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Abstract

Description Logics (DLs, for short) allow reasoning
about individuals and concepts, i.e. set of individuals
with common properties. Typically, DLs are limited to
dealing with crisp, well defined concepis. That is, con-
cepts for which the problem whether ap individual is
i ¥es/no question. More often than

In th'is PEPEr we present a general fuzzy DL, which

Introduction

Description Logics (DLs, for short) provide a logical
reconstruction of the so-called frame-based knowledge
representation languagest Concepts, roles and ndivid-
uals are the basic building blocks of these logics. Con-
cepts are expressions which collect the properties, de-
scribed by means of roles, of a set of individuals, From a
first order

An assertion states either that an indj.
vidual a is an instance of g concept C' (written C'{q)),
or that two individuals g and b are related by means of
a role R (written B{a,b)). A basic inference task with
knowledge bases is entament and
whether the individual ¢ Is an instance of
¢ wrt the KB 3 (written 3 = Cla)).
Typically, DLs are limited o dealing with Crisp con-
cepts. However, many useful concepts that are needed
by an intelligent system do not have well defined bound-
aries. That is, often it happens that the concepts en-
countered in the rea] do not have a precisely de-
fined criteria of membership, i.e, they are vague con-
cepts rather than Precise concepts. For instance, Tall
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is such s, concept: we may say that an individyg] tom
an instance of the concept Tall oniy to a certain deg
n € [0,1] depending on tom's height,.
Fuzzy logic directly deals with the notion of vagye.
ness and imprecision using fuzzy predicates. Thereforg
it offers an appealing foundation for a Zeneralisation
DLs in order to dealing with such vagye concepts.
The aim of this work is to present g,
which combines fuzzy logic with DLs.
will extend DLs by allowing expressions of the form
(Clayn) (ne [0,1]), e.g. (Tall(tom).7), with intendeq
meaning “the membership degree of individuaj g being
an instance of concept C is at least n”. :
Extending DLs with fuazy features has already he
done in the past. For instance, in (Yen 1991) the
very limited DI Fr— {Brachman & Levesque 1984)
as been extended with some fuzzy features. In Pa
ticular, it allows the definition of fuzzy concepts an
the only supported reasoning mechanism is determin-_
ing subsumption?, Unfortunately, it does not allow rea
soning in presence of assertions. Recently, (Meghin
Sebastiani, & Straccia 1997)

teasoning algorithm was given, :
general framework in the sense
that it is based both on the DI, ALC, a significant and
eXpressive representative of the various DLs, and on'
sound and complete constraing propagation caleuli for
Ieasoning in it. This allows us to adapt it easily 0
the different DI.g presented in the literature, Moreove:,;
we will show that the additional expressive power has
no impact from g compiutational complexity point of
view. This is important as the nice trade-off between
Computational complexity and expressive power of DLg
contributes to their popularity. 3
Finally, note that most existing work in extend- _
ing DLs for uncertainty management lie ip the cate-
gory of probabilistic extension like e.g. (Heinsohn 1994;
Jéger 1994 Koller, Levy, & Pfeffer 1997} with some
exceptions like (Hollunder 1994). Ewven though these

2Roughly, a concept .D subsumes a concept C iff from a
first order point of view, ¥z.C{z) — D(z) is logically valid.
3The idea to use DLs in the context of multimedia docu-
ment retrieval has heen proposed in {Gobel, Haul, & Bech-
hofer 1996) too, ‘




" srobabilistic extensions enlarge the applicability of DLs
they do not directly address the issue of reasoning c}botl}t
individuals and vague concepts, Moreover, reasoning in
a probabilistic framework is generally a harder task,
from & computational peint of view, than the rela.
tive non probabilistic case (see e.g. (Rotk 1996) for an
overview) and thus, the computational problems have
to be addressed carefully like in (Koller, Levy, & Pfeffer
7).
1g?n )the tollowing sections we first introduce crisp ALC,
then we extend it to the fuzzy case. Thereafter, we wil]
present constraint propagation caleuli for reasoning in

st
A quick look to ALC

The specific DL we will extend with fuzzy capabilities
s ALC, a significant representative of the best-known
and most important family of DLs, the AL famnily.

We assume three alphabets of symbols, called prim-
itive concepts {denoted by A}, primitive roles (denoted
by R) and individuals (denoted by a and b). The con-
cepts (denoted by C and D) of the language ALC are
formed out cf primitive concepts according to the fol-
lowing syntax rules?:

oD — T (top concept)
L (bottom concept)
Al {primitive concept)
C'NDI (concept conjunction)
CU D] (concept disjunction)
=} (concept negation)
YR.C|  (universal Guantification)
(

JR.C  (existential quantification)

An interpretation T is a pair 7 = (A%, T) consisting
‘of a non empty set AT (called the domain) and of an
interpretation function -2 mapping different individuals
into different elements of AZ » Primitive concepts into
subsets of AT and primitive roles into subsets of AT x
AT, The interpretation of complex concepts is defined
in the usual way: TZ = AT 1T - 8, (CNDYF =c%n
D A(CUD = CTUDT, (-0)T = AT \CT, (YR.OVE
={de AT :Vd. (dd)e RY implies &’ € T}, and
(GRC)T = {d € AT : 3¢, (d,d'} € RT and &' < CT1.
For instance, the concept Tall r Student denotes the
set of tall students. .

An assertion (denoted by «) is an expression of type
Cla) (e is an instance of C), or an expression of type
f(a,b) (a is related to b by means of R). For instance,
(Tall n Student)(tom) asserts that tom is & tall stu-
o dent, whereas Friend(tim,tom) asserts that tom is &
. friend of tim.

The semantics of assertiong is specified by saying that

. the assertion C(a) (resp. R(a, b)) is satisfied by T if
ot e 0T (resp. (af,b%) RT), A set ¥ of assertions
will be called a knowledge base (KB). An interpretation

L satisfies (is o model of) a KB X iff T satisfies each ele-
ment in X. A KB ¥ entails an assertion o (written & =
@) iff every model of 5 also satisfies . For instance, if
Lis {(Tall M Student)(tom), Friend(tim,tom)} then

—_—
*Through this work we assume that every metavariable
has an optional subscript.

L= (Friend.Tall)(tim), i.e. tim has a tall friend.
Notice that T = R{a,b) iff R{a,b) & ¥.

Fuzzy ALC

From a syntax point of view, in fuzzy ALC we are
dealing with Juzzy assertions (denoted with Y, he ex-
pressions of type (am), where o is an ALC assertion
and n € [0,1].

From a semantics point of view, we will follow
Zadeh’s semantics. According Zadeh’s work about
fuzzy sets (Zadeh 1965), a fuzzy set X with respect
to a set § is characterized by a membership function
Bx i 8 — [0,1], assigning a A -membership degree,
#x(s), o each element s in S. This membership de-
gree gives us an estimation of the belonging of s to
X. Typically, if px{s) = 1 then s definitely belongs
to X, while ux(z) =".7 means that s is “likely” to
be an element of X Moreover, according to Zadeh, the
membership function has to satisfy three well-known re-
strictions. For all s € S and for all fuzzy sets X, Y with
respect to S: pyny(s) = min{ux(s), uy (s)}, Hxuy(s)
= max{ux(s), uyv(s)}, and tigl(s) = 1 — ux{s), where
A is the complement of X in S, i.e. § \ X5,

In fuzzy ALC, & concept is interpreted as a fuzzy
set. Therefore, concepts and roles become imprecise (or
vague}. According to this view, the intended meaning
of e.g. (C(a) n) we will adopt is: “the membership de-
gree of individual ¢ being an instance of concept ' is at
least 71" Similarly for roles. Hence, e.g. (Tall{tom).7}
Imeans that the degree of tom being Tall is at least .7,
i.e. tom is likely tall; {Tall(tom)1) means that tom is
tall, whereas (=Tall(tom) 1) means that tom is not tall.

A fuzzy interpretation is now a pair T = (A%,.Ty,
where AT is, as for the crisp ALC case, the domain,
whereas 7 is an interpretation function mapping (1)
individuals as for the crisp case; (i) ALC concepts
into a membership degree function AZ — [0, 1], and
(1) ALC roles into a membership degree function
AT x AT [0,1]. Therefore, if G is a concept then
CT will naturally be interpreted as the membership de-
gree function of the fuzzy concept (set) Cw.rt. I, 4.e, if
d € AT is an object of the domain AZ then CZ(d) gives
us the degree of being the object d an element of the
fuzzy concept € under the interpretation 7. Similarly
for roles. Additionally, - has to satisfy the following
equations: for all 4 € AT

Ti{d) = 1

LE(d) = 0

(CnoD)yd) = min{C%(d), D" (d)}

(CUD(d) = max{CF(d), D (d)}

(~C)* () = 1-CHd)

(VRC)T(d) = Ming ez {max{l ~ R¥(d, d'), CT(d")}}
GRC @) = maxgyeaz{min{R*(d, d'), C¥{d')}}.

Just note that w.r.t. the ¥ connective, (VR.C)I(d) is
the result of viewing YR.C as the first order formula

*Other membership functions have been proposed in the
literature. The interested reader can consult e.g. (Dubois &
Prade 1980; Kundu & Chen 1994).
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Vy. Rz, y) — Cly), where F — @ is -F v G® and
the universal Quantifier V is viewed as 3 conjunction
over the elements of the domain. Similerly, for the 3

connective (E]R.C)I(af) Is the result of viewing JR.C
as Jy.R{z,y) A C(y), where the existential quantifier
d is considered a disjunction over the elements of the
domain (see e.g. (Lee 1972)).

It is easily verified that for all Interpretations 7 and
individuals d € AZ, (-(c'm DY) = (~C'U -DY (d)
and (-(VR.C))¥(g) = (3R~CY (d).

An interpretation I sabisfies a fuzzy  assertion
(Cla)n) (resp. (R{a,b)n)) iff CHaT) > (resp.
Rf(ar,br) > n).
model of) a set of fuzzy assertions L, te a fuszy KB, iff
T satisfies each element of 5. A fuzzy KB & Suzzy en-
tails a fuzzy assertion ¥ {written They) iff EVEry model
of & also satisfies V. Given a fuzzy KB & and an
assertion ¢, we define the mazimal degree of truth of
@ with respect to T (written Mazdeg(T, @) to be
max{n > 0 ; Zr{an)} (maxd = 0). Notice that &
e {an) iff Mazdeg(z,a) >n.

Example 1 Suppose we have two images i1 and
i2 regarding tim, tom and Joe. i1l and i2 have
been indexed as follows: i = {(About(il, tim) .9 ,
{(Tall(tim).8), (About(ii,tom).ﬁg, Tall(tom) .?)f,
Zig = {(About(il,joe) .6}, (Tall(joeS.Q)}. More-
over, let T = {(Student(tim) 1), (Student(tom) 1),
(Student(joe) 1, {Tmage(i1) 1), (Image(i2) 1} We
define &; = 3,,'1 Tg and 35 = 12U ¥s. Our inten-
tion is to retrieve all images in which thero is a tall
student. This can he formalised by means of the query
concept &' = Image M Jabout, (Student M Tall). [t can
easily verified that Mamdeg(fjl,O(il)) = .8, whereas
fbfa:zdeg(El,C(iE)) = .6. Therefore, we will retrieve
both images and rank i1 before 37 B

Some Properties

The following pProperties are easily verified:  for
all concepts ¢ D and for all n,gm ¢ [0, 1],
{{Cla)n), {(~Cla)m}} is satisfiable iff n < 1 — 1 ang

Moaxdeg(p, (~C CHa}) =35 (1)
{{Cla)m), ((~C L D)) mIE(D(a)n), ifm>1-q {2)

Relation (2) is a sort of modus Fonens over concepts.
Similarly for ¥, the Seémantics of the ¥ connective gives
us a sort of modus ponens oyer reles: if k = min{n, m}

{(Rla,0) m), (YR.C)(a) MR{CO)nY, m > 1-p {3)
((ERD)a)m), (VR.C)(q) MIER.D 0 C)(a) k),
fm>1-n (4)

It is natural to ask whether there is a relation between
F= and k. As first, given a fuzzy KRB 3, let T be the

5Tn the literature, severa] different definjtions of the
fuzzy implication connective —, has been proposed. See
e.9. (Kundu & Chen 1984) for 4 discussion.
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{crisp) KB 5 = {e : {an) € ¥} Since every “crisp”
interpretation is a fuzzy interpretation, the following
Proposition is easily verified,

Proposition 1 et & be a fuzzy KB and let o pe gn
assertion. For alln >0, if ER{an) then ¥ = 4

Proposition 1 states that there cannot be fuzzy en-
tailment without entailment. TFor instance, w.r.t. Tx.
ample 1 we have L1=(C(41).8) and Y k= C(i1).
Unfortunately, the converse of Proposition | i
Dot true in the general cage, For Instance,
{{C(a) .3, ((ﬂC’LJD)(a).S)}Eé(D(a) ny forall n >
whereas {C(a), (2CLUD)(a}} = D(a).

A simple result concerning the “converge” relation
betweer k= and = is the following. Let ¥ he 5 crisp

KB: we define 5, = {lal}: e Z.
Proposition 2 /f 5 = a then She(n 1. 4

{an) is normalized ifn, > 5, A fuzzy KB is normalized
If every fuzzy assertion in it is. If we consider hormalj-
ized fuzzy KBs only, then from (Lee 1972) it follows
that

Proposition 3 If % is normabized then there isn > &
such that Sk(o n) iff L = o, ~
For instance, {(C(a).6), ((~C DY(a) T YRe(D{a).7)
and and 1C(a), (-C 1) D))} = D(a) hold. The rea-
son relies on the fact that for m,n > -5, the condition
M >1-—nin(2) - (4} is always true.

Deciding fuzzy entailment

Deciding whether Lks{arn) requires a calculus. We wil]
develop a calculus in the style of the constraint propaga-
tion method, as this method is usually proposed in the
context of DLs (see, e.g. (Buchheit, Donini, & Schaerf
1993)). The calculus extends the propositional frame-
work described in (Chen & Kundy 1996) to the DI,
case.

Consider a new alphabet of varighles. An Inter
bretation is extended to variables by mapping these
Into elements of the interpretation domain An ob-
ject (written w) is either an individual or a variable.

constraint (written 7) is an expression of the form
w:C or (wi,ws):R, where W, Wy, wy are objects, (' jg
an ALC concept and R is a role. A fuzzy constraint
{written o) is an expression having one of the follow-

C’I(wI) rel n (resp. Rr(wll,wgr) rel n). T sotisfies a
set S of fuzzy constraints iff 7 satisfies every element of

Se = {(@iC > mlCla)n) € £)u
{{((a, b):R > ) |(f(a,b) n) eI}, {5

It follows then that?
TS her

“f}I\Jotica that Mazdeg(%, R(a,5)) = max(n : (B(a, b))
ex).




SR{C(a)ny UF Sz U {{a:C < n)} not satisfiable.  (6)

Our calculus, determining whether a set § of fuzzy con-
straints is satisflable or not, is based on a set of con-
straint propagation rules transforming a set S of fuzzy
constraints into “simpler” model preserving sets S; un-
til either all S, contains a clash (indicating that from all
the .S; no model of § can be build) or some 5; is com.
pleted and clash-free, that is, no rule can be further be
applied to 5; and S; contains no clash (indicating that
from .; a model of § can be build).

A set of fuzzy constraints S contains a clash iff it
contains either {w:L > n) with n > 0, or {w:L > n),
or {w:l <0, or {wrT < n} withn <1, or (w:T < n,
or {w:T > 1), or 5 contains a conjugated pair of fuzzy
constraints. Each entry in the table below says us un-
der which condition the row-column pair of fuzzy con-
straints is a conjugated pair,

I [L{r <m) [z <mj ]
) n>m | n>m
) n>m | n>m

{r
{r

ViV

Given a fuzzy constraint o, with ¢% we indicate a con-
jugate of o (if there exists one). Just notice that a
conjugate of a fuzzy constraint may be not unique, as
there are could be infinitely many. For instance, both
{a:C < .8) and {a:C < .7} are conjugates of (a:C > .8).

Concerning the rules, for each connective M,1, 1,V
and 3 there is a rule for each relation rel € {>, >, €, <},
i.e. there are 20 rules, We will restrict our presentation
to the set rel € {>, <}. The rules for the case rel € {>
, <} are quite similar. The rules can take the following
two forms:

O WifT > TifT (1)

where ¢ and ¥ are sequences of fuzzy constraints and
' is a condition. Both rules fire only if the condition T
holds and if the current set S of fuzzy constraints con-
tains fuzzy constraints matching . After execution,
the first deletes the fuzzy constraints matching @ from
S, while the second keeps them. Both forms add the
constraints from ¥ to § after firing. In order to pre-
vent infinite application of the second type of rules, we
assume that each instantiation of the rules is applied
only once. The rules are the following:

(=) {wi=CZmn) — (wC L 1—n)

(~6)  {winC S} {wC > 1 —n)
Nz} (w:CND2n)— (uwl>n), (wD > n)
(Ug) (w:CUD <n)— (wC <), (w:D < n
(Uz) wCUD2>ny — (wil > n) | (wD>n)
(N<) {(wCND<na} = {wC <m) | {w:D<n)
¥>) (WVRC2>n),0% = (w2 > n)
if o is {(w1,we}iR <1 —n)
{3¢) {(wi3R.C < n), 0% = (w0 < n)

if o is {(w1, wa2):R < n)

(3>)  (w:3RC 2ny— {{w,z)R2n) nCzm
if z new variable
(V) (wYR.C <n)— ((w,x):R>1-n) (z:C <n)
if z new variable
(8}

An instance of the (¥>) rule is 2.g.

{aVR.C > 8}, {{a, bR 2 .T) = {00 = 8},

where o is {(a,8):R < .2) and ¢° = {{a.b);R > T} is &
conjugate of o.

A set of fuzzy constraints S is said to be complete if
no rule is applicable to it. Any complete set of fuzzy
constraints S» obtained from a set of fuzzy constraints
81 by applying the above rules is called a completion of
S1. Due to the presence of the rules tls, U, Me and
<, more than cne completion can be obtained. These
rules are calied nondeterministic rules. All other rules
are called deterministic rules.

Example 2 Consider v = ((3R.D N C){(a} .6) and & =
{(3R.D)(a).T), {{(VR.C)(z).6)}. We show that Ny,
confirming (4), by verifying that all completions of S =
Sz U {{a:dR.DNC < .6)} contain a clash. In fact, we
have the following two sequences.

(1) (@3RDz=.7 Hypothesis:S

(2} (aVR.C =z .6)

(3) {a:3R.DNC < .6)

(¢) {{az)RZzT7{zD>.7 (&3:}:01)

(5) {z:C > 8) (V=) :(2),(4)
(6} (z:DMC < .8) (3<) 1 (3}, (4)

where the two sequences 1) and {1 are respectively
{Ta) (z:D < .8) (M<):(6)

{8a) clash (1), {Ta)
and
(70 {zm:C < 8) (M} (6)
(85) clash {(5), (7b). B

Soundness, completeness and complexity

It is easily verified that the above rules are sound, i.e. if
51 is satisfiable then there is a satisfiable completion
S of 5y and, thus, S, contains no clash. Vice-versa,
completeness, i.e. if there is a completion Sy of §; con-
taining no clash then 5 is satisfiable, can be shown
by building an interpretation Z from S satisfying S,.
Roughly, given a clash-free completion S; of §1 we con-
sider M[7] = max{n : {r >n) € S}, and No[r] =
max{n : (T >n) € Sp}. Since S is clash-free, it fol-
lows that there is ¢ > 0 such that the interpretation
7, (i) with domain A% being the set of objects ap-
pearing in Sy, (44) w? = w for all w € AT and (41)
THw?) =1, L) = 0, AT(w%) = max{N,[w:A4),
Ny ‘LUA} + E}, RI(U)II,'UJQI) = max{Nl[(wl,wg}:R],
Na[(wy,wy):R] + €}, satisfies both Sz and §;. It can
be shown that

Proposition 4 A sef of fuzzy constraints S is satisfi-
able iff there exists a clash free completion of S. -
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From a computational complexity point of view, it is
easily verified that termipation of the above algorithm
is guaranteed. Moreover, from Proposition 2 and from
PSPACE-completeness of the entailment problem in
crisp ALC {Schmidt-SchauB & Smolka 1891), PSPACE-
hardness of the fuzzy entailment problem follows. Tt
can be verified that trace rules as in (Schmidt-Schau8
& Smolka 1991) can be defined. Therefore,

Proposition 5 Let £ be o Juzzy KB and and let ~
be a fuzzy assertion. Determining whether Sy is o
PSPACE-complete problem. -

Computing the maximal degree of truth

The problem of determining Mazdeg(E, &) is impor-
tant, as computing Mazdeg(Z, @) is in fact the way
te answer a query of type “to which degree is a (at
least) true, given the (vague) facts in & 7”. An easy
algorithm can be given in terms of a sequence of fuzzy
entailment tests. It is based on the observation that
Mazdeg(¥,0) € {0,.5,1} U Ny, where Ng = {n :
{(An) € ¥}. The algorithm is described below.

Algorithm Moaz(Z, o)
Let ¥ be a set of ALC fuzzy assertions, let o be an assertion.
Set AMin =0 and Max = 2.

1. Pick n € Ng U {5,1} such that Min < n < Maez, If
there is no such n, then set Moazdeg(E,0) 1= Min and
exit.

If Bks{en) then set Min = n and go to Step 1, else set
Aoz =n and go to Step 1. |

fxe]

By a binary search on Ny the value of Mazdeg(E, o)
can be determined in at most log [Ny, + 1] fuzzy en-
tallment tests. As checking fuzzy entailment is time
consuming, this approach may be unfeasible.

In the extended version of this work, we present an
alternative method for computing Mazdeg(Z, o) per-
forming the fuzzy entailment test only once. Essen-
tially, the method extends the ideas described in (Strac-
cia 1997) to our DL context.

Roughly, in order o determine Mazdeg{L, C(a)),
we start with a set of constraints of the form S —
Sy U {{a:C' < A}}, where X is a new variable symbol.
Thereafter, we apply to § constraint propagation rules
similar to those in (8) until each derived set S; of con-
straints is completed. Finally, we are looking for the
mazimal value n € [0,1] such that for each of the com-
pletions S;, the constraint set Si[A/n] (if not empty)
contains a clash, where 5,[3/ n] is the set obtained by
replacing each occurrence of A by n.

Concerning computationa] complexity, it can be
shown that the problem of determining Mazdeg(X, a)
inherits the result of determining (fuzzy) entailment,
and thus, determining Mazdeg(X, o) is a PSPACE-
complete problem.

Dealing with terminological axioms

We shortly show how 4o dealing with terminological az-
iems. In DLs, a general terminological axiom assumes
the form C'= D, where € and D are conecepts. From
a first-order point of view, ¢ = D is viewed as the
formula vz.C(z) — D(z). For instance, Ferrari =
SportCar M-lwnedby CarFanatic states that a Ferrari
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is a sport car which is owned by a car fanatic. When e @
switch to the fuzzy case, the simple form of fuzzy termy.
nological aziom we allow is {C' = Dn), where n & [0,n).
The semantics is given coherently to the above first
order view of (7 = D: an interpretation T Satisfies 1
(C' = Dn) iff mingeaz{(~CUD) (&)} > n. As g,
the ¥ connective, F' — & is viewed as —F v G It s
easily verified that {(C(a)m), {C' = Dn)} k {D(a) n)
if m > 1 —n, which is similar to (2).

We will say that D subsumes C with degreen wort, y
(written Tk(C = Dn)) iff all models of 3 are mod.
els of (C'= Dn). Mazdeg(Z,C = D) is the maxi.’
mal degree n such that Yp(C = Dn). For instance, jf’
Lis {{A = C.6),(B= DT}, then it can be verified
that Mazdeg(3, AN B = C'11 D) = 6. Notice that,
Mazdeg(#,C = C) = .5, according to (1).

Example 3 Consider Example 1. Suppose
we add {(Student M (Male U Tall) = TallStudent T,
{Male(tim) 1), (Male(tom)1}, {(Male(j0e) 1)} to the
background KB Ip. Suppose the query concept

¢ is Image M JAbout. TallStudent. It can be
verified that Mazdeg(T,,C(i1)) = .7, wheress
Moazdeg(¥,,C(i2)) = .6. ]

From a calculus point of view, we make the foliowing
assumptions: (i) (C'= Dn} is considered a constraint
too; and (71} given %, then Sy is defined as usual ex.
cept that additionally we add (€' = Dn) to Sy, for each
{C'= Dnj € T. Just note that, w.r.. subsumption, we
have that Lk(C = Dn) iff 5 U {{-CLD)a) < ny}
not satisfiable, where a is a new individual, Moreover,
we will make the following restrictions: (i) the fuzzy
terminological axioms in a fuzzy KB ¥ have to be of
the form (A = Cn) (if A then C) or (Ar=C'n) (A iff
C}, where A is a primitive concept: and (#1) we do not
atlow cycles. Here, (A: = Cn)} is a macro for (A= Cn)
and (C"=> An}. This restriction guarantees us sound.
ness, completeness and termination of the deduction
processS.

The rules are the following:

{(=r) (A= C2n},c% = (wC > n)
ifo=(wA<1-n)

(=2) (O3 A>n)o"= wlC<1on ()
ifo={(wAd>n)

Example 4 Let & = {(A= C 6), (B = D .T)} and
consider § = AMNB = CND It is easily
verified that Mazdeg(¥,6) = 6. We show that
LR{6 .6) by verifying that. all completions of § =
Sg{{e=(ANB)L(CnD) < -6) } contain a clash. By
applying rules (8} and (9), we have the following two
sequences.

8Unfortunaﬁcely, the technique used in (Buchheit, Donini,
& Schaerf 1993) in order to reason in presence of axioms of
the form ¢ = D is not directly applicable in the fuzzy case.
This remains an open problem vet,




{1) {(A=C.6 Hypothesis:§

(2) {B= D7)

(3) {m-{ANBILU(CN D) < .6)

{4y (@~(ANEB) < 6),{a(CDY<.6) {Uz):(3)

(5) {wANB> 4 (=<) : (4)

(6} {(a:d > 4}, {a:B > 4 (M) : (5)

(1) {a:C = 6) (=nr):(1),(6)

CIRITER (=8): (201 (6)
Q] 22

where the two sequences §1; and 0y (which determine
the two c-completions &y and Sz, respectively} are

(Ba) {e:C < 8) (Ng):{4)

{10a) clash (9a),(7)
and
(96} (D <8} (Ne):(4)
(105) clash (95), (8)
respectively. :

A further extension (which we roughly address here
without working it out formally} is to allow termi-
nological axioms in which the membership function
is specified explicitly. These axioms are of the form
A =, palfi,..., fa), where A is a primitive con-
cept, fi are features (i.e. functional roles) and p4 is

a fuzzy membership function defined on a concrete do-
main {called universe of discourse in (Yen 1991)) such
that 14 depends on the features f; (see (Baader & Han-
schke 1991) for the formal aspects about concrete do-
mains). For instance, the conrcept Tall could be de-
fined as Tall =, prai1(height), where ur.) s defined
as a lambda abstraction on reals such that it relies on
the keight of an individual: e.g. Az. min{(x/200)2,1}.
Therefore, i ¥ contains both height(tom) = 180
and the above axiom, then we may irnfer that
(Tall({tom).81), where 81 = tran(height(tom)) =
{Az.min{(x/200)?,1})(height(tom)) =
min{(180/200)%, 1}.

Conclusions and Future Work

We have presented a fugzy DL which enables us to rea-
son in presence of imprecise concepts. In particular,
syntax, semantics and sound and complete algorithms
for reasoning in it has been presented. The complex-
ity results shows that the additional expressive power
has no impact from a computational complexity point
of view. This work can be used as a basis both for
extending existing DL based systems and for further
research. In particular, the case of considering gen-
eral terminelogical axioms (including cycles) and role-
forming rules should be worked out. Another interest-
ing point is to understand the impact of fuzziness on
the computational compiexity: is it always true that
the upper bound of the complexity is the same as in
the crisp case?
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