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Abstract: The stochastic transport of particles in a disordered two-dimensional layered medium,
driven by correlated y-dependent random velocity fields is usually referred to as random shear model.
This model exhibits a superdiffusive behavior in the x direction ascribable to the statistical properties
of the disorder advection field. By introducing layered random amplitude with a power-law discrete
spectrum, the analytical expressions for the space and time velocity correlation functions, together
with those of the position moments, are derived by means of two distinct averaging procedures. In
the case of quenched disorder, the average is performed over an ensemble of uniformly spaced initial
conditions: albeit the strong sample-to-sample fluctuations, and universality appears in the time
scaling of the even moments. Such universality is exhibited in the scaling of the moments averaged
over the disorder configurations. The non-universal scaling form of the no-disorder symmetric or
asymmetric advection fields is also derived.

Keywords: universality; anomalous transport; disorder

1. Introduction

In 1973, Dreizin and Dykhne proposed a model for the density of a diffusion mate-
rial in stationary current flow, through a disordered conducting medium [1]. In particu-
lar, the model was conceived for calculating the effective conductivity of a nonuniform
concentration of carriers, describing its stationary transport under the influence of both
diffusion and convection (with velocity U). The carriers transport was assumed to be
two-dimensional and limited to a stripe of transverse dimension L, see Figure 1. As the
fluctuations of the symmetric conductivity tensor in the transverse direction were taken to
be large compared with longitudinal components, the transverse diffusion overwhelms the
longitudinal one, i.e., D ≡ Dy � Dx. In the transverse (x) direction, the diffusing particles
experience random pulsations, which produce narrow convective flow with a velocity U.
Here, the velocity field has a “quenched” randomness, from which the expression random
shear model arises. Therefore, the stochastic motion of a generic tracer inside the channel is
a combination of two mechanisms. On one side, the tracer undergoes normal diffusion on
y, the channel’s transverse direction, on the other, it experiences a random static velocity
field directed toward the channel’s axis x. In terms of Langevin equations for an ensemble
of independent particles, the model is hereby defined as

ẋi = U(yi) (1)

ẏi =
√

2D ξi(t) (2)

where{ξi(t)} are independent, delta-correlated and zero-mean Gaussian thermal noises.
Periodic boundary conditions are enforced on the y-direction at y = ±L/2, to implement a
channel-like geometry along the x-axis.
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Figure 1. Random shear flow schematic view. The channel, where the tracer’s stochastic motion
takes place, has width L in the transverse direction y and it is assumed infinite along the longi-
tudinal coordinate x (in the numerical simulations periodic boundary conditions are enforced).
The quenched disorder velocity field is depicted as black arrows pointing only along x, the grey
envelope corresponds to the superposition of sinusoidal waves according to the definitions (3) and
(4).

The above equations were introduced in 1980 by Matheron and de Marsily [2] in
their celebrated paper on the solutes transport in porous media. Since its introduction,
the most striking feature of the random shear model was its longitudinal superdiffusive
behavior, 〈δ2x(t)〉 ∼ t3/2. Generally speaking, the average 〈· · · 〉 is a twofold operation,
namely, an average over the thermal noise in (2) and an average over the ensemble of the
disorder layered velocity field. In the late-80s-early-90s period, there was a flourish of
mathematical models devoted to the investigation of the Drezin–Dykhne superdiffusive
regime and its relation with statistical properties of the quenched advection field. The
vast majority of the theoretical and numerical studies assumed the distribution P(U) of
the static shear field to be Gaussian, with a stationary autocorrelation function in space,
of the type 〈U(y1)U(y2)〉 ∼ δ(y1 − y2) [3–12]. However, although this simplified picture
was largely adopted, the necessary and sufficient conditions for having a superdiffusion
∝ t3/2 were already clearly stated in the Dreizin–Dykhne paper: i) the stationarity of
the advection field autocorrelation function 〈U(y1)U(y2)〉 = f (|y1 − y2|), and ii) its in-
tegrability

∫ ∞
−∞ dy〈U(0)U(y)〉 < ∞ [1]. Indeed, Matheron and de Marsily assumed a

stationary Gaussian-shaped velocity space autocorrelation, a property which was later
used in the analysis reported in References [13–15]. However, models releasing either
one of the aforementioned hypotheses were also considered. As an example, a stationary
although power-law velocity autocorrelation function was proposed in Reference [16]
to account for solutes diffusion in certain types of fractured rocks, while the absence
of stationarity characterizes the velocity autocorrelation function in Reference [17]. As
anticipated by the analysis of Dreizin and Dykhne, any deviation from the stationary
short-range velocity autocorrelation function entails a superdiffusive behavior different
from the classical t3/2 law. In general, the statistical properties of the disordered velocity
field are limited to the Eulerian two-point autocorrelation function, with the only excep-
tion of the work in [18] which introduced an n-point correlation function of the type
〈U(y1)U(y2) · · ·U(yn)〉 = σn fn(y1− y2) fn(y3− y4) · · · fn(yn−1− yn), and also substituted
the Brownian dynamics along y, Equation (2), with the anomalous fractional diffusion. Fur-
thermore, shear models with a deterministic dependence of the velocity on the coordinate
y were also considered, together with their impact on the time behavior of the mean square
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displacement: examples are a linear advecting field U(y) = U0y [19–21], a power-law
U(y) = U0|y|βsign(y) [22], or a sinusoidal U(y) = U0 sin(y) [23].

The entire body of the theoretical works devoted to the random shear model takes into
consideration the average of any observable on both the thermal noise and the disorder
advection velocity field. Usually, the scaling of the solutes probability density function
(PDF) along the channel’s axis x, P(x, t), and of its moments, 〈[x(t)− x(0]m〉, are studied
within this framework [3,5,11]. The interest stems from the typical experimental condition
where a stationary flux of water is flowing along a preferential direction, say x, with random
static orientation, across an ensemble of disordered media, such as several porous samples
or fractured rocks, see Figure 1. Imagine now dropping a tracer inside one of these porous
samples and observing its dispersion in time. Repeating this transport experiment several
times on the same sample mimics the thermal average of the tracer’s diffusion. Performing
an additive average over the porous media in the ensemble gives the double average
considered in previous works. In Reference [24], we adopted another point of view, which
was also partially embraced in Reference [15]. We have calculated the tracers’ PDF in the
case of a particular case of symmetric quenched disorder, performing the average over a
set of uniformly spaced initial conditions along y. This point of view originates from the
experimental perspective of having at hand one only sample, namely a single fractured
rock or, in general, a single disordered medium, on which the diffusion experiment can
be conducted several times. However, in this case a large amount of independent tracers
is released inside the channel, a solute density uniformly spread throughout the channel
breadth, but at the same position x. The diffusion experiment consists in observing how
the initial density is dispersed in x and in time by the water flux. This corresponds to
performing an average over the initial conditions. Repeating this experiment several times
yields the statistical or thermal average.

In this paper, we carry out a more thorough and extensive study on both the velocity
field statistical properties and the position moments in the random shear model. In doing so,
we unveil how the scaling properties exhibited by the velocity field are intimately connected
to the spreading in time of the position moments. Generally speaking, the computation
of the moments is used to test the scaling form of the propagator P(x, t) in the large-time
limit [5,11,24]. In line with the model proposed in Reference [24], we perform our theoretical
and numerical analysis by introducing a long-ranged velocity field whose properties can be
fully established. We derive a simple and precise scaling framework for moments averaged
over the disorder, and for moments averaged over an ensemble of uniformly spaced initial
conditions, given a quenched configuration of the advection velocity field. We demonstrate
the presence of universal features and lack of universality due to large sample-to-sample
fluctuations. Importantly, we analyze and discuss the scaling of the moments in the cases
of zero disorder, i.e., for deterministic shear models with long-ranged velocity fields. We
show that all the scattered results present in the literature on this subject fit neatly into our
mathematical scheme.

2. Velocity Field Properties

We discuss the static and dynamical properties of a shear longitudinal field which,
according to References [23,24], is generated by a superposition of M sinusoidal modes,

U(y) =
M

∑
n=1
|kn|γ/2 sin(kny + φn), (3)

or cosinusoidal modes:

U(y) =
M

∑
n=1
|kn|γ/2 cos(kny + φn). (4)
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The wave numbers kn run over the set kn = 2π/L(1, 2, . . . , M) and −1 < γ < 1. The
Equations (3) and (4) can be expressed in a compact form as

U(y) =
M

∑
n=−M

Ukn

2
ei(kny+φn), (5)

with the following prescriptions:

Ukn = |kn|γ/2ei π
2 = −Uk−n

kn = −k−n (6)

φn = −φ−n

holding if Equation (3) is valid, and

Ukn = |kn|γ/2 = Uk−n

kn = −k−n (7)

φn = −φ−n

for Equation (4), with Uk0 = 0. This choice carries three important advantages when
compared to the previous definitions of the velocity field implemented in former works.
First, it is automatically verified that

∫ L/2

−L/2
dy U(y) = 0. (8)

Second, the way the disorder is implemented is through the phases φn (n = 1 . . . , M),
each one drawn from a uniform independent distribution on the support [0, 2π]. Third, all
the statistical properties of the advection shear field can be easily calculated. For instance,
the correlation function appears to be

〈U(y1)U(y2)〉φ =
M

∑
n=−M

U2
kn

4
eikn(y1−y2), (9)

which yields a discrete spectrum ∼ kγ
n . Therefore our model recovers the cases studied in

Reference [16], where the shear field was introduced through its first (zero) and second
(power-law) moments. However, in our formulation we overcome any divergence problem,
thanks to the regularization due to the sum over discrete kn. Moreover if Ukn =const, in the
limit of M→ ∞, our formulation recovers the Dikhne model [3–12].

2.1. Static Properties

The four points static correlation function is

〈U(y1)U(y2)U(y3)U(y4)〉φ =〈U(y1)U(y2)〉φ〈U(y3)U(y4)〉φ + 〈U(y1)U(y3)〉φ〈U(y2)U(y4)〉φ+
〈U(y1)U(y4)〉φ〈U(y2)U(y3)〉φ,

(10)

which is different from the expression proposed in [18]. Importantly, Equation (10)
implies 〈U(y)4〉φ = 3〈U(y)2〉2φ, and it can be shown that any even moment enjoys the

Gaussian property 〈U(y)m〉φ = (m− 1)!!〈U(y)2〉m/2
φ , while the odd moments vanish. This

means that if we look at the probability of having a shear U at a given channel’s position
y, over several disorder configurations {φn}, i.e., Pφ(U|y), this would be in the average a
Gaussian. In addition, since U(y) is a stationary process in space, its PDF must be the same
for any position y. This is indeed shown in Figure 2a, where the black curves represent
the Pφ(U|y) calculated at 10 different channel’s positions y, and the values of U(y) (5)
are collected over an ensemble of 100 different sets of the quenched phases {φn}. The
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fluctuations disappear as long as the number of disorder-quenched configurations increases.
Indeed, taking an ensemble of 104 different phase arrays {φn}, one obtains the red curve.

Figure 2. Shear flow PDF. Panel (a): the black curves represent the shear field PDF Pφ(U|y) of the
velocity U(y) collected at 10 different positions y. The values of U in each curve have been obtained
by simulating an ensemble of 100 different configurations of the phases {φn}. Simulations parameters
are γ = −0.4 , L = 100 and M = 100. Being actually independent of y, the average Gaussian
character of Pφ(U|y) is apparent by increasing the size of the disorder statistical ensemble (red curve,
104 independent configurations {φn}). Panel (b): shear flow PDF Py(U|φ) obtained from the values of
U(y) collected along the channel y ∈ [−50, 50], for several 10 independent quenched configurations
of the phases {φn} (black curves). The collected values of U(y) involve 2000 uniformly distributed
points along the y axis. The red curve represents the same PDF for the velocity field U(y) sampled
over 105 points along the channel’s width. The other simulation parameters coincide with those
of panel (a). Panel (c): same quantity as in panel (b) obtained from the velocity field in the inset,
namely with U(y) given by (3) and φn = 0, ∀n. The shear field in the inset shows the presence of
antisymmetric long jets close to y = 0 and, smaller values elsewhere. Other simulation parameters
coincide with those of panel (a,b). The red curve represent the Gaussian P(U) shown in panels (a,b).
Panel (d): same quantity as in panel (b,c) obtained from the velocity field in the inset, namely with
U(y) given by (4) and φn = 0, ∀n. In the inset the shear field is dominated by symmetric shoots close
to the origin (U(−y) = U(y)) surrounded by negative values of the velocity U(y). The red curve
represent the Gaussian P(U) shown in panels (a,b). Other simulation parameters coincide with those
of panel (a–c).

Let us now take a different point of view that, in our opinion, has been overlooked
in previous works. Let us consider the velocity field when the disorder is quenched: this
corresponds to fixing the values of the phases {φn} in (5), and collect the values of the
velocity U(y) for y ∈ [−L/2, L/2]. The resulting distributions Py(U|φ) are shown in Fig-
ure 2b (black curves). For large M, increasing the sampling of the channel, the fluctuations
fade off for almost any random quenched configuration, yielding the Gaussian curve in red.
As a matter of fact, the black curves represent the PDF of U(y) for various configurations
of the quenched disorder, where y are 2000 points uniformly spaced through the channel
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width, while the red curve is obtained from a denser sampling of 105 points. As the vari-

ance of both Gaussians depicted in panels (a) and (b) is the same, i.e., σ2 = ∑M
n=−M

kγ
n
4 ,

Pφ(U|y) = Py(U|φ) = P(U) = e−U2/(2σ2)/
√

2πσ2 and this is true for almost any random
configuration of the disorder, i.e., any typical {φn}.

However, it is also true that for specific choices of the disorder, the distribution
Py(U|φ) may markedly differ from a Gaussian. In Reference [24], we addressed this
problem by considering a shear field of the type (3) and quenched phase configuration
{φn}, where the single phases φn could be either 0 or π with probability 1/2. In this
paper, we consider a different case, namely the complete absence of disorder, i.e., φn = 0
∀n. Specifically, we will consider two situations: an ordered shear field (3) (the case
M = 1 has been proposed in [23], as already mentioned), and an ordered shear field (4).
The y-dependence of these two fields are reported in the insets of panels (c) and (d) of
Figure 2, respectively. It is possible to see that, although the asymmetry of the shear
field (3) U(−y) = −U(y) guarantees the symmetry of Py(U|φ = 0), on the contrary,
the parity of the cosine (U(−y) = U(y)) entails an asymmetric PDF, a situation which was
already mentioned in Reference [22] within the context of deterministic power-law shear.
Importantly, both the shear field distributions, Py(U|φ = 0) are not Gaussian, as it can be
appreciated in the main panels (c) and (d) of Figure 2.

2.2. Dynamical Properties

From the analysis reported above, it appears evident that two types of averages
can be performed independently: one is taking a well-defined height y on the channel
and studying any observable by averaging over the disorder, i.e., over the ensemble of
the quenched random phases {φn}. This is the point of view usually taken in previous
works [1,2,5,6,8–12,14,16,22,25,26]. The other point of view is to quench the disorder and
subsequently average the observable over its dependence on y ∈ [−L/2, L/2]. This kind of
analysis has been adopted in [24] and partially in [15], and it needs to be handled carefully
when taking into account dynamical observables. As a matter of fact, the solution of
the stochastic Equation (2) is y(t) = y0 +

√
2Dwt, where wt indicates a Wiener’s process,

i.e., 〈wt〉 = 0 and 〈wswt〉 = |t− s|. Hence, the time dependence of the shear flow (5) is
expressed as

U(t) =
M

∑
n=−M

Ukn

2
eikn(y0+

√
2Dwt) eiφn , (11)

implying that, for a dynamical observable, the average over y coincides with averaging
over a uniform set of initial conditions y0, i.e.,

〈O(t)〉0 =
1
L

∫ L/2

−L/2
O(y0; t)dy0.

For instance, from (11) the mean drift of a particle is zero whether the average is taken
over the initial conditions or over the disorder, i.e., 〈〈U(t)〉w〉φ = 〈〈U(t)〉w〉0 = 0, where
〈. . .〉w represents the average over the thermal noise.

While analyzing the two-time correlation function, we first perform the thermal average:

〈U(t1)U(t2)〉w =
M

∑
n1,n2=−M

Ukn1
Ukn2

4
ei(kn1+kn2 )y0 ei(φn1+φn2 )e−(kn1+kn2 )

2Dt2−k2
n1

D(t1−t2). (12)

This expression clarifies how, without any further averaging procedure, the velocity
process is neither stationary, nor satisfies the independence on the initial condition and,
on top of that, it shows an explicit dependence on the particular choice of the quenched
disorder. Now, performing an average over the phases, one easily gets

〈〈U(t1)U(t2)〉w〉φ =
M

∑
n1=−M

U2
kn1

4
e−k2

n1
D(t1−t2), (13)
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for the time-ordered situation in which t1 > t2. Thanks to the fact that 〈ei(kn1+kn2 )y0〉0 =

〈ei(φn1+φn2 )〉φ = δ(n1 − n2), the same result is obtained performing the average over the
initial conditions, i.e., 〈〈U(t1)U(t2)〉w〉φ = 〈〈U(t1)U(t2)〉w〉0. The equation (12) is station-
ary and independent both from the initial conditions and from the specific choice of the
disorder taken into account. Moreover, Equation (12) can also be achieved by applying the
following formula [5,9–11]

〈〈U(t1)U(t2)〉w〉φ =
∫ L/2

−L/2
dy1dy2〈U(y1)U(y2)〉φ〈δ(y1 − y(t1))δ(y2 − y(t2))〉w =∫ L/2

−L/2
dy1dy2〈U(y1)U(y2)〉φP(y2 − y0, t2)P(y1 − y2, t1 − t2)

(14)

where P(y, t) represents the one-dimensional Brownian propagator on a strip of amplitude
L with periodic boundary conditions, i.e.,

P(y, t) =
1
L

{
1 +

∞

∑
m=−∞,m 6=0

eikmye−k2
mDt

}
(15)

Let us now turn to the study of the three (ordered) time velocity correlation functions.
The disorder averaged correlation function 〈〈U(t1)U(t2)U(t3)〉w〉φ is easily shown to be 0.
On the contrary, the average over the initial positions yields

〈〈U(t1)U(t2)U(t3)〉w〉0 =
M

∑
n1,n2,n3=−M

Ukn1
Ukn2

Ukn3

23 〈ei(kn1+kn2+kn3 )y0〉0ei(φn1+φn2+φn3 )

〈ei
√

2D(kn1 wt1+kn2 wt2+kn3 wt3 )〉w.

(16)

From the properties (6) and (7), it appears clear that taking an asymmetric velocity
field such as (3), or its symmetric counterpart (4), yields in principle different results. After
straightforward passages the previous expression becomes

〈〈U(t1)U(t2)U(t3)〉w〉0 =
M

∑
n1,n2=−M

Ukn1
Ukn2

Uk−n2−n1

23 e−k2
n1

D(t1−t3)e−kn2 D(t2−t3)(kn2+2kn1 )

ei(φn1+φn2−φn1+n2 )

. (17)

This correlation function exhibits an apparent dependence on the particular choice
of the quenched disorder, which makes this observable unpredictably oscillating around
0. Moreover, since it depends only on the time difference ti − tj (ti > tj), it highlights
that the shear field (averaged over the initial conditions) is a strict sense stationary (SSS)
process [27]. Thanks to this property, the expression (17), derived under the condition
t1 > t2 > t3, is equivalent to those obtained for any other time ordering by a simple
permutation of the indices [27,28].

The disorder-averaged four-time correlation function, when t1 > t2 > t3 > t4, is
defined as

〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ =
M

∑
n1,n2,n3,n4=−M

Ukn1
Ukn2

Ukn3
Ukn4

24 〈ei(φn1+φn2+φn3+φn4 )〉φ

〈ei
√

2D(kn1 wt1+kn2 wt2+kn3 wt3+kn4 wt4 )〉wei(kn1+kn2+kn3+kn4 )y0

, (18)

which is equivalent in both cases (3) and (4). Thanks to the identity

〈ei(φn1+φn2+φn3+φn4 )〉φ = δ(n1 + n2)δ(n3 + n4) + δ(n1 + n3)δ(n2 + n4) + δ(n2 + n3)δ(n1 + n4),
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the final expression reads

〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ =
1
24

{
M

∑
n1,n3=−M

U2
kn1

U2
kn3

e−k2
n1

D(t1−t2)e−k2
n3

D(t3−t4)+

M

∑
n1,n2=−M

U2
kn1

U2
kn2

e−k2
n1

D(t1−t3)e−k2
n2

D(t2−t4)e−2kn1 kn2 D(t2−t3)+

M

∑
n1,n2=−M

U2
kn1

U2
kn2

e−k2
n1

D(t1−t4)e−kn2 D(kn2+2kn1 )(t2−t3)

}
.

(19)

As in the case of Equation (14), the same result can be obtained by applying the formula

〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ =
∫ L/2

−L/2
dy1dy2dy3dy4〈U(y1)U(y2)U(y3)U(y4)〉φ

P(y4 − y0, t4)P(y3 − y4, t3 − t4)P(y2 − y3, t2 − t3)P(y1 − y2, t1 − t2)

(20)

Expression (19) allows drawing the conclusion that the average over the phases
entails the disappearance of the y0-dependence, a characteristic which is also evident
in Equation (13). Moreover, the explicit dependence on the time difference ti − tj (ti > tj)
also makes the disorder-averaged velocity a SSS. Hence, 〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ is
invariant to the permutations of t1, t2, t3 and t4. We now study the four-time correlation
function averaged over the initial conditions, i.e.,

〈〈U(t1)U(t2)U(t3)U(t4)〉w〉0 =
M

∑
n1,n2,n3,n4=−M

Ukn1
Ukn2

Ukn3
Ukn4

24 〈ei(kn1+kn2+kn3+kn4 )y0〉0

〈ei
√

2D(kn1 wt1+kn2 wt2+kn3 wt3+kn4 wt4 )〉wei(φn1+φn2+φn3+φn4 )

. (21)

A direct calculation yields

〈〈U(t1)U(t2)U(t3)U(t4)〉w〉0 =
M

∑
n1,n2,n3=−M

Ukn1
Ukn2

Ukn3
Uk−n3−n2−n1

24 ei(φn1+φn2+φn3−φn1+n2+n3 )

e−k2
n1

D(t1−t2)e−(kn1+kn2 )
2D(t2−t3)e−(kn1+kn2+kn3 )

2D(t3−t4)

. (22)

Once again, like in Equation (17), the explicit dependence on the quenched phase
configurations is exhibited.

In view of the above analysis, we can draw the following conclusions about the shear
field statistical properties:

• The shear field is a SSS, both averaged over the disorder and over a uniform distribu-
tion of initial conditions

• 〈〈U(t1)U(t2) · · ·U(t2m+1)〉w〉0 6= 0 (m ≥ 1), showing an explicit dependence on the
quenched disorder {φn}

• 〈〈U(t1)U(t2) · · ·U(t2m)〉w〉0 6= 〈〈U(t1)U(t2) · · ·U(t2m)〉w〉φ 6= 0 for m > 1, with no
dependence on y0

• 〈〈U(t1)U(t2)〉w〉0 = 〈〈U(t1)U(t2)〉w〉φ.

3. Position Moments

Owing to the properties investigated in the former section, in the present we show
the explicit calculation of the second, third and fourth moment averaged over the phases
〈〈[x(t)− x(0)]m〉w〉φ and over the initial conditions 〈〈[x(t)− x(0)]m]〉w〉0. The general
formulas that we will adopt are the following [9–11,25]

〈〈[x(t)− x(0)]m〉w〉φ = m!
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtm〈〈U(t1)U(t2) · · ·U(tm)〉w〉φ (23)
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〈〈[x(t)− x(0)]m〉w〉0 = m!
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtm〈〈U(t1)U(t2) · · ·U(tm)〉w〉0 (24)

3.1. Second Moment

While the drift (m = 1) is invariably 0, the second moment is the only moment that
has the same expression if averaged over the disorder or over a uniform distribution of
initial conditions. This is true for any configuration of the phases, including the no-disorder
cases, as well as for both choices (3) and (4). It can be easily deduced from the definitions
(23) and (24) by using the correlation function (13). Hence the time behavior of

〈〈[x(t)− x(0)]2〉w〉0 = 〈〈[x(t)− x(0)]2〉w〉φ =
M

∑
n1=−M

U2
kn1

∫ t

0
dt1

∫ t1

0
dt2e−k2

n1
D(t1−t2)

can be studied through the Laplace transform

M

∑
n1=−M

|kn1 |γ
s2(s + k2

n1
D)

. (25)

The pole at 0 dictates the long time behavior ∼ Lt, while for short and intermediate
times t � L2

D the pole −k2
n1

D dominates. The correct analysis can be performed by
inverting (25)

〈〈[x(t)− x(0)]2〉w〉0,φ =
M

∑
n1=−M

|kn1 |γ−2

D
t− |kn1 |γ−4

D2

(
1− e−k2

n1
Dt
)

, (26)

and is reported in Reference [24]. We hereby present only the scaling behaviors (see
Figure 3):

〈〈[x(t)− x(0)]2〉w〉0,φ ∼


Lt2 t� L2

M2D
Lt

3−γ
2 L2

M2D � t� L2

D

Lt t� L2

D

(27)

Figure 3. Second moment. Mean square displacement averaged over the disorder (solid lines) and
over the initial conditions (blue symbols). The scaling regimes in (27) are apparent: the dotted line
stands for t = L2

D with L = 100 D = 1.0 and M = 100. The averages over the initial conditions are
performed over 104 y0 equally spaced along the channel’s width L.

One sees that the asymptotic normal behavior is restored thanks to the presence of the
channel’s boundaries, which impose an exponential cut-off to the velocity autocorrelation
function (13) [24]. As anticipated, the unique feature of the mean square displacement (26)
is that 〈〈[x(t)− x(0)]2〉w〉0 has the same expression for whatsoever disorder quenched
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configuration, as it is shown in Figure 3 (blue symbols), and this corresponds exactly to the
disorder-averaged MSD 〈〈[x(t)− x(0)]2〉w〉φ (solid lines).

3.2. Third Moment

The position third moment is identically zero in the case of disorder average. On the
other hand, it is non-zero if the average over the initial conditions is performed, i.e.,

〈〈[x(t)− x(0)]3〉w〉0 = 3!
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3〈〈U(t1)U(t2)U(t3)〉w〉0,

where the velocity correlation function is given by (17). Tracing the same procedure of the
second moment, we first calculate its Laplace transform

3!
23

{
∑M

n1,n2=−M
n1 6=−n2/2

Ukn1
Ukn2

Uk−n2−n1
ei(φn1+φn2−φn1+n2 )

s2(s+k2
n1 D)[s+(kn1+kn2 )

2D]
+ ∑M/2

n1=−M/2

U2
kn1

U−k2n1
e

i(2φn1−φ2n1
)

s2(s+k2
n1 D)2

}
. (28)

At first glance, one sees that the third moment carries an explicit dependence on the
disorder, in analogy to (17). Hence, since a generic disorder does not preserve the symmetry
x → −x, the third moment cannot be neglected. As a matter of fact, in Figure 4a the time
evolution of the third moment is reported for several choices of the quenched disorder {φn}
(brown solid lines). It appears that a specific trend cannot inferred from the fluctuating
behavior of 〈〈[x(t)− x(0)]3〉w〉0.

Figure 4. Sample-to-sample fluctuations. The brown solid line represents the time behavior of the
third (panel (a)) and fourth moments (panel (b)) of 10 different random configurations of the disorder,
averaged over 104 initial positions. The dashed lines stand for the disorder-averaged 〈〈· · · 〉w〉φ.
The other simulations parameters are L = 100, γ = −0.4, D = 1.0 and M = 100.

A well-defined non-zero scaling in time appears manifest only by considering the
symmetric shear case with zero disorder, namely the field (4) with {φn} = 0, ∀n. A rather
lengthy calculation, briefly reported in the Supplementary Information, shows that the
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three scaling regimes of the third moment can be identified on the score of what we have
conducted for the second moment. We hereby report the overall result

〈〈[x(t)− x(0)]3〉w〉0 ∼


L2t3 t� L2

M2D
L2t2− 3γ

4 L2

M2D � t� L2

D

L2t t� L2

D

(29)

3.3. Fourth Moment

We analyze the case of the fourth moment, starting with the disorder-averaged case

〈〈[x(t)− x(0)]4〉w〉φ = 4!
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ, (30)

where the expression (19) must be inserted. Performing the Laplace transform of the
former equation consists of transforming each of the terms appearing in (19). In the Supple-
mentary Information, we detail the procedure to highlight the time scaling expression of
〈〈[x(t)− x(0)]4〉w〉φ, which retraces that of the second and third moments reported in the
previous sections. We sum up the result of our analysis in the following formula

〈〈[x(t)− x(0)]4〉w〉φ ∼


L2t4 t� L2

M2D
L2t3−γ L2

M2D � t� L2

D

L2t2 t� L2

D

(31)

The analysis of the fourth moment averaged over the initial conditions is more in-
volved as it stems from the formula

〈〈[x(t)− x(0)]4〉w〉0 = 4!
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4〈〈U(t1)U(t2)U(t3)U(t4)〉w〉0.

A close inspection of the velocity correlation function (22) reveals that when the condi-
tions n1 = −n2, n1 = −n3 and n2 = −n3 are satisfied, 〈〈U(t1)U(t2)U(t3)U(t4)〉w〉0 ≡
〈〈U(t1)U(t2)U(t3)U(t4)〉w〉φ. Therefore, we can split the fourth moment, averaged over
the initial conditions, into two overall contributions:

〈〈[x(t)− x(0)]4〉w〉0 = 〈〈[x(t)− x(0)]4〉w〉φ + ∑
n1,n2,n3=−M

n1 6=−n2
n1 6=−n3
n2 6=−n3

f (φn1 , φn2 , φn3 , φn1−n2−n3 ; t). (32)

The last term represents the explicit dependence of 〈〈[x(t)− x(0)]4〉w〉0 upon the
quenched configuration of the disorder. For a generic random choice of {φn} and large M
we expect that this term does not give a substantial contribution to the scaling behavior
of (32). Indeed, in Figure 4b, several curves pertaining to random configurations of {φn}
exhibit small fluctuations around the average value represented by 〈〈[x(t)− x(0)]4〉w〉φ
(black dashed line). Thus, we can conclude that 〈〈[x(t)− x(0)]4〉w〉0 ≡ 〈〈[x(t)− x(0)]4〉w〉φ
(Equation (31)) for almost any random typical disorder.

On the other hand, if the disorder is quenched to zero, namely if the velocity advection
field is (3) or (4) with {φn} = 0 ∀n, the second term in the Equation (32) plays a significant
role, leading to scaling forms different than those reported in (31). These are

〈〈[x(t)− x(0)]4〉w〉0 ∼


L3t4 t� L2

M2D
L3t3− 5γ

4 L2

M2D � t� L2

D

L3t2 t� L2

D

. (33)

Appendix B reports the calculations needed to derive the expression (33).



Entropy 2022, 24, 1350 12 of 16

4. General Scaling of the Moments

We now generalize the results obtained in the previous section, designing a complete
scaling scheme for the moments of order m in the three time regimes, when different
advection field conditions are analyzed.

Generally speaking, when the phase disorder is quenched, and for M→ ∞, the overall
majority of the systems will display apparent scaling behavior only for even moments,
while the odd moments show large sample-to-sample fluctuations around zero. Thus, for a
generic quenched disorder, the even moments averaged over the initial conditions display
a typical scaling, i.e., compatible with the scaling of moments averaged over a statistical
ensemble of the phases configurations (average over the disorder). The cases where the
disorder is absent, i.e., when φn = 0 ∀n, are not typical. They are indeed characterized
by moment scalings in time different from those obtained from the moments averaged
over the disorder. Moreover, while the asymmetric case of sine advection field (3) does not
possess well-defined odd moments scaling, this can be evaluated explicitly in the case of
symmetric shear velocity field (4).

4.1. Disorder-Average and Random Phase Configuration

A direct, although tedious, calculation shows that the scaling of the moments averaged
over the disorder is

〈〈[x(t)− x(0)]m〉w〉φ ∼


L

m
2 tm t� L2

M2D

L
m
2 tm (3−γ)

4 L2

M2D � t� L2

D

L
m
2 t

m
2 t� L2

D .

(34)

Here, the index m can assume only even values, as the odd moments are identically
zero. The expression (34) is confirmed by the numerical simulations in Figure 5 (solid
black lines), where the moments show a perfect agreement with the theoretical estimation.
Moreover, rescaling the moments shown in panel (b), 〈〈[x(t)− x(0)]m〉w〉1/m

φ yields a
perfect collapse of the different moments in each of the three regimes. This is a bright
indication that the even moments exhibit an anomalous scaling [29–31] in the three regimes.

We have seen in the Sections 3.2 and 3.3 (Figure 4) that the third and fourth moments,
averaged over the initial conditions, exhibit the average trend of 〈〈[x(t)− x(0)]m]〉w〉φ.
However, for a generic choice of the phases, fluctuations around this mean appear to
increase with time. While these sample-to-sample fluctuations are considerably marked in
case of odd moments, wildly scattered around zero, when m is an even number they do
not appreciably affect the scaling in (34). This is indeed shown in Figure 5, where a single
realization of 〈〈[x(t)− x(0)]m]〉w〉0 obtained for a random choice of {φn} (colored symbols)
overlaps with the disorder average moments (34).
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Figure 5. Scaling of moments: disordered case. Panel (a): scaling regimes for the moments averaged
over 10 configurations of the disorder (black solid lines) and over 104 initial conditions for a quenched
random configuration of the disorder. The dotted vertical line correspond to t = L2

D with L = 100,
D = 1.0 and M = 100. The expression (34) is supported by the rescaling in panel (b).

4.2. No-Disorder: Symmetric and Asymmetric Quenched Velocity Fields

When the no-disorder condition is enforced, i.e., φn = 0 ∀n, the scaling of the mo-
ments differs substantially from the disorder-averaged case (34). A lengthy calculation,
although conceptually non-demanding and equivalent to those reported in Appendix A
and B, shows that, when the symmetric velocity advection field (4) is chosen, even and odd
moments exhibit clear scaling forms in time (see solid lines in Figure 6). In particular, it ap-
pears that these scaling expressions have a continuous linear dependence on m in the range

of short to intermediate times t� L2

D , i.e., ∝ Lm−1tm for t� L2

M2D and ∝ Lm−1tm (2−γ)
4 + 1

2 for
L2

M2D � t� L2

D . However, asymptotically they behave discontinuously like ∼ Lm−1t[m/2],
where [· · · ] represents the integer part. As a matter of fact, a non-linear rescaling of the

curves like that displayed in panel (b) of Figure 6, i.e.,
(
〈〈[x(t)−x(0)]m〉w〉0√

t

)1/m
works fine in

only in the time range Lm−1tm (2−γ)
4 + 1

2 . This finding sheds light on the strong anomalous
character of the spectrum of moments [29–31].



Entropy 2022, 24, 1350 14 of 16

Figure 6. Scaling of moments: no-disorder case. Panel (a): scaling regimes for the moments averaged
over 104 initial conditions for {φn} = 0. The solid lines correspond to the symmetric case (4), while
the dashed lines stand for the asymmetric case (3). The dotted vertical line correspond to t = L2

D with
L = 100, D = 1.0 and M = 100. The rescaling in panel (b) show a perfect curves collapse in the
regime L2

M2D � t� L2

D but it does not hold for t� L2

D .

When the velocity field is asymmetric, i.e., (3), the odd moments present large fluc-
tuations in time, although they are zero on average. Therefore, a precise scaling form in
time cannot be inferred. The even moments instead follow the same scaling form of the
symmetric case in the short to intermediate time regime t� L2

D , and they coincide for large
times (dashed lines in Figure 6).

Summing up, the results for the symmetric and asymmetric advection fields are
hereby reported

〈〈[x(t)− x(0)]m〉w〉0 ∼


Lm−1tm t� L2

M2D

Lm−1tm (2−γ)
4 + 1

2 L2

M2D � t� L2

D

Lm−1t[
m
2 ] t� L2

D .

(35)

The former Equation (35) holds for any m when the velocity field is symmetric, namely
in the cosine case (4). Its validity is limited to only values of 2m for antisymmetric velocity
fields (3).
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5. Conclusions

We have furnished a thorough analysis of the random shear model in the case of
long-ranged advection fields. The strength of the correlations along y is dictated by the
exponent of the discrete spectrum of the velocity field ∼ kγ

n . The elegant way in which
the random shear velocity is introduced presents several advantages if compared to the
previous analysis, among which we can enumerate the possibility to derive exactly all the
advection (shear) field statistical properties by means of the n−points correlation functions
and of the PDF P(U). Importantly, it allows the straightforward implementation of two
kinds of averaging procedures, one 〈〈· · · 〉w〉φ over the thermal noise w and the shear field
disorder embodied by the phases {φn}, the other 〈〈· · · 〉w〉0 over the thermal noise w and
a uniform set of initial conditions y0 spaced along the channel’s size L, for a quenched
configuration of the disorder. In particular, we focused on the comparison between the
scaling form in time of the position moments achieved by averaging over the disorder
ensemble, and the scaling exhibited by the moments averaged over the initial conditions.
Three distinct cases of the quenched advection field were thoroughly analyzed: (i) a typical
random configuration of the phases {φn}, (ii) the case of the asymmetric advection field
(3) with no disorder φn = 0 ∀n, iii) the case of the symmetric advection field (4) with no
disorder φn = 0 ∀n.

The four cases analyzed show the presence of three distinct scaling regimes for t�
L2

M2D , L2

M2D � t � L2

D and t � L2

D . In the case of average over the disorder, the moments
〈〈[x(t)− x(0)]m〉w〉φ display a typical scaling form of the type ∝ tαm in the three regimes,
only for even values of m. On the other hand, they are equal to 0 for odd m. The scaling
of the moments 〈〈[x(t)− x(0)]m〉w〉0 when a generic random configuration of the phases
{φn} has been set up, traces that of 〈〈[x(t)− x(0)]m]〉w〉φ only when m is even. The odd
moments show random sample-to-sample fluctuations which, obviously, are not consistent
with any scaling law. In this sense, we can state that the average over the initial conditions
for a generic quenched disorder is typical, and follows a universal scaling. The cases of
zero disorder exhibit scaling trends differ from those of a generic random configuration for
times t� L2

M2D . Specifically, the symmetric advection field (4) has moments whose scaling
form is strongly anomalous for any m. In the antisymmetric case (3), the even moments
behave exactly like the symmetric counterparts. The odd moments, on the other side, are
random functions of time for which a clear scaling form cannot be drawn.

Finally, in this article, we offered the most detailed study of the scaling form of the
position moments in the random shear model. Our findings include and extend to all
the previous results present in the literature, providing a comprehensive and accurate
theoretical framework on this subject. Moreover, it constitutes a benchmark for future
analysis including the analytical calculations of the propagator P(x, t), the diffusion equa-
tion that it satisfies and the question of the ergodicity breaking in either one of the two
averaging procedure.
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