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Abstract 

Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many 
studies have pointed out that alterations in the interaction among brain areas can play a role as markers of neu-
rological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, 
but dynamic features of brain connectivity can provide useful information, both on physiology and pathological 
conditions of the brain. In this paper, we propose the application of a computational methodology, named Particle 
Filter (PF), to study non-stationarities in brain connectivity in functional Magnetic Resonance Imaging (fMRI). The PF 
algorithm estimates time-varying hidden parameters of a first-order linear time-varying Vector Autoregressive model 
(VAR) through a Sequential Monte Carlo strategy. On simulated time series, the PF approach effectively detected and 
enabled to follow time-varying hidden parameters and it captured causal relationships among signals. The method 
was also applied to real fMRI data, acquired in presence of periodic tactile or visual stimulations, in different sessions. 
On these data, the PF estimates were consistent with current knowledge on brain functioning. Most importantly, the 
approach enabled to detect statistically significant modulations in the cause-effect relationship between brain areas, 
which correlated with the underlying visual stimulation pattern presented during the acquisition.
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1  Introduction
The understanding of brain functioning is linked to the 
study of the dynamic interaction among anatomically 
segregated brain areas. These interactions are labeled 
functional and effective connectivity and refer to distinct 
ways of considering connections among brain region. 
While complementary to structural connectivity, which 
describes anatomical connections between brain regions 
[1], they concern functional connections that are not 
necessarily achieved through a direct anatomical link 
between brain areas. Functional connectivity regards 

connections as statistical codependencies between the 
signal of different brain regions, and consequently it is a 
non-directional and model-free description of the brain 
network. On the contrary, effective connectivity defines 
the temporal relationship and causal influences among 
brain regions in a given network model [2].

Functional Magnetic Resonance Imaging (fMRI) is fre-
quently employed in brain connectivity studies, given its 
non-invasiveness and satisfactory spatiotemporal resolu-
tion, both in physiology and pathology (e.g. Alzheimer’s 
disease [3–5], schizophrenia [6] and Major Depression 
Disorder [7]). From brain connectivity studies it emerged 
that brain dynamics, in particular effective connectivity, 
may provide a biological marker for specific brain dis-
ease and a tool for monitoring responses to treatments of 
these pathologies [8–11].
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Granger Causality (GC) and Dynamic Causal Modeling 
(DCM) are methods to investigate effective connectivity. 
Granger causality is present when knowledge on tem-
poral evolution of the signal in a certain brain region A 
improves the predictability of another brain region B [12, 
13]. This approach is based on the evaluation of a linear 
codependence among time series, and it is therefore lim-
ited to a stationary framework or needs a sliding-window 
approach to address time-varying coupling between 
regions, which has limitations [14]. Differently, in DCM 
the predicted relationship between neural activity and 
observed fMRI signal needs to be specified in a pre-
determined model, hence requiring previous knowledge 
about the timing and effect on signals of the connectivity 
modulation [15].

The Sequential Monte Carlo (SMC) methodology [16] 
is crucially different from these two strategies. SMC 
approaches estimate the hidden states of a dynamic sys-
tem with only partial and noisy observations, without 
further assumptions on the presence of variations in con-
nectivity. A specific SMC methodology called Particle 
Filter (PF) employs Monte Carlo sampling to approxi-
mate probability density functions and it updates the 
posteriors with the arrival of new samples.

The SMC algorithm proposed here was recently devel-
oped by Ancherbak et al. [17], originally for time-varying 
gene network modeling. We adapted it for the study of 
brain connectivity using fMRI data and the feasibility 
and behaviour of the proposed approach has been stud-
ied on synthetic data mimicking fMRI time-series. When 
applied to real fMRI datasets, results were compared to 
correlation between delayed time series, considered as a 
proxy measure for stationary effective connectivity. Two 
different experimental paradigms were tested: the first 
one, whose preliminary results were presented in abstract 
form [18], involved tactile stimulation during an fMRI 
acquisition with temporal resolution of 2  s. The second 
experiment employed a periodic visual stimulation with 
significantly improved time resolution of 0.8 s.

2 � Methodology
2.1 � Model and algorithm
Particle filter [17, 19–22] is a sequential Monte Carlo 
methodology based on the Bayes theorem on condi-
tional probability. Particle filters estimate the probabil-
ity distributions of hidden variables of interest, modeled 
according to a hypothesized state-space equation. The 
probability density function (pdf) of the hidden variables 
is allowed to be time-varying and is therefore sequen-
tially updated when new data become available. Such 
probability distribution is estimated from the data, mod-
eled according to a hypothesized observation equation. 
In brain connectivity studies based on fMRI data, the 

relationship among the time-series of R different brain 
Regions of Interest (ROIs) xt = {x1(t), . . . , xR(t)} can 
be modeled as a first order linear Vector Autoregressive 
(VAR) model [12, 21, 23–25] as:

or in matrix notation:

where

which is employed as the observation equation describ-
ing the relationship between the observations x(t) at time 
t and those at time t − 1 (that is, x(t − 1) ); η(t) is the vec-
tor of observation noise; the matrix of hidden parameters 
of interest a(t) represents the causal influence exerted 
between different areas, and its elements aij(t) are the 
coefficients which represent conditional dependence. In 
particular, it can be assumed that elements of a(t) are 
allowed to be time-varying:

where aij(t) is the ijth element of the matrix a(t) , describ-
ing the influence of the jth region over the ith region, and 
νij(t) is the process noise (innovation) term.

The adoption of a linear model was supported by the 
well-established body of literature on fMRI data model-
ling and brain connectivity analysis at the temporal scales 
of fMRI data [25, 26]. The adopted autoregressive model 
was first-order, which was optimal on the basis of the 
Schwartz criterion, in accordance with previous findings 
[12, 25, 27].

The PF algorithm evolves from an initial probability 
distribution for aij(t − 1) , which we chose to be uni-
form at t = 1 , and through Eq. (4) it generates new pos-
sible values for aij(t) . The N particles are generated from 
the probability distributions of the elements of ai(t) : the 
distributions are adapted with each new observation 
through the mechanism provided by particle filtering, 
to describe for the set of coefficients aij at every time-
step. The algorithm generates N particles, by updating 
those at the previous time point (initialized to zero at 
t=0) using a noise innovation term, by following Eq.  4. 
In our implementation, the innovation values are drawn 
from a Gaussian distribution. The standard deviation of 
this distribution follows the absolute difference between 

(1)xi(t) =

R∑

j

aij(t)xj(t − 1)+ ηi(t) i = 1, . . . ,R

(2)x(t) = a(t)x(t − 1)+ η(t)

(3)a(t) =





a11(t) a12(t) . . . a1R(t)
a21(t) a22(t) . . . a2R(t)

...
...

. . .
...

aR1(t) aR2(t) . . . aRR(t)





(4)aij(t) = aij(t − 1)+ νij(t)
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the two previous coefficient values estimated by the algo-
rithm and constrained between a minimum of 0.1 and a 
maximum of 0.4: these values were chosen empirically 
to prevent divergence and, at the same time, capture 
non-stationarities.

With Eq. (2), the PF algorithm generates predicted val-
ues of the observations at time t. The desired probability 
density function of the parameters of interest a(t) can be 
estimated via Bayes theorem as follows:

and with the assumption of Gaussian noise we have

where x̂i(t) are the data estimated through Eq. (1) at time 
t for the i-th ROI and ai(t) = {ai1, . . . , aiR} is the vector 
of hidden variables associated with the i-th ROI at time t, 
that is, the i-th row of matrix at . In Eq. 6 the value of the 
ai(t) elements determines the value of the estimate x̂i(t) , 
and the weight of the i-th particle.

In most applications, Eq. (5) cannot be solved analyti-
cally [28], but it can be computed through the Sequential 
Monte Carlo sampling scheme, which consists in repre-
senting the pdf p(a(t)|x(1, . . . , t)) as a discrete set of N 
particles:

where w(n)
t  is the weight associated to the n-th particle 

vector a(n)i (t) for the ith row of matrix a(t) at time t. The 
Sequential Importance Sampling (SIS) [28] methodology 
provides a strategy to compute the weights. It has been 

(5)

p(a(t)|x(1, . . . , t)) =
p(x(t)|a(t))p(a(t)|x(1, . . . , t − 1))

p(x(t)|x(1, . . . , t − 1))

(6)

p(xi(t)|ai(t)) =
1

(2πσ 2
η )

R/2
exp

(
−

(xi(t)− x̂i(t))
2

2σ 2
η

)

(7)p(ai(t)|x(1, . . . , t)) ≈

N∑

n=1

w
(n)
t δ(ai(t)− a

(n)
i (t))

shown [20] that the weights can be sequentially updated 
as follows:

where the proportionality takes into account normaliza-
tion factors. With this approach, at each time instant t we 
have a sample set {ai(t)(n),w(n)

t } for n = 1, . . . ,N  and for 
i = 1, . . . ,R which can be used to estimate the pdf of the 
parameters and to infer information about the network. 
However, after some iterations, most of the particles will 
have a very low statistical weight, resulting in a lower 
exploration efficiency of the algorithm. To overcome this 
typical problem of sequential Monte Carlo methodolo-
gies, a step called Resampling is performed. The number 
of effective particles was defined in [29] as

If Neff is below a certain arbitrary threshold the Resam-
pling is performed: particles with weight below a certain 
threshold are substituted by copies of particles with suf-
ficiently high weights and to each of the new particles set 
is assigned the same weight 1/N. This results in a more 
effective exploration of the solution space, because only 
statistically relevant particles remain after this step. The 
VAR process estimation problem using SMC was devel-
oped in [30], and it was extended and applied to time-
varying gene expression networks in [17].

To sum up, the resulting algorithm can be schemati-
cally expressed as in Table 1. In our implementation the 
procedure is repeated Nr = 100 times, all independent 
from each other, to provide a better exploration of the 
solution space, and resampling was performed when 
Neff < 30% of the total number of particles. The final out-
puts of the algorithm are the at computed as the average 
of the Nr repetitions. In this implementation, the running 

(8)w
(n)
t ∝ w

(n)
t−1p(x(t)|ai(t)

(n))

Neff =
1

∑N
n=1(w

(n)
t )2

Table 1  Schematic description of the PF algorithm

Input the BOLD fMRI data series xt

Set the number of particles N ( = 2000 in our case)

Set starting point for coefficients values at=0 = 0

Start PF for t = 1 : T

updating step generate N particles from previous coefficients’ values through  
aij(t) = aij(t − 1)+ νij(t)

estimation step predict the values of the observations at time t from  
values at time t − 1 with x(t) = a(t)x(t − 1)+ η(t)  
compute the likelihood between predicted values and  
observed values with (6) normalize the weights and resample

End PF end for on t
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time was proportional to the length T of the time series, 
the number of particles N, the number of repetitions 
Nr , and it increased quadratically with the number of 
network nodes [31]. The algorithm was implemented in 
MATLAB (Mathworks, Natick, MA, U.S.A.) R2017b.

2.2 � Synthetic data
To validate the proposed approach, two different syn-
thetic networks were used.

•	 One network with R = 6 nodes, each with T = 100 
time points, stationary coefficients generated with 
the MATLAB function varm() with a Signal-to-Noise 
Ratio (SNR) set to either ∞ ( ση = 0 , ideal case) or 
6dB.

•	 Another network with R = 2 and T = 250 was used 
to assess the PF capability to capture time-varying 
hidden parameters. In this case, aij coefficients were 
zero except for coefficient a21 , whose value switched 
from 1 to −1 with a period of 125 time points. The 
SNR was 10dB.

The first synthetic dataset allowed us to verify the reli-
ability of the results of the PF and to decide the opti-
mal values of the parameters; the second one allowed 
us to address the capability of the PF to track variations 
through time of the AR coefficients.

2.3 � Real fMRI data
The proposed approach was also retrospectively applied 
to real fMRI data acquired on healthy volunteers in two 
different experimental set-ups, with two and four partici-
pants respectively, acquired with two-dimensional sin-
gle-shot echo-planar imaging (EPI) on a 7T MRI system 
(MR950, GE Healthcare, Chicago, IL, U.S.A.).

•	 Motor task Time-series consisting of 240 time points 
with a temporal resolution of 2s were acquired on 
two subjects with the following acquisition param-
eters: Time of Echo (TE) = 23ms , Flip Angle 
(FA) = 60◦ , Field of View (FoV) = (192mm)2 , acqui-
sition matrix size = 128× 128 , 32 slices of thickness 
= 1.5mm, resulting in isotropic spatial resolution of 
(1.5mm)3 and Time of Repetition (TR) = 2 s . During 
acquisition, the subjects’ thumb- and index-fingertips 
were stimulated via a pneumatic device (Linari Engi-
neering, Pisa, Italy). The subjects’ task was to move 
the finger whenever it was stimulated. The fMRI data 
were motion-corrected using MCFLIRT [32]. Spatial 
smoothing was applied by using a Gaussian kernel of 
FWHM 3.0mm; each 4D dataset was demeaned and 
normalized by a single multiplicative factor; high-

pass temporal filtering was applied to remove slow 
temporal drifts of the fMRI signal. Four ROIs were 
studied covering primary somatosensory (S1), pri-
mary motor (M1), supplementary motor (SM) and 
parietal (P) cortices. All ROIs consisted in four vox-
els and were manually drawn on each subject on one 
slice only, to avoid potential slice timing confounds 
(Fig.  1). The resultant time-series of each ROI were 
obtained by averaging the four time-series of individ-
ual voxels.

•	 Visual task Time-series with a temporal resolu-
tion of 0.8s were acquired on four trials of either 
300 time points (two subjects) or 600 (two sub-
jects). Scanning parameters were TE = 21ms , 
FA = 48◦ , FoV = (192mm)2 , acquisition matrix 
size = 64 × 64 , 22 slices of thickness = 3mm , 
resulting in isotropic spatial resolution of (3 mm)3 
and TR = 800ms . The same preprocessing steps 
described above for the motor task, including motion 
correction, spatial smoothing, normalization and sig-
nal drift removal, were adopted. Subjects underwent 
a periodic visual stimulation alternating between 
black and white dots moving along spiral trajectories 
over a gray background (stimulation ON) and pres-
entation of the gray background alone (stimulation 
OFF). Four ROIs were studied covering the Lateral 
Geniculate Nucleus (LGN), the Middle temporal cor-
tex (MT), the Primary Visual area (V1) and one con-

Fig. 1  ROIs drawn on one representative subject, representing 
primary somatosensory (S1), primary motor (M1), supplementary 
motor (SM) and parietal (P) cortices
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trol ROI in the tempo-parietal cortex (CTRL). Four 
voxels wide ROIs were manually drawn on each sub-
ject on one slice only.

The optimal order of the autoregressive model describ-
ing the time series was 1, as estimated by the Schwartz 
criterion [12, 25, 27].

The particle filter was applied not only to the original 
time series but also to the same fMRI data shuffled in 
time. This test allowed to address the effective depend-
ency of the results from the temporal order of the data, 
i.e. to address causal dependency through time in the 
data. Subsequently, the aij coefficients estimated by par-
ticle filtering were compared to the delayed correlation 
(DC) cij between signals xi(t) and xj(t − 1) which reflect 
the time-invariant conditional correlation between net-
work node (ROI) j over node i. Furthermore, the results 
of the PF were also compared to coefficients estimated 
in a stationary framework fitting a multivariate linear 
regression model with stationary coefficients to the data.

With a t test between coefficient values in the presence 
and in the absence of stimulation we searched statisti-
cally significant (p-value < 0.05 ) changes in connectivity 
following the underlying stimulation pattern. Also, as a 
control analysis, a second t-test was performed, simulat-
ing a different stimulation pattern from the actual one, 
which allowed to exclude variations deriving from spuri-
ous fluctuations of the results, as explained in Fig. 2.

3 � Experimental results and discussions
3.1 � Synthetic data
Scatter plots in Fig.  3 demonstrate that the conditional 
dependency coefficients estimated by PF in a station-
ary network satisfactorily correlate with the true coeffi-
cients, both in the noiseless synthetic dataset (Pearson’s 
ρ = 0.96 ) and in the noisy scenario with SNR = 6 dB 
(Pearsons’ ρ = 0.59).

Fig. 2  The plot on top shows the causal dependency of area MT 
from area V1 for one of the 4 subjects in the visual task as an example 
of PF estimates of conditional dependency coefficients between 
time-series. Plot in the center shows the actual stimulation pattern as 
a square wave, where the presence and the absence of stimulation 
are represented by 1 and 0 respectively. The bottom plot shows 
a time shifted stimulation pattern, which has a half-period offset 
from the actual stimulation pattern. The t-test was run comparing 
connectivity values in correspondence of ones (stimulation ON) 
and zeros (stimulation OFF) in both cases. The second test allowed 
to exclude spurious changes in connectivity values not due to the 
stimulation

Fig. 3  Scatter plots that relate PF estimates (x axis) and true values (y axis) of the autoregressive model for a 6-node network with 100 time samples, 
in the absence of noise (left) and with SNR = 6 dB (right). The lines are the results of a linear fit of the data: in the noiseless case the slope m and the 
offset q were 1.39 and −1.62 · 10−2 , respectively; in the noisy case, m = 1.62 and q = 8 · 10−3
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The case of a network with one time-varying coefficient 
is shown in Fig. 4. The PF tracks the changes of the non-
stationary coefficient a21 , although the estimated values 
do not immediately follow the abrupt changes between 1 
and −1 and viceversa. All the other coefficients are cor-
rectly estimated to be close to the nominal null value.

3.2 � Real fMRI data
3.2.1 � Motor network
Red lines in Fig.  5 represent average values of the aij 
coefficients obtained on fMRI time series and the blue 
histogram represents the corresponding distribution of 
mean values of causal interactions for the permuted time 
series. Since temporal permutation suppresses the causal 
dependency between subsequent values, it was expected 
to observe zero-mean Gaussian distributed results, that 
is, no causal dependency. On the other hand, coefficients 
representing the causal relationship between two inter-
acting brain areas should have values lying far away from 
the null distribution. This is what Fig. 5 shows, demon-
strating that the particle filter effectively discriminates 
between unrelated and causally related time series.

The PF captured causal interactions between brain 
areas, which significantly correlated with a proxy meas-
ure of effective connectivity, that is, delayed correla-
tion (DC) ( p < 0.001 , Pearson’s correlation coefficient 
ρ = 0.74 , Fig.  6). In particular, in both subjects, the 

highest aij coefficients in both PF and delayed correlation 
were those which represent the conditional dependency 
of areas M1 and S1, in agreement with current knowl-
edge of brain functioning during a sensory-motor task.

Figure  7 exemplifies the temporal evolution of brain 
connectivity through three representative aij coefficients 
in Subject 2. The top panel displays one representative 
coefficient involving the control ROI P, which is approxi-
mately 0. Our finding that the S1-on-P coefficient time 
series exhibits only small fluctuations around zero is in 
agreement with ground truth that the parietal node is not 
involved in the motor task. The two bottom panels dem-
onstrate the expected reciprocal influence between M1 
and SM areas. It is worth noting that the influences in the 
two directions, i.e. M1 over SM and vice versa, have dif-
ferent values, as a consequence of the adopted model that 
allows non-symmetric matrix of coefficients.

3.2.2 � Visual network
The PF detected causal dependencies between brain 
areas of the visual network which also correlated with the 
delayed correlation (Pearson’s ρ = 0.70 and p < 0.001 , 
as shown in Fig.  8a). Interestingly, all four fMRI data-
sets showed statistically significant dynamic changes 
( p < 0.05 ) with a pattern following the underlying stimu-
lation in the effective connectivity coefficient regarding 
the influence of MT on V1, which are known to take part 
in the processing of visual stimuli. As an example, Fig. 9 

Fig. 4  Time courses of the hidden parameters aij in the case of a 2-node network with non-stationary coefficient a21 alternating between 1 and −1 . 
Red lines represent the true values, while blue lines represent the estimates obtained by PF
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represents the statistically significant differences in the 
causal influence of MT on V1 in the presence or absence 
of the visual stimulus, observed consistently in all four 
fMRI datasets. Blue crosses show the quality parameter 
Q = T/σ , where T is the temporal length of the time 
series and σ is the standard deviation of the data, taken 
as a measure of noise. Q values indicate a possible expla-
nation for inter-dataset variability: the particle filter per-
formance are enhanced by the timeseries length (T) and 
reduced by noise (estimated as 1/σ ). Not all connectiv-
ity coefficients share this same behavior, therefore other 
factors might influence the results. Figure 10 represents 
one example of absence of detected causal relationship 
between area MT and the control region CTRL, and one 
example of non-symmetrical causality exerted by area V1 
over MT and viceversa.

Figure 8b shows the comparison between results of the 
PF and stationary AR coefficients (Pearson’s ρ = 0.94 and 
p < 0.001 ). A good agreement was found between the 
two estimates. In addition, changes through time of the 

AR coefficient were searched through a sliding-window 
approach: a multivariate linear regression model was fit-
ted to consecutive and overlapping blocks of 20 time 
points, and variations in the regression coefficients in 
phase with the visual stimulation were searched with the 
same strategy used for the estimates of the PF (Fig.  2). 
While in this way some coefficients were found to vary, 
those that did were not the same across the four datasets. 
Instead, the conditional dependency coefficients esti-
mated with the PF representing the influence of area MT 
on area V1 were consistently varying in all subjects, sug-
gesting that the PF more reliably detects non-stationarity.

Figure  11 shows the relationship between coefficients 
obtained by PF and DC with explicit reference to the 
causal influence they are referred to. We searched for the 
appropriate clustering of the data in Fig.  11. The num-
ber of clusters was chosen as the knee of the number-of-
clusters vs distance-to-every-centroid curve. The optimal 
number was 3 and each cluster’s centroid was plotted as 
a black cross in Fig. 11. All coefficients representing the 

Fig. 5  Mean conditional dependencies between real fMRI data computed through the particle filter: in blue, the histogram of mean values 
obtained on time-series randomly permuted in time, while the red line shows the corresponding mean value obtained from non-permuted 
time-series. Many of these values lie well outside of the null distribution, therefore their value reflects the effective mean causal interaction and it is 
not produced by chance
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causal interactions involving the CTRL region (black 
symbols) belong to cluster A, that is, small values of 
DC and mean PF estimates, except for the self-causality 

terms, which all lay in the vicinity of the C centroid. Every 
non-diagonal coefficient involving ROIs LGN, MT and 
V1 belong to the cluster B. In particular, in Fig.  11, the 
horizontal red line and vertical green line intersect in the 
point equally distant to the centroids A and B. All values 
representing the causal influence of MT on V1 (which 
vary following the stimulation pattern, represented by 
highlighted red diamonds in the figure) and that of V1 on 
MT (green stars) lay right to the green line and above the 
red line.

4 � Discussion
Other implementations of SMC algorithms were previ-
ously proposed to investigate brain connectivity in fMRI 
data. Murray and Storkey [33] proposed a forward-
backward Particle Filter using, as observation equation, 
a stochastic extension of the balloon model, which was 
proposed to describe the haemodynamics that follow 
brain activity [34]. In their study, the hidden parameters 
of the model resulted approximately constant, probably 
as a consequence to the complexity of the model itself 
[35, 36].

In a different study, Ahmad et al. [37] adopted a sym-
metric, linear, first-order, time-varying Autoregressive 
(TVAR) model and used a Rao-Blackwellized PF to esti-
mate the temporal relationships among fMRI time-series 
representing four brain regions during resting state. The 
assumption of symmetry in coupling coefficients, that is 
aij = aji , reduced model complexity, but did not permit 

Fig. 6  Scatter plot showing the relationship between mean PF 
estimates (horizontal axis) and delayed correlation (vertical axis) on 
the two sensory-motor experiments. On both results taken altogether 
the Pearson’s correlation coefficient ρ is 0.74, which corresponds to a 
statistically significant correlation with p < 0.001 . Slope and offset of 
the linear fit were 0.83 and 0.24 respectively

Fig. 7  Plots in blue color show the PF-estimated time courses of three representative hidden parameters aij in the case of a 4-node motor network, 
estimated in real fMRI data in one subject. Top panel depicts the coefficient describing the negligible causal effect exerted by area S1 over P. Central 
and bottom panels represent the causal effect exerted by the SM area over M1 and viceversa respectively
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to infer neither the directionality of the network nor any 
possibly asymmetric cause/effect interaction between 
brain areas. Therefore their approach cannot be used to 
investigate effective connectivity. Also, the results were 

not benchmarked with the outcome results from differ-
ent analyses and the resting-state paradigm did not allow 
any analysis on the temporal evolution of the results.

In our implementation on fMRI data, the time-aver-
aged PF estimates were in agreement with a proxy meas-
ure of causality, that is, delayed correlation. Part of the 
mismatch between the proposed method and delayed 
correlation could be explained by the fact that the PF 
algorithm studies the network as a whole and produces 
estimates of aij coefficients that update at every time 
instant, while delayed correlation is a measure of pair-
wise causality that does not take into account possible 
non-stationarities and spurious cause-effect relationships 
mediated by other nodes of the network.

In the first experimental setup involving the motor 
network, statistically significant changes in connectiv-
ity were not found, but the poor temporal resolution of 
the data (2s) may have prevented the detection of these 
changes.

On the contrary, in our study of the visual network sta-
tistically significant changes in connectivity were found 
in four different datasets with a pattern following the 
underlying stimulation, without requiring any previous 
knowledge on the actual stimulation paradigm during the 
estimation process. These variations interested the influ-
ence of MT on V1 which is consistent with our under-
standing of cortical processing in the early visual cortex 
[24]. The average behavior of PF’s results and a simpler 
regression estimate were in good agreement, but the PF 
also enabled to report consistent results across different 
datasets in the same experimental paradigm. Further-
more, while the PF is “blind”, sliding window analysis 

Fig. 8  a Scatter plot between mean PF estimates (horizontal axis) 
and delayed correlation (vertical axis) on the four visual experiments 
fMRI data. A p < 0.001 was obtained with a Pearson’s correlation 
coefficient ρ = 0.70 . The black line is the result of a linear fit. Slope 
and offset of the linear fit were 1.10 and 0.25 respectively. b Scatter 
plot between average PF estimates (horizontal axis) and stationary 
AR coefficients (vertical axis). The resulting Pearson’s correlation 
coefficient ρ was 0.94, with a p < 0.001 . The black line is the result of a 
linear fit, with slope and offset 1.2 and −0.004 respectively

Fig. 9  Comparison between presence (green bar) and absence (red 
bar) of visual stimulation for the mean aij coefficient representing 
the causal influence of MT on V1 in the four different datasets. Bars 
indicate the mean values and the standard deviation of the mean. 
Higher values of the coefficients are obtained in data sets with better 
quality parameter Q, as shown by blue crosses
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requires the inclusion of additional pieces of information, 
such as the stimulation paradigm timing, which in some 
cases may not be available.

The stability of the PF-estimated coefficients at larger 
time scales is in agreement with the regime of station-
arity, commonly adopted in functional and effective 
connectivity fMRI studies: indeed, our experiments dem-
onstrate a good agreement between time-averaged val-
ues of aij coefficients and both delayed correlation and 
stationary AR coefficients. This finding suggests that on 
large temporal scales the brain network has stable inter-
actions within its nodes, under the assumption of linear 
first order autoregression.

Mean conditional dependency coefficients were found 
to vary between different datasets. As Fig.  9 shows, in 
some cases these differences can be explained through 
the joint contribution of noise and temporal length of 
the data, i.e. the quality parameter Q = T/σ . The brain 
haemodynamic responses may also be involved, which 
vary not only among subjects but also between different 
areas in the same subject [38], which was not taken into 
account in this study.

5 � Conclusions
We used Particle Filter to test and identify the time-vary-
ing brain connectivity as evidenced in fMRI images. Our 
experiments confirmed the hypothesis of time-varying 

brain connectivity pattern and gave evidence for non-
symmetric connectivity. It was possible to detect sta-
tistically significant changes in cortical cause-effect 
relationships correlated with the underlying task-rest 
pattern during the fMRI acquisition.

Future studies should test the performance of the pro-
posed algorithm in fMRI experiments with higher time 
resolution, namely < 0.8 s , and they should aim to unveil 
possibly asymmetric changes in effective connectivity 
among brain regions. Also, to minimize the impact of 
vascular dynamics and highlight neural ones, future stud-
ies should use more sophisticated experimental designs 
that enable a better control over the non-uniformity of 
brain haemodynamics across different areas [38–40].

As suggested by Bugallo and Djuric [41], the PF can be 
improved by a parallel implementation when dealing with 
complex system, such as the brain. Ordinary brain con-
nectivity analysis represents ROIs as time series obtained 
by averaging signals originating from more voxels of that 
region. This helps improving the Signal-to-Noise Ratio 
(SNR) but assumes some wide-scale connectivity fea-
tures. Because of this wide-scale connectivity assump-
tion, more reliable results may be achieved with a parallel 
combination of Particle Filters carried over single-voxels 
time series.

Our results, together with the possibility to refine the 
methodology, suggest that the proposed computational 

Fig. 10  Plots in blue color show the PF-estimated time courses of three representative hidden parameters aij in the case of the 4-node visual 
network, estimated in real fMRI data in one subject. Top panel depicts the coefficient describing the negligible causal effect exerted by area MT over 
the control area. Central and bottom panels represent the non-symmetrical causal effect exerted by the V1 area over MT and viceversa respectively
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method, the Particle Filter, can be capable to infer time-
varying effective connectivity on acquisitions with 
acceptable scan duration, without the need of any con-
straint or previous knowledge about the examined net-
work or timing of the underlying brain processes.
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