, given
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Fig. 3. (a) Distribution of the number of events per match (μ = average, σ = st. deviation). On average, a
match has 1,628 events. (b) Distribution of the number of events produced by one player per match. On
average, a player generates around 57 events per match. (c) Distribution of inter-event times, defined as the
time (in seconds) between two consecutive events in a match. On average, there are around three seconds
between an event and the next one in a match. (d) Frequency of events per type. Passes are the most frequent
event, accounting for about 48% of the events in a match.

the foul type, we obtain four features: foul no card, foul yellow, foul red, and foul 2nd yellow. We
discard the goal tag, since we have implicitly considered the goals as the outcome of a performance
during the learning phase. Nevertheless, goals can be still included in the performance rating by
Equation (2) in Section 3.1. Eventually, we extracted 76 features from the Wyscout soccer-logs and
normalized them in the range [0, 1] to guarantee that all features are expressed in the same scale
(see Table 7 for a list of all the features). We tried more sophisticated features by considering the
field zones where events have occurred or the fraction of the match when they have occurred, but
we did not find any significant difference w.r.t. the results presented below. We finally build the
performance vector pmu for a player u in match m by counting the number of events of a given
type, subtype, and tag combination observed for u inm. For example, the number of fouls without
card made by u inm compose the value of feature foul no card of u inm.

4.3 Role Detection

To discover roles, we execute the role-detection algorithm of Section 3.3 by varying k = 1, . . . , 20
and specifying δs = 0.1, which implies that 5% of the centers are classified as hybrids.4 We observe
that k = 8 provides the best clustering in terms of silhouette score (ss = 0.43) and that these results
are stable across several executions of the experiment where different sets of centroids are used to
initialize the k-means algorithm. Figure 4(a) shows the result of the 8-means clustering. We asked
professional soccer scouts, employed by Wyscout, to provide an interpretation of the 8 clusters
with terms suitable for soccer practitioners. An explanation for the clusters C1–C8, as well as a
set of players typically in each role, are provided in Table 4. It is worth noting that, while there
are 10 players in a team (excluding the goalkeeper), the clustering algorithm detected 8 roles.
This means that there is at least one cluster (i.e., role) having more than one player in each team.
Moreover the correspondence with classic roles is not perfect in that two players classified in
two different classic roles can appear in the same cluster, and vice versa. Figure 4(b) shows how
the performances and the players are distributed among the roles, where each player is assigned
to the role he covers most frequently during the available seasons. We find that role C2 (central
forward) is the most common role, covering 18% of performances and 19% of players, followed
by role C3 (central fielder), covering 16% of performances and 15% of players. All other roles are
almost equally populated.

4The experiments showed that the number of hybrid centers increases linearly with δs , from none to all centers.
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Fig. 4. (a) Grouping of the centers of performance in the clustersC1, . . . ,C8. Each color identifies a different
cluster (role); grey points indicate hybrid centers of performance. Table 4 shows an interpretation of clusters
given by professional soccer scouts. (b) Distribution of the 8 roles discovered by the role detector across
performances and players (in parenthesis) within our dataset. Each player is assigned to the role he covers
most frequently during the available seasons.

Table 4. Interpretation of the 8 Clusters Detected and Examples of Players Assigned to Each Cluster

cluster description examples

C1 right fielder plays on the right as a wing, back, or both S. Roberto, Danilo
C2 central forward plays in the center, close to the opponent’s goal Messi, Suárez
C3 central fielder plays in the center Kroos, Pjanić
C4 left fielder plays on the left as a wing, back, or both Nolito, J. Alba
C5 left central back plays close to his own goal, on the left Bartra, Maguire
C6 right forward plays on the right, close to the opponent’s area Robben, Dembélé
C7 right central back plays close to his own goal, on the right J. Martínez, Matip
C8 left forward plays on the left, close to the opponent’s area Neymar, Insigne

4.4 Feature Weighting

As discussed in Section 3.3, PlayeRank turns the problem of estimating the 76 feature weights into
a classification problem between a team performance vector and a match outcome. We instantiate
this problem by creating, for each matchm, two examples pm

T1
and p

m
T2
, which correspond to the

performance vectors of two playing teams T1 and T2, and the match outcome label om
T

that is 1
if a team wins and 0 otherwise. The resulting dataset consists of 19,619 examples, 80% of which
are used to train a Linear Support Vector Classifier (LSVC). We have selected the cost parameters
that had the maximum average Area Under the Receiver Operating Characteristic Curve (AUC)
on a 5-fold cross-validation. We validate LCSV on the remaining 20% of the examples, finding
an AUC = 0.89, F1 = 0.81, accuracy= 0.82.5 This result is significantly better than the predictive
results of two baseline classifiers: (i) a classifier that always predicts the most frequent match
outcome (i.e., non-victory,AUC = 0.50, F1 = 0.48, accuracy= 0.62); (ii) a classifier that chooses the
label at random based on the distribution of victories and non-victories (AUC = 0.50, F1 = 0.53,

5The AUC is the expectation that a uniformly drawn random positive is ranked before a uniformly drawn random negative.
The accuracy is the number of correct predictions over the total. The F1 score is the harmonic average of precision and
recall (precision is the number of correct positive results divided by the number of the classifier’s positive results; recall is
the number of correct positive results over the total positive results).

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 59. Publication date: September 2019.



59:14 L. Pappalardo et al.

Fig. 5. Top-10 (black bars, on the right) and bottom-10 (grey bars, on the left) features according to the value
of the weights extracted from the LSVC trained on all competitions together.

accuracy = 0.53). We also experimented with different labelling of om
T

by defining either om
T
= 0

in the case of defeat and om
T
= 1 otherwise, or by defining a ternary classification problem where

om
T
= 1 indicates a victory, om

T
= 0 a defeat, and om

T
= 2 a draw. In all these cases, we did not find

any significant difference in the feature weights described below, so we chose to deploy the binary
classification problem above.
Figure 5 shows the top-10 (black bars) and the bottom-10 (grey bars) feature weights w =

[w1, . . . ,wn] resulting from LSVC (see Appendix B for details). We find that assist-based features
are the most important ones, followed by the number of key passes and the accuracy of shots. In
contrast, getting a red/yellow card gets a strong negative weight, especially for hand and violent
fouls. It is interesting to notice that, though these choices are pretty natural for who is skilled in
soccer-player evaluations, PlayeRank derived them automatically by just looking at the massive
soccer-logs in our dataset.
For the sake of completeness of our experimental results, we also repeated the classification

task separately: (i) competition-by-competition, i.e., we created 18 LSVCs, each one trained on the
matches of one competition only; (ii) role by role, i.e., we created 8 LSVCs, each one trained on the
examples created from players tagged with one role only (Section 4.3).

Competition-based Weights. We extracted for each of the 18 competitions the corresponding set

of weightsw(j ) = [w (j )
1 , . . . ,w

(j )
n ] (j = 1, . . . , 18) and quantified the difference between the weights

w extracted from all competitions and the w(j )s via the Normalized Root-Mean-Square Error:

NRMSE(w,w(j ) ) =

√
1
n

∑n
i=1 (wi −w (j )

i )2

maxw −minw
, (5)

where maxw and minw are the maximum and the minimumweights inw, respectively. We found
that the average NRMSE is around 6% and that 16 out of 18 competitions have NRMSE < 7% (Fig-
ure 6(b)), indicating that the difference between any w

(j ) and w is small, and hence the relation
between team performance and match outcome is in most of the cases independent of the spe-
cific competition for clubs considered. Only for competitions involving national teams, such as
the European Cup 2016 and the World Cup 2018, the NRMSE is higher, 17% and 20%, respectively
(Figure 6(b)). This can be due either to the fact that these two competitions have a few matches
(51 and 64, respectively; see Table 1) or that while all the other competitions refer to soccer clubs,
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Fig. 6. (a) Heatmap indicating the Normalized Root Mean Squared Error (NRMSE) between the set of

feature weights w
(j ) of each competition j and the overall set of feature weights w. (b) Distribution of

NRMSE (w,w(j ) ), expressed in percentage, indicating the normalized error between w and a competition’s
set of weights (blue bars) and a role’s set of weights (white bars). (c) Distribution of AUC of the LSVCs trained
on the 18 competitions separately (blue bars) and the 8 roles separately (white bars).

the European Cup 2016 and the World Cup 2018 are competitions for national teams, which are
generally more unpredictable [8, 9]. Figure 6(c) indicates that the accuracy of the LSVC trained on
the 64 matches of the World Cup 2018 is lower than the accuracy of the other models, suggesting
that the number of matches in a competition influences the accuracy. However, the accuracy of the
LSVC model trained on the European Cup 2016 is close to the accuracy of all other models, sug-
gesting that the difference in the weights can be also due to the specific nature of the competition.

Role-based Weights. We repeated the classification task separately role-by-role by aggregating
the players’ feature role-by-role. We found that: (i) the accuracy of the LSVCs trained on the roles
separately are lower than the accuracy of the models trained on the competitions, though the role-
based model’s accuracy is still higher than the model trained on the World Cup 2018 (Figure 6(c));
(ii) theNRMSE between each role’s set of weights and the set of weights trained on all competitions
together is lower than 15% (Figure 6(b)). This indicates that there is a small variation between the
competition-based and the role-based sets of weights. For this reason, we will just use w (i.e.,
the set of weights computed at match level including all competitions) in the computation of the
ratings in the following sections.

4.5 Player Ratings and Rankings

Given w, we compute the performance rating r (u,m) for each player u in each matchm and then
explore their distribution. As Figure 7(a) shows, the distribution is strongly peaked around its av-
erage (μ = 0.39), indicating that “outlier” performances (i.e., r (u,m) � [μ − 2σ , μ + 2σ ], σ is the
standard deviation) are rare. In particular, excellent performances (i.e., r (u,m) > μ + 2σ ), account-
ing for just 5% of the total, are unevenly distributed across the players. Indeed, the probability
density function of the number of excellent performances per player is decreasing and long-tailed
(Figure 9, ALL): While the majority of players achieve a few excellent performances, a tiny fraction
of players achieve up to 40 excellent performances during the five years. This trend is observed also
when we split performances by the player’s role, highlighting the presence of a general pattern
(Figure 9, C1–C8).
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Fig. 7. (a) Distribution of performance ratings. It is strongly peaked around the average μ = 0.39, while out-
liers are rare. Most of the ratings (≈94%) are within the range [μ − 2σ , μ + 2σ ] (σ is the standard deviation).
(b) Correlation between player ratings and adjusted-player ratings as α varies in the range [0, 1]. The dashed
curve refers to all players together, the solid to the 8 roles.

As an example, let us consider all performances of role C8 (left forward): Most of the players
achieve excellence just once, while a few players achieve as many as 30 (Neymar, 21% of his perfor-
mances), 16 (L. Insigne, 14%), and 15 (E. Hazard, 10%) excellent performances. Moreover, we find
that a correlation exists between a player’s average performance rating and the variability of his
ratings (Figure 10): The stronger a player is (i.e., the higher his average performance rating), the
more variable his performance ratings are (i.e., the higher is the standard deviation of his ratings).
In other words, the best players do not play excellence in every match, they just achieve excel-
lence more frequently than the other players. Taken together, Figures 7(a), 9, and 10 indicate that:
(i) excellent performances are rare (≈5% of the total); (ii) just 11% of the players achieve excellent
performances at least once; (iii) while a small set of players repeatedly achieve excellence, all other
players do a few times, suggesting that the best players do not always play excellently but they just
achieve it more frequently; (iv) excellent performances are at most 21% (Neymar) and on average
9% of all players reach excellence at least once.
By aggregating the performance rating of each player u over the whole series M of matches,

we compute the player rating r (u,M ). Figure 8 visualizes the distribution of these player ratings
by grouping the players on the x-axis according to their roles. We recall that we are assigning a
player to a role if he plays at least 40% of the matches in that role, meaning that a player may
be assigned to at most 2 roles among the 8 roles detected. We observe a different distribution of
ratings according to the players’ roles, both in terms of range of values and their concentration.
This fully justifies the design of the role-detection module in the PlayeRank framework. In fact,
we notice that the top-ranked player of cluster C4, Marcelo, gets a player rating that is below the
average of the ratings of clusters C6 or C8 (Figure 8).

Table 5 reports the top-10 players grouped by the 8 roles. Although PlayeRank is fully data-
driven, it is able to place the most popular players at the top of some ranking. For example, Lionel
Messi (Barcelona) is the best player in clusterC6 (see Figure 4), followed by other renowned players
such as Thomas Müller (Bayern Munich) and Mohamed Salah (Liverpool). Instead, the best player
in clusterC2 (central forward) is Luís Suárez (Barcelona), preceding Cristiano Ronaldo (Juventus),
Jonas (Benfica), and Benzema (Real Madrid). Other renowned players are at the top of their role’s
ranking, such as Neymar (PSG, C8, left forward) and Marcelo (Real Madrid, C4, left-fielder).

What it is surprising in these role-based rankings is that they have been derived by PlayeRank
without considering the number of goals scored by players when building the performance
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Fig. 8. Distribution of player ratings per role. Each boxplot represents a cluster (role) and each point (circle)
indicates a player’s rating, computed across all the performances in the last four seasons of the 18 compe-
titions. The points are jittered by adding random noise to the x-axis value to help visualization. For each
cluster, the player’s name at the top of the corresponding role-based rankings are shown.

Fig. 9. Probability density function of the number of excellent performances #EP (i.e., r (u,m) > μ + 2σ ) per
player, for each role (C1, . . . ,C8) and for all roles together (ALL). In each plot, we show the players who achieve
the top-5 performances in the corresponding role. We observe that the probability density functions are
decreasing and long-tailed, meaning that while the majority of players achieve a few excellent performances,
a tiny fraction of players achieve up to dozens of excellent performances during the five years.

vector. Actually, we observe that in general the goal-adjusted ranking r ∗ (u,M ) is consistent with
r (u,M ) for all values of α (Equation (2)): As the black dashed curve in Figure 7(b) shows, the
correlation between the player rating and the adjusted-player rating slightly decreases with α ,
with values that are in general ≥0.8. However, when investigating how the correlation changes
with α role-by-role, we find that while offensive-oriented roles such as C2 (central forward), C6

(right forward), and C8 (left forward) show in general high correlations between those ratings
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Fig. 10. Correlation between a player’s average performance rating and his standard deviation for each role
(C1, . . . ,C8) and all roles together (ALL). Here r indicates the Pearson correlation coefficient.

(∈ [0.65, 0.85]), rolesC3 (central-fielder),C5 (left central back), andC4 (left-fielder) show moderate
correlations (∈ [0.40, 0.75]); while roleC1 (right-fielder) shows low correlation (∈ [0.20, 0.65]). This
result suggests that the player rating of offensive players is not much influenced by the number
of goals scored, presumably because they are already associated with events related to scoring.

5 VALIDATION OF PLAYERANK

Existing player-ranking approaches report judgments that consist mainly of informal interpreta-
tions based on some simplistic metrics (e.g., market value or goals scored [6, 45, 47]). It is im-
portant instead to evaluate the goodness of ranking and performance evaluation algorithms in a
quantitative manner, through the help of human experts, as done for example for the evaluation
of recommender systems in information retrieval.
We validated PlayeRank by creating and submitting a survey to three professional soccer talent

scouts, employed byWyscout, hence particularly skilled at evaluating and comparing soccer play-
ers. Our survey consisted of a set of pairs of players randomly generated by a two-step procedure,
defined as follows: First, we randomly selected 35% of the players in the dataset. Second, for each
selected player u, we cyclically iterated over the ranges [1, 10], [11, 20], and [21,∞] and selected
one value, say x , for each of these ranges, and then picked the player being x positions above u
and the one being x positions below u in the role-based ranking (if they exist). This generated a
set P of 211 pairs involving 202 distinct players.

For each pair (u1,u2) ∈ P , each scout was asked to select the best player betweenu1 andu2 or to
specify that the two players were equally valuable. For each such pair, we also computed the best
player according to PlayeRank by declaringu1 stronger thanu2 ifu1 precedesu2 in the ranking.We
discarded from P all pairs for which there is not a majority among the evaluations of the experts:
namely, either all experts expressed equality or two experts disagreed in judging the best player
and the third one expressed equality. As a result of this process, we discarded 8% of P ’s pairs.
Over the remaining P ’s pairs, we investigated two types of concordance among the scouts’

evaluations: (i) the majority concordance cmaj defined as the fraction of the pairs for which
PlayeRank agrees with at least two scouts; (ii) the unanimous concordance cuna defined as the
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Table 5. Top-10 Players in Each Role-based Ranking, with the Corresponding Player Rating (r )
Computed Across the Last Four Seasons of the 18 Competitions

r player club r player club r player club

cl
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4
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.404 Marcelo R. Madrid
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r
2
-
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d

.404 L. Suárez Barcelona

cl
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e
r
3
-
ce
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tr
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r

.404 A. Ramsey Arsenal

.402 L. Kurzawa PSG .402 C. Ronaldo Juventus .402 N. Keïta Leipzig

.399 A. Sandro Juventus .399 Jonas Benfica .399 A. Grünwald A. Wien

.399 J. Alba Barcelona .399 K. Benzema R. Madrid .399 S. Schwab R. Wien

.395 J. Willems Eintracht F. .395 D. Mertens Napoli .395 van Overeem AZ

.393 D. Alaba Bayern M. .393 L. de Jong PSV .393 O. Özyakup Beşiktaş

.392 M. Alonso Chelsea .392 S. Agüero Man City .392 A. Dzagoev CSKA M.

.392 B. Davies Tottenham .392 S. Heung-Min Tottenham .392 C. Tolisso Bayern M.

.391 D. Kombarov Spartak M. .391 D. Alli Tottenham .391 Nainggolan Roma

.390 J. Brenet PSV .390 A. Dzyuba Zenit .390 B. N’Diaye Stoke City

cl
u
st
e
r
1
-
ri
gh

t
fi
el
de
r

.402 S. Lainer Salzburg

cl
u
st
e
r
7
-
ce
n
tr
al
ba
ck

.402 M. Ginter Borussia M.

cl
u
st
e
r
8
-
le
ft
fo
rw

ar
d

.402 Neymar PSG

.402 M. Pereira Porto .402 G. Kashia Vitesse .402 M. Depay O. Lyonnais

.398 S. Roberto Barcelona .398 Réver Flamengo .398 L. Insigne Napoli

.398 J. Caiçara Istanbul B. .398 Tzimopoulos PAS .398 L. Sané Man City

.397 D. Carvajal R. Madrid .397 M. Yumlu Akhisar .397 M. Hamšík Napoli

.397 L. De Silvestri Torino .397 Hilton Montpellier .397 M. Dabbur Salzburg

.397 R. Pereira Leicester .397 Alderweireld Tottenham .397 E. Hazard Chelsea

.396 D. Caligiuri Schalke .396 Bruno Silva Cruzeiro .396 P. Coutinho Barcelona

.395 N. Skubic Konyaspor .395 Y. Ayhan MKE .395 I. Perišić Inter

.395 S. Widmer Udinese .395 J. Schunke Estudiantes .395 Isco R. Madrid

cl
u
st
e
r
5
-
ce
n
tr
al
ba
ck

.393 J. Vestergaard Southampton

cl
u
st
e
r
6
-
ri
gh

t
fo
rw

ar
d

.393 L. Messi Barcelona

.392 Jardel Benfica .392 T. Müller Bayern M.

.391 J. Vuković H. Verona .391 M. Salah Liverpool

.391 Diego Antalyaspor .391 R. Sterling Man City

.390 Raúl Silva S. Braga .390 G. Bale R. Madrid

.390 D. Siovas Leganés .390 S. Mané Liverpool

.390 M. Hummels Bayern M. .390 K. Bellarabi Bayer L.

.389 C. Lema Belgrano .389 B. Traoré O. Lyonnais

.389 L. Perrin S. Étienne .389 G. Martins A. Madrid

.389 S. Ignashevich CSKA M. .389 A. Candreva Inter

The club indicated in the table is the one the player played with at the end of 2018.

fraction of pairs for which the scouts’ choices are unanimous and PlayeRank agrees with them.
We found that cmaj = 68% and cuna = 74%, indicating that PlayeRank has in general a good
agreement with the soccer scouts, compared to the random choice (for which cmaj = cuna = 50%).
Figure 11 offers a more detailed view on the results of the survey by specializing cmaj and cuna on
the three ranges of ranking differences: [1, 10], [11, 20], [21,∞]. The bars show a clear and strong
correlation between the concordance among scouts’ evaluations (per majority or unanimity) and
the difference between the positions in the ranking of the checked pairs of players: When the
ranking difference is ≤10 it is cmaj = 59% and cuna = 61%; for larger and larger ranking differences,
PlayeRank achieves a much higher concordance with experts, which is up to cmaj = 86% and
cuna = 91% when the ranking difference is ≥20. Clearly, the disagreement between PlayeRank
with the soccer scouts is less significant when the players are close in the ranking (i.e., their
distance <10). Indeed, the comparison between soccer players is a well-known difficult problem,
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Fig. 11. Majority (grey bars) and unanimity (red) concordance between Flow Centrality and the scouts (left),
PSV and the scouts (center), PlayeRank and the scouts (right).

as witnessed by the significant increase in the fraction of unanimous answers by the scouts,
which goes from a low 58% in the range [1, 10] to a reasonable 71% in the range [21,+∞]. This
a fortiori highlights the robustness of PlayeRank: The scouts’ disagreement decreases as pairs of
players are farther and farther in the ranking provided by PlayeRank.
As a final investigation, we compared PlayeRankwith the Flow Centrality (FC) [12] and the PSV

[6] metrics, which constitute the current state-of-the-art in soccer-player ranking (see Section 2).
These metrics are somewhatmono-dimensional, because they exploit just passes or shots to derive
the final ranking. Figure 11 (right) shows the results obtained by FC and PSV over our set of players’
pairs evaluated by the three Wyscout experts. It is evident that FC and PSV achieve significantly
lower concordance than PlayeRank with the experts: for PSV, the majority concordance ranges
from 53% to 76%, while the unanimity concordance ranges from 55% to 78%; for FC, the majority
concordance ranges from 54% to 68%, while the unanimity concordance ranges from 63% to 70%.
So, PlayeRank introduces an improvement that is up to 16% (relative) and 13% (absolute) with
respect to PSV, and an improvement of 30% (relative) and 21% (absolute) with respect to FC.

6 APPLICATIONS

To demonstrate its usefulness, in this section, we show two examples of analytical services that
can be designed using PlayeRank: the retrieval of players in a database of soccer-logs and the
computation of the players’ versatility.

6.1 Retrieval of Players

One of the most useful applications of PlayeRank is searching players in a soccer-logs database.
The search is driven by a query formulated in terms of a suitable query language that considers
the events occurring during a match and their position on the field. Since we do not want to enter
in the formal definition of the full query language, which is beyond the scope of this article, we
concentrate here only on its specialties that are the most interesting algorithmically for the issues
we have discussed in this article.
We propose the efficient solution of a spatial query over the soccer-field zones that possibly

span more roles and have geometric forms that differ from the ones identified by the role detector.
We assume a tessellation of the soccer field into h zones of equal size z1, . . . , zh . The query is
modeled as a vector Q = [q1, . . . ,qh] in which qi expresses how much relevant is the presence
of the searched player in zone zi . Similarly, player u is modeled as a vector Vu = [u1, . . . ,uh] in
whichui expresses howmuch inclined is playeru to play in zone zi . We can go from binary vectors,
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Fig. 12. Visualization of a spatial query Q1 (red
area) and the heatmaps of presence of G. Bale of
RealMadrid (a) and L.Messi of Barcelona (b). The
darker a zone, the higher a player’s propensity to
play in it.

Table 6. Top-10 Players According to Their
z (u,M,Q1) with Respect toQuery Q1 in Figure 12,
Computed on the Last Four Seasons of the Italian,

Spanish, German, and English First Divisions

player z s r club

1 L. Messi .28 .60 .46 Barcelona
2 A. Robben .26 .61 .43 Bayern M.
5 M. Salah .24 .56 .43 Liverpool
3 L. Suárez .24 .54 .45 Barcelona
4 T. Müller .24 .56 .43 Bayern M.
6 R. Lukaku .24 .56 .42 Man. Utd
7 A. Petagna .23 .55 .42 Atalanta
8 D. Berardi .22 .54 .41 Sassuolo
9 Aduriz .22 .55 .40 A. Bilbao
10 G. Bale .22 .52 .43 R. Madrid

which model interest/no interest forQ and presence/no presence forVu , to the more sophisticated
case in which Q expresses a weighted interest for some specific zones and Vu is finely modeled
by counting; for example, the number of events played by u in each zone zi . Now, given a query
Q and the players in the soccer-logs database, the goal is to design an algorithm that evaluates
the propensity of players to play in the field zones specified by Q . We follow the standard practice
of Information Retrieval (IR) and compute for each player u the dot product s (u,Q ) = Vu ·Q . We
can efficiently compute this product by means of one of the plethora of solutions known in the IR
literature (see, e.g., References [26, 41]). In this respect, we point out that known solutions work
efficiently over a million (and more) dimensions, so they easily scale to the problem size at hand,
because h ≈ 106 if we would assume zones zi of size 1 cm2!
Finally, PlayeRank ranks players according to their rating over a series of matches and their

propensity to play in the queried zones by sorting players in decreasing order of the score
z (u,M,Q ) = s (u,Q ) × r (u,M ), where s (u,Q ) is the dot product between Q and the player vector
Vu , and r (u,M ) isu’s player rating over a series of matches. Note that the function z (u,M,Q ) could
be defined in many other ways; for example, by weighting s (u,Q ) and r (u,M ) differently to better
capture the user’s needs. Other combinations will be investigated in the future. For the sake of pre-
sentation, we consider here a tessellation of the soccer field into 100 equal-sized zones and, thus,
define a query Q as a binary vector of 100 components that express the interest of the user about
the “presence in a zone” for the searched players. PlayeRank computes s (u,Q ) as the dot product
betweenQ and the player vectorVu , and r (u,M ) as the player rating over all matches of u. Players
are ranked in decreasing order of the quantity z (u,M,Q ) = s (u,Q ) ∗ r (u,M ) as described above.

Table 6 shows the top-10 players in a portion of our dataset according to their z (u,M,Q1) for
an exemplar queryQ1 showed in Figure 12. Lionel Messi, whose heatmap of positions is drawn in
Figure 12(b), has the highest z (u,M,Q1). In the table, it is interesting to note that, though the vector
of Arjen Robben is more similar to Q1 (s (Robben,Q1) = 0.61) than Messi’s vector (s (Messi,Q1) =
0.60), Messi has a higher player rating (r (Messi,M ) = 0.46, r (Robben,M ) = 0.43). As a result, the
combination z (u,M,Q1) of the two quantities makes Messi the player offering the best trade-off
between matching with the user-specified zones and performing well in those zones.

6.2 Versatility

The role detector of PlayeRank enables the analysis of an important aspect of a player’s behavior:
his versatility, which we define as a player’s propensity to change role from match-to-match. To
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Fig. 13. Versatility of soccer players. (a) Heatmap showing the frequency of top players to play in the 8
roles (the darker a cell, the higher the frequency). The players are sorted from the least versatile (Neymar)
to the most versatile (Sergi Roberto). (b) Positions of centers of performance of Sergi Roberto (circles) and
Neymar (squares). Each center of performance is colored according to the role assigned by the role-detection
algorithm.

investigate this aspect, we define the versatility of a player as the Shannon entropy of his roles in
a series of matchesM :

V (u,M ) = −
∑k

i=1 p (u,M )i logp (u,M )i

logk
, (6)

where k = 8 and p (u,M )i is the probability of player u of playing in role i , computed as the ratio
of the number of matches inM in which u played in role i .
Figure 13(a) displays the frequency p (u,M )i of playing in a role i for a set of top soccer players.

We observe that many players have a high versatility, i.e., they play in different roles across dif-
ferent matches. In particular, Sergi Roberto (FC Barcelona) and Neymar (PSG FC) are among the
most-versatile and the least-versatile players, respectively. Figure 13(b) visualizes all the centers
of performance of Sergi Roberto and Neymar, coloring the centers according to the role assigned
by the role detector. We observe that Neymar’s centers of performance are concentrated in just
one role (C8, left forward) while Sergi Roberto’s centers are scattered around the field, indicating
that he plays in all 8 roles, witnessing a high versatility. Numerically,V (Sergi Roberto) = 0.45 and
V (Neymar) = 0.016. The versatility of a player is an important property to take into account when
composing a club’s roster. PlayeRank embeds versatility within its analytic framework, allowing
soccer practitioners and scouts to evaluate the flexibility of a player as well as his playing quality
in an automatic way.

7 CONCLUSIONS AND FUTURE WORKS

In this article, we presented PlayeRank, a data-driven framework that offers a multi-dimensional
and role-aware evaluation of the performance of soccer players. Our extensive experimental eval-
uation on a massive database of soccer-logs—18 competitions, 31M events, 21K players—showed
that the rankings offered by PlayeRank outperform existing approaches in being significantlymore
concordant with professional soccer scouts. Moreover, our experiments showed several interest-
ing results, shedding light on novel patterns that characterize the performance of soccer players.
Indeed, we found that excellent performances are rare and unevenly distributed, since a few top
players produce most of the observed excellent performances. An interesting result is also that top
players do not always play excellently, they just achieve excellent performances more frequently
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than the other players. Regarding the extraction of feature weights, we found that the difference
between the weights extracted from each competition separately is small (i.e., <10%) with the
only exception of the Euro Cup and theWorld Cup for which that difference is slightly higher (i.e.,
≈20%), thus highlighting the different nature of competitions for national teams. Last, our role de-
tector found 8main roles in soccer that we also exploited to investigate the versatility of players, an
entropy-based measure that indicates the ability of a player to change role from match-to-match.
PlayeRank is a valuable tool to support professional soccer scouts in evaluating, searching, rank-

ing, and recommending soccer players. We wish to highlight here that, given its modularity, Play-
eRank can be extended and customized in several ways. First, more sophisticated algorithms could
be designed to detect a player’s role during a match or fraction of a match. These algorithms could
then be easily embedded in the PlayeRank’s architecture, giving the user the possibility to cus-
tomize role detection according to their needs. Some innovative AI-based solutions to role detec-
tion, whichwe plan to embed into PlayeRank, have been proposed during a Soccer Data Challenge6

recently organized by Wyscout and the European research infrastructure SoBigData. A similar
reasoning applies to the feature-weighting module: As soon as more sophisticated techniques are
proposed to weight performance features, they could be embedded in PlayeRank’s architecture.
Another direction to improve PlayeRank is to make it able to work with different data sources.

In its current version, PlayeRank is based on soccer-logs only, a standard data format describing all
ball-touches that occur during a match [15, 35]. Unfortunately, out-of-possession movements are
not described in soccer-logs, making it difficult to assess important aspects such as pressing [1] or
the ability to create spaces [5]. PlayeRank can be easily extended by making the individual perfor-
mance extraction module able to extract features from other data sources such as video tracking
data [15] and GPS data [42, 43], which provide a detailed description of the spatio-temporal tra-
jectories generated by players during a match.
Finally, it would be interesting to investigate the flexibility of PlayeRank’s architecture by plug-

ging it into new performance metrics that will be proposed in the literature; as well as to evaluate
its applicability to other team sports, such as basketball, hockey, or rugby, for which data are avail-
able in a format that is similar to that of soccer-logs [7, 15, 40, 46].

APPENDICES

A PERFORMANCE FEATURES

Table 7 shows the list of features used in our experiments. Note that PlayeRank is designed to
work with any set of features, thus giving to the user a high flexibility about the description of
performance. If other features are available from different data sources, describing for example
physiological aspects of performance, they can be added into the framework. Section 5 shows
that the proposed set of features is powerful enough to make PlayeRank outperform existing ap-
proaches in being more concordant with professional soccer scouts.

B EXTRACTION OF WEIGHTS FROM THE LSVC

To classify the outcome of a match given the two teams’ performance vectors, we use a Linear
Support Vector Classifier (LSVC) [13]. Given a set of instance-label pairs (xi ,yi ), with i = 1, . . . , l ,
xi ∈ Rn , and yi ∈ {−1,+1}, an LSVC solves an unconstrained optimization problem with a loss
function ξ :

min
w
=

1

2
w
T
w +C

l∑
i=1

ξ (w; xi ,yi )

6https://sobigdata-soccerchallenge.it/.
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Table 7. List of the 76 Features Extracted from the Soccer-logs Database and Used in Our Experiments

type feature type feature

d
u
e
l

duel-air duel-accurate

o
th
e
rs

o
n
th
e
b
a
ll

others on the ball-acceleration-accurate
duel-air duel-not accurate others on the ball-acceleration-not accurate
duel-ground attacking duel-accurate others on the ball-clearance-accurate
duel-ground attacking duel-not accurate others on the ball-clearance-not accurate
duel-ground defending duel-accurate others on the ball-touch-assist
duel-ground defending duel-not accurate others on the ball-touch-counter attack
duel-ground loose ball duel-accurate others on the ball-touch-dangerous ball lost
duel-ground loose ball duel-not accurate others on the ball-touch-feint

fo
u
l

foul-hand foul-red card others on the ball-touch-interception
foul-hand foul-second yellow card others on the ball-touch-missed ball
foul-hand foul-yellow card others on the ball-touch-opportunity

foul-late card foul-yellow card
p
a
ss

pass-cross pass-accurate
foul-normal foul-red card pass-cross pass-assist
foul-normal foul-second yellow card pass-cross pass-key pass

foul-normal foul-yellow card pass-cross pass-not accurate
foul-out of game foul-red card pass-hand pass-accurate
foul-out of game foul-second yellow card pass-hand pass-not accurate
foul-out of game foul-yellow card pass-head pass-accurate
foul-protest foul-red card pass-head pass-assist

foul-protest foul-second yellow card pass-head pass-key pass
foul-protest foul-yellow card pass-head pass-not accurate
foul-simulation foul-second yellow card pass-high pass-accurate
foul-simulation foul-yellow card pass-high pass-assist
foul-violent foul-red card pass-high pass-key pass
foul-violent foul-second yellow card pass-high pass-not accurate
foul-violent foul-yellow card pass-launch pass-accurate

fr
e
e
k
ic
k

free kick-corner free kick-accurate pass-launch pass-assist
free kick-corner free kick-not accurate pass-launch pass-key pass
free kick-cross free kick-accurate pass-launch pass-not accurate
free kick-cross free kick-not accurate pass-simple pass-accurate
free kick-normal free kick-accurate pass-simple pass-assist
free kick-normal free kick-not accurate pass-simple pass-key pass
free kick-penalty free kick-not accurate pass-simple pass-not accurate
free kick-shot free kick-accurate pass-smart pass-accurate
free kick-shot free kick-not accurate pass-smart pass-assist
free kick-throw in free kick-accurate pass-smart pass-key pass
free kick-throw in free kick-not accurate pass-smart pass-not accurate

sh
o
t shot-shot-accurate

shot-shot-not accurate

The loss function we use in our experiments is the L2-SVM defined as: ξ (w; xi ,yi ) = max(1 −
yiw

Txi , 0)2. Our feature weights are the coefficientsw computed by the LSVC, one per each feature
in the vector xi . In practice, we use the svm.LinearSVC object7 provided by the Python library
scikit-learn [37] to train the LSVC and extract the feature weights.

7The documentation about the svm.LinearSVC class is available at https://scikit-learn.org/stable/modules/generated/
sklearn.svm.LinearSVC.html.
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C RELIABILITY OF DATA COLLECTION

To assess the reliability of the soccer-logs collectionmade byWyscout, we replicate the experiment
proposed by Liu et al. [22]: We ask two independent operators to generate the soccer-logs for a
match through the Wyscout proprietary tagging software, and then we investigate the agreement
between the two sets of soccer-logs. In particular, we compute the so-called Inter-Rater Agreement
Rate (IRAR) [22], which indicates the degree of agreement of the way the two operators generate
the soccer-logs. The IRAR is computed as k = 1 − 1−po

1−pe , where po is the relative agreement among

operators (i.e., the number of the examples over the total that the operators detect the same event)
and pe is the hypothetical probability of chance agreement, using the observed data to calculate
the probabilities of each operator randomly seeing each event type [22].

We find an overall IRAR of 0.70 that can be considered a good agreement between the two
operators [49]. Figure 14(a) shows, for some event types, the distribution of the number of events
per type collected by the two operators. We observe that the two distributions are almost identical,
meaning that the two operators collect the data in the same manner. Figure 14(b) shows the IRAR
of the two operators computed on the soccer-logs of each player separately. There is agreement
between the operators if, when one operator records an event e performed by playerp at time t , the
other operator records the same event with a timestamp t ′ close (+ or − 2s) to t . From Figure 14(b),
we note that the average IRAR per player is high (around 0.70), denoting a good agreement at the
player level, too. In summary, we find a good inter-operator reliability, similar to that guaranteed
by other soccer-logs providers.

Fig. 14. (a) Events distribution for the two operators involved in the experiment. The probability distributions
of observing an event of a given type are almost identical. GK LL stays for event “Goalkeeping leaving line.”
(b) Inter-Rater Agreement Rate (IRAR) for each player. Two operators are in agreement on a player if, for an
event e performed by player p observed by one operator at time t , there is an equivalent event e performed
by player p observed by the other operator at time t ′ � t .
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