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• Dimethylsulfide (DMS) flux estimation
requires a precise calculation of seawater
DMS.

• Seawater DMS were calculated using ma-
chine learning models.

• Gaussian process can explain up to 71 % of
DMS variance, outperforming othermodels.

• Phytoplankton biomass and ocean mixed
layer depth control the DMS regional
patterns.
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As the most ubiquitous natural source of sulfur in the atmosphere, dimethylsulfide (DMS) promotes aerosol formation
in marine environments, impacting cloud radiative forcing and precipitation, eventually influencing regional and
global climate. In this study, we propose amachine learning predictive algorithmbased onGaussian process regression
(GPR) tomodel the distribution of daily DMS concentrations in theNorth Atlantic waters over 24 years (1998–2021) at
0.25° × 0.25° spatial resolution. The model was built using DMS observations from cruises, combined with satellite-
derived oceanographic data and Copernicus-modelled data. Further comparison was made with the previously
employedmachine learningmethods (i.e., artificial neural network and random forest regression) and the existing em-
pirical DMS algorithms. The proposed GPR outperforms the other methods for predicting DMS, displaying the highest
coefficient of determination (R2) value of 0.71 and the least root mean square error (RMSE) of 0.21. Notably, DMS re-
gional patterns are associated with the spatial distribution of phytoplankton biomass and the thickness of the ocean
mixed layer, displaying highDMS concentrations above 50°N from June to August. The amplitude, onset, and duration
of the DMS annual cycle vary significantly across different regions, as revealed by the k-means++ clustering. Based
on the GPR model output, the sea-to-air flux in the North Atlantic from March to September is estimated to be
3.04 Tg S, roughly 44 % lower than the estimates based on extrapolations of in-situ data. The present study demon-
strates the effectiveness of a novel method for estimating seawater DMS surface concentration at unprecedented
space and time resolutions. As a result, we are able to capture high-frequency spatial and temporal patterns in DMS
variability. Better predictions of DMS concentration and derived sea-to-air flux will improve the modeling of biogenic
sulfur aerosol concentrations in the atmosphere and reduce aerosol-cloud interaction uncertainties in climate models.
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1. Introduction
Dimethylsulfide (DMS) is a volatile biogenic gas produced in seawater
by marine phytoplankton and microbial metabolism, such as the decompo-
sition of the algal metabolite dimethylsulfoniopropionate (DMSP) (Kettle
et al., 1999). Once emitted into the atmosphere, DMS is oxidized yielding
various sulfur products, the most important of which are methanesulfonic
acid (MSA) and non-sea-salt sulfate (Charlson et al., 1987; Facchini et al.,
2008; Mansour et al., 2020a). The sea-to-air global DMS flux (FDMS) was es-
timated to be 28.1 Tg S per year (Lana et al., 2011), making it the largest
biological source of sulfur aerosol in the atmospheric marine boundary
layer. Such aerosols act as cloud condensation nuclei (CCN), potentially
influencing Earth's albedo and climate (Charlson et al., 1987). Accurate pa-
rametrization of oceanic DMS is required for precise estimation of their
flux,which is a key factor in understanding the Earth's climate feedback sys-
tem. A variety of biotic and abiotic factors influence the oceanic DMS cycle
(Mansour et al., 2020a), demonstrating its complexity and nonlinearity.
The DMSP (precursor of DMS) is released into the dissolved oceanic pool
through different mechanisms, including phytoplankton grazing (Wolfe
and Steinke, 1996), viral lysis (Hill et al., 1998), stressed/ senescent cells
(Laroche et al., 1999; Zhuang et al., 2011), and nutrient availability
(Zindler et al., 2014). Physical variables such as salinity (Dickson and
Kirst, 1987), temperature, and UV radiation (Toole and Siegel, 2004;
Vallina and Simo, 2007) may also increase DMSP in marine algal cells by
inducing stress (Sunda et al., 2002), which may regulate DMS release in
seawater. Moreover, strong to storm wind speeds can alter DMS sea-to-air
emission flux rates, resulting in significant depletions in surface water
DMS concentrations (Royer et al., 2016); additionally, windy regions gener-
ally have deeply mixed waters where DMS cannot accumulate as it does in
stratified waters.

The North Atlantic (NA) Ocean displays widespread seasonal phyto-
plankton blooms proxied by chlorophyll-a concentration (CHL), with
distinct spatial dynamics (Friedland et al., 2016; Lacour et al., 2015).
Observations revealed that elevated surface ocean DMS concentrations
were generally linked to enhanced phytoplankton biomass (Bell et al.,
2021) and exhibited marked seasonality over the NA Ocean (Lana et al.,
2011). The biogenic emissions at the surface ocean including DMS-
derived sulfate significantly contribute to the NA submicronmarine aerosol
burden (O'Dowd et al., 2004). The spatio-temporal correlations based on
satellite ocean color data showed that the NA phytoplankton activity
impacts sulfate aerosol chemical composition, aerosol number concentra-
tion, CCN (Mansour et al., 2020b) and ultimately cloud properties
(Mansour et al., 2022). Precisely, variations in cloud droplet number con-
centrations caused by marine biota contribute to the enhanced albedo
and are comparable in magnitude to those caused by anthropogenic inputs
(Mansour et al., 2022). A summary of previously reported campaigns for
seawater DMS measurements in the NA can be found in Table S1. In gen-
eral, DMS concentrations have been found to vary both spatially and tem-
porally throughout the studied domain. For instance, the highest DMS
concentration was reported in a centrally located area of the East Atlantic
Ocean between 56.0°N and 63.4°N and between 17.0°W and 22.4°W, with
an average (median) of 8.93 (8.21) μmol m−3, during June–July 1998.
The North Atlantic Aerosols andMarine Ecosystems Study (NAAMES), a re-
search project that aims to comprehend the relationships between ecosys-
tems, aerosols, and clouds (Behrenfeld et al., 2019), conducted the most
recent cruises for measuring surface ocean DMS concentrations. In the
NW Atlantic over a 4-year period (2015–2018), four shipboard field cam-
paigns were carried out as part of NAAMES. The cruises concluded that
the variability in calculated sea-to-air FDMS is seasonally dependent on the
interplay of seawater DMS and wind speed variations, and inevitably on
the choice of seawater DMS algorithm (Bell et al., 2021). The lowest calcu-
lated FDMS of all NAAMES cruises occurred during NAAMES1, from 5th
November to 2nd December 2015 (mean flux = 4.4 μmol m−2 d−1). The
highest average FDMS was equal to 13.7 μmol m−2 d−1 during NAAMES4
(20th March–13th April 2018) as a result of a combined effect of higher
wind speeds, compared to the other NAAMES cruises, and elevated
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seawater DMS levels in the latter half of the cruise. The bottom line, due
to the scarcity and sparseness of observations, is that documenting the rela-
tionships between DMS concentration and the overlying aerosol/cloud
properties in the highly dynamic NA environment remains a challenge.
This study contributes to improving the prediction of seawater DMS spatial
and temporal variability, explaining the complexity of the DMS cycle, and
proposing the use of innovative machine learning predictive algorithms
rather than simple- and multi- linear regressions.

Previous empirical approaches utilizing linear and multilinear regres-
sions were developed to model DMS distributions (Gali et al., 2018; Simo
and Dachs, 2002; Vallina and Simo, 2007). The approaches estimated
DMS concentrations using several variables, including ratios of CHL to
mixed layer depth (MLD) (Simo and Dachs, 2002), solar radiation dose
(SRD) (Vallina and Simo, 2007), photosynthetically active radiation
(PAR), and satellite-based DMSP concentrations (Gali et al., 2018). For
more information on the empirical algorithms, see Section 2.4. The afore-
mentioned methods have performed well in explaining DMS seasonal vari-
ations qualitatively (Wang et al., 2020), but their predictive power was
generally reduced at regional scales (Herr et al., 2019), failing to accurately
resolve the smaller-scale oceanic features (McNabb and Tortell, 2022;
Royer et al., 2015). Identifying reliable high time-resolution data of DMS
concentration is critical because variations in DMS dynamics frequently
occur at the timescales of meteorological forcing, i.e., days to weeks
(Royer et al., 2016).

Machine learningmethods particularly artificial neural networks (ANN)
and random forest regression (RFR) have been applied to derive monthly
seawater DMS concentrations and make a prediction for the nonlinear oce-
anic systems. For example, the ANN was used to derive monthly climatol-
ogy of global ocean DMS distributions (Wang et al., 2020) at 1° × 1°
spatial resolution, yielding reasonable predictive skills (R2 = 0.66) when
compared to the raw data in the global database. However, the finer spatial
patterns (e.g., mesoscale [roughly 20–200 km] and sub mesoscale [roughly
1–20 km]) and shorter temporal scale variability of oceanographic features
driving DMS were not represented (Bell et al., 2021), due to the coarse
space and time resolution. In the NA ocean, the area of interest of the pres-
ent study, Bell et al. (2021) concluded that the ANN models consistently
underestimated the in situ DMS concentrations, possibly because they
were developed using climatological input parameters (Wang et al.,
2020), which inevitably smooth out the episodic extremes in the predictor
variables. Furthermore, two machine learning methods (RFR and ANN),
were applied in the northeast subarctic Pacific (McNabb and Tortell,
2022) at a higher spatial resolution of 0.25° × 0.25°. The models captured
up to 62 % of observed monthly seawater DMS variability and demon-
strated notable regional patterns that are associated with mesoscale ocean-
ographic variability which otherwisewould be hidden using coarser spatial
resolutions.

The present study aims at predicting the DMS concentrations in the NA
surface waters at unprecedented spatial (0.25° × 0.25°) and temporal
(daily) resolutions. Furthermore, the study proposes a new machine learn-
ing approach which is Gaussian process regression (GPR) that has never
been applied to describe DMS distributions. GPR was chosen as the best-
performing model for reconstructing the DMS observations after testing
the most common machine learning regression models, including regres-
sion trees, support vector machines, regression ensembles, and artificial
neural networks. Gaussian process, a powerful tool of machine learning al-
gorithms, is a non-parametric kernel-based Bayesian probabilistic approach
for solving regression problems (Williams and Rasmussen, 1996). It is a sto-
chastic process that produces good results in terms of developing a calibra-
tionmodel for both linear and non-linear datasets; moreover, it can provide
uncertainty measurements of the predictions. GPR works well on small
datasets and the feature ranking is based on the predictive mean and vari-
ance functions of GPR. Another advantage of GPR is the availability ofmod-
ern kernel functions; therefore, hyperparameters can be adapted efficiently
by boosting the marginal likelihood in the training set (Verrelst et al.,
2016). Gaussian processes have been used in a variety of applications
such as model approximation, experiment design, and multivariate
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regression in different scientific disciplines; however, to our knowledge, no
previous applications of GPR to DMS prediction have been documented.

The improved long-term (1998–2021) high-resolution seawater DMS
concentration data is expected to positively impact the estimated DMS
flux into the NA atmosphere andmay potentially aid in the parametrization
of biogenic sulfur aerosol concentrations in the atmosphere. The study is
structured as follows. We begin by using a simple linear regression ap-
proach to investigate the relationships between observed DMS concentra-
tions from NA cruises and various environmental parameters potentially
acting as DMS predictors. We then perform a multilinear regression to as-
sess each variable's contribution to DMS variance and select the significant
predictors to train the machine learning models. As a result, we train and
test the GPRmodelwith DMSmeasurements and the selectedmost relevant
environmental parameters. Furthermore, a comparison with the previous
empirical and machine learning algorithms is done to assess if applying
GPR improves the NA seawater DMS predictions or not. Then we extend
the developed model to obtain gridded fields of daily (0.25° × 0.25°)
DMS distributions. The spatial variability and the annual evolution of the
DMS in the NA from 1998 to 2021 are investigated using cluster analysis.
Lastly, we calculate sea-to-air FDMS over the NA domain and quantify
their spatio-temporal variations.

2. Materials and methods

2.1. Data sources

In this study, a combination of in-situ observations, satellite measure-
ments, and modelled data was used to generate daily DMS and FDMS time
series over the NA domain from 1998 to 2021. All data sources and their
spatial-temporal resolutions are listed in Table 1. The in-situ surface
ocean DMS concentrationswere obtained from theGlobal Surface Seawater
DMS Database (Pacific Marine Environmental Laboratory, PMEL (Kettle
et al., 1999); last access: 14 March 2022) and the North Atlantic Aerosols
and Marine Ecosystems Study (NAAMES) (Behrenfeld et al., 2019). We re-
stricted DMS measurements between 1998 and 2021 in the NA domain
from 35° N to 66° N and from 55° W to the prime meridian. The cruises
tracks are shown in Fig. S1, and the temporal coverages are listed in
Table S1. A total of 9484 data points were obtained. The DMS data were
binned into a daily resolution and averaged into 0.25° × 0.25° (~28 km)
grid cells, eventually, resulting in a total of 2236 data points. The binned
dataset was used in the training and validation of the machine learning
models (Section 2.3).
Table 1
The main data, sources, and their spatial-temporal resolutions used in the present study
processed to daily averaged– 0.25° resolution. Temporal coverage of the data from 199

Variable Spatial resolution Temporal resolution Source

DMS In situ measurements from ocean cruises PMEL
http://sa
NAAMES
https://d

Chlorophyl-a (CHL) 0.042° × 0.042° Daily Copernic
https://d

Diffuse attenuation coefficient (Kd) 0.042° × 0.042° Daily Copernic
https://d

Sea surface temperature (SST) 0.05° × 0.05° Daily ESA Sea
https://c

Mixed layer depth (MLD) 0.083° × 0.083° Daily CMEMS
https://dSea surface salinity (SSS)

Sea surface nitrate (NO3) 0.25° × 0.25° Daily CMEMS
https://dSea surface phosphate (PO4)

Sea surface silicate (Si)
Photosynthetically available
radiation (PAR)

9 km (SeaWiFS)
4 km (MODIS)

Daily NASA O
SeaWiFS
(2003–2
https://o

Neutral wind speed at 10 m (W10n) 0.25° × 0.25° Hourly ECMWF
https://d
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The chlorophyll-a concentration (CHL) and diffuse attenuation coeffi-
cient (Kd) were derived from the Copernicus-GlobColour Satellite Observa-
tions at level L4 – daily (0.042° × 0.042°) resolutions. Daily satellite-based
time-series of sea surface temperature (SST) were obtained from the ESA
Climate Change Initiative project at 0.05° × 0.05° spatial resolution
(Merchant et al., 2019). The oceanic mixed layer depth (MLD) and sea sur-
face salinity (SSS) were extracted from the EU Copernicus Marine Environ-
ment Monitoring Service (CMEMS) global ocean physics reanalysis at a
daily 0.083° × 0.083° resolution. The above-mentioned variables were
binned and post-processed to 0.25° × 0.25° resolution.

Nutrient data including sea surface nitrate (NO3), phosphate (PO4) and
silicate (Si) were used from the CMEMS global ocean biogeochemistry
hindcast. The biogeochemical hindcast provides daily 3D fields for the pe-
riod 1993-ongoing at 0.25°×0.25° horizontal resolution and on 75 vertical
levels. Nutrients were considered in the linear/ multilinear regression and
machine learning models because they can affect phytoplankton distribu-
tions and thus DMSP production and its subsequent cleavage to DMS
(Wang et al., 2015; Zindler et al., 2014).

To cover the 24 years of the present study, the daily photosynthetically
available radiation (PAR) available from NASA Ocean Color was
downloaded from three products: SeaWiFS (1998–2002), MODIS-Terra
(2001−2021), and MODIS-Aqua (2003−2021). SeaWiFS has 9 km while
MODIS has 4 km spatial resolution, both are L3 products. The data were
combined and binned to 0.25° × 0.25°, and then linear interpolation was
used to fill in the missing values (represent about 5.6 ± 5.9 % of the
whole studied domain) and re-processed them as L4 data.

2.2. Simple and multilinear regression

The methodological framework applied in the present study is summa-
rized in Fig. 1 including simple linear regression (A), multilinear regres-
sions (B), and the generation/ cross-validation and testing of machine
learning models (C). We conducted the simple regression fit on the daily
binned 0.25° × 0.25° DMS datasets from PMEL and NAAMES cruises and
possible predictors to explore the predictive skill of each variable
separately. Predictors such as CHL, SST, MLD, PAR, SSS, NO3, PO4 and Si
were assessed which consist of a total of 2236 simultaneous pairs of data
points. To reduce the dynamic range of these parameters, we log-
transform the DMS and predictors. To avoid losing data with SST less
than or equal to 0 °C, the absolute SST was used. The corresponding
predictors were standardized to their z score, where each predictor is
centered to have mean = 0 and scaled to have standard deviation = 1,
. Data processing levels are L4 except PAR (L3). All variables were binned and post-
8 to 2021 in the north Atlantic domain (35–66°N & 55°W – 0°E).

Unit

ga.pmel.noaa.gov/dms/
μmol m−3

oi.org/10.5067/SeaBASS/NAAMES/DATA001
us-GlobColour Satellite Observations
oi.org/10.48670/moi-00281

mg m−3

us-GlobColour Satellite Observations
oi.org/10.48670/moi-00281

m−1

Surface Temperature Climate Change Initiative v2.1
ds.climate.copernicus.eu

°C

Global Ocean Physics Reanalysis
oi.org/10.48670/moi-00021

m
g kg−1

Global Ocean biogeochemistry hindcast
oi.org/10.48670/moi-00019

mmol m−3

cean Color
(1998–2002), MODIS-Terra (2001–2021), and MODIS-Aqua
021)
ceancolor.gsfc.nasa.gov

mol photons m−2 d−1

ERA5
oi.org/10.24381/cds.adbb2d47

m s−1

http://saga.pmel.noaa.gov/dms/
https://doi.org/10.5067/SeaBASS/NAAMES/DATA001
http://dx.doi.org/10.48670/moi-00281
http://dx.doi.org/10.48670/moi-00281
https://cds.climate.copernicus.eu
http://dx.doi.org/10.48670/moi-00021
http://dx.doi.org/10.48670/moi-00019
https://oceancolor.gsfc.nasa.gov
http://dx.doi.org/10.24381/cds.adbb2d47


Fig. 1. Flowchart of themethodological frame applied in the present study. (A) and (B) represents the results from simple andmultilinear regressions. (C) Diagram of the GPR
model generation and validation details, including cross-validation and testing.
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as recommended byWang et al. (2020). The linear regression function was
applied to each pair to fit a first-degree polynomial.

From simple linear to multilinear regression, we applied, in the first
step, the regression using a total of the potential eight DMS predictors:
CHL, SST, MLD, PAR, SSS, NO3, PO4 and Si. In the second step, we applied
the multilinear regression model by eliminating one predictor each time to
assess each predictor's contribution to the explained DMS variance. The
contribution to R2 of each independent variable is the reduction in the
total R2 when that variable is omitted. Such multilinear regressions
4

between predictors and DMS were performed on logarithmically trans-
formed variables, allowing for the non-linear relationships to be taken
into account.

2.3. Gaussian process regression (GPR)

Based on the results of simple and multilinear regressions, we used five
independent predictors (CHL, SST, MLD, PAR, and NO3), which conceiv-
ably contribute to DMS variance, to build up the GPR model for DMS

Image of Fig. 1
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prediction in the NA. The workflow diagram of the model generation and
evaluation is shown in Fig. 1C. First, the dataset, containing DMS concen-
tration data and the corresponding predictors data for each point of the
available grid of observations, was split randomly into two subsets: a set
for model training and cross-validation (75 % of the total points; n =
1676) and a set for model testing and evaluation (25 %; n = 560). A 5-
fold cross-validation strategy was used which means that the training
dataset was further divided into 5 groups, or folds, of approximately
equal size. At each trial, a unique group is taken as a holdout or validation
dataset and the remaining four groups as training data, then the model is fit
on the training set and evaluated on the validation set. The average evalu-
ation measures (accuracy) of the five iterations were reported. Ultimately,
the developed model was further evaluated on the test data, which was
not used in the model generation, to better evaluate the repeatability of
the model on a new dataset. When developing the GPR, different base ker-
nel (covariance) functions, namely exponential, Matern 5/2, squared expo-
nential, and rational quadratic (Asante-Okyere et al., 2018) were assessed
to determine the optimal covariance function that could produce reliable
predictions closely related to the observed DMS. For more information on
GPR, the reader is referred to the MATLAB help documentation (https://
www.mathworks.com/help/stats/fitrgp.html).

2.4. The existing DMS retrieval algorithms

We applied previously published empirical algorithms for calculating
DMS seawater concentration to test the performance of our GPR model.
Equations from Simo and Dachs (2002), Vallina and Simo (2007), and
Gali et al. (2018) (hereafter referred to as SD02, VS07, and G18, respec-
tively) were used to predict DMS in the NA during the studied period.

SD02 parameterized DMS as a linear function of CHL/MLD when CHL/
MLD ≥ 0.02, which explains as much as 84 % of the global DMS variance
grouped by roughly 10° latitudinal bands, as well as a logarithmic negative
relationship between DMS andMLD when the CHL/MLD < 0.02, which ex-
plains 68% of the variance of the subset DMS. The equations are as follows:

DMS ¼ 55:88� CHL
MLD

� �
þ 0:6 for CHL=MLD≥0:02 (1)

DMS ¼ � ln MLDð Þ þ 5:7 for CHL=MLD < 0:02 (2)

VS07 parameterized DMS concentration according to the strong linear
relationship with solar radiation dose (SRD) in the coastal northwestern
Mediterranean and generalized the linear coefficients to the global open
ocean divided into grids of 10° latitude by 20° longitude as:

DMS ¼ 0:492þ 0:019� SRD (3)

In the 14 grid boxes which cover the global ocean, the linear regression
of Eq. (3) yielded an R2 value of 0.95. In the present study, the SRD in
Eq. (3) was calculated using the following formula:

SRD ¼ I
Kd �MLD

� 1 � e � Kd�MLD� �
(4)

where I is the average intensity of surface radiation (W m−2) and was cal-
culated from PAR using a conversion factor by Morel and Smith (1974).
Kd is the average diffuse attenuation coefficient of downwelling radiative
flux in seawater (Table 1).

The most recent algorithm for DMS retrieval was introduced by Gali
et al. (2018). It proceeds through two steps, calculation of DMSP in seawa-
ter and then retrieving DMS. The DMSP algorithm (Gali et al., 2015)
switches between two different equations depending on the quotient be-
tween euphotic zone depth (Zeu; 1 % light penetration) and MLD. This quo-
tient is used to distinguish between stratified water column if Zeu/MLD≥ 1
5

(Eq. (5) is used) and mixed water column if Zeu/MLD < 1 (Eq. (6) is
applied).

log 10 DMSPð Þ ¼ 1:70þ 1:14λþ 0:44 λ2

þ 0:063 SST � 0:0024 SST2 (5)

log 10 DMSPð Þ ¼ 1:74þ 0:81λþ 0:60 log Zeu=MLDð Þ (6)

where λ= log10 (CHL). CHL in mg m−3, SST in °C and Zeu and MLD in m.
The Zeu is estimated as a function of CHL following Morel et al. (2007) as:

log 10 Zeuð Þ ¼ 1:524 � 0:436λ � 0:0145 λ2 þ 0:0186 λ3 (7)

The sea-surface DMS concentrations (μmol m−3) are estimated from
DMSP and PAR by applying Eq. (8). This algorithm accounted for 56 % of
the monthly DMS variance binned globally into 5° × 5°.

log 10 DMSð Þ ¼ � 1:237þ 0:578 log 10 DMSPð Þ þ 0:018 PAR (8)

For direct comparison to the GPR ensemble performance, the three
aforementioned algorithms (SD02, VS07, and G18) were applied in the
NA domain to generate daily DMS concentrations at the 0.25° × 0.25°
spatial resolution (For more information, see Section 3.2).

2.5. K-means++ clustering

Cluster analysis is an unsupervised machine learning technique that di-
vides a set of data points into groups or clusters to maximize the variance
between clusters while minimizing variance within each cluster. In this
work, the k-means++ clustering algorithm (https://www.mathworks.
com/help/stats/kmeans.html) was applied to identify regions with similar
patterns in the seasonal cycle of surface DMS concentrations over the NA
ocean. The daily predicted DMS data from GPR were used over the
1998–2021 period at each pixel (spatial resolution of 0.25° × 0.25°) of
the NA basin. To facilitate comparison between pixels, each time vector
for each pixel was normalized by the maximal and minimal DMS value to
be scaled between zero and unity. Due to the low-incident sun angle in
winter, the CHL time series could not be measured from satellites at high
latitudes which hinders DMS calculations. For this reason, only periods
from March to September were considered in this analysis. K-means++
is a smart centroid initialization method (Arthur et al., 2007) in which
thefirst centroid is picked randomly from the data points and the remaining
centroids are chosen based on the maximum squared distance. Such an ini-
tial random centroid selection in k-means++ achieves faster convergence
to a lower sum of the within-cluster sum of squares point-to-cluster-
centroid distances than in the classic k-means Lloyd's algorithm (Lloyd,
1982), and improves the quality of the final solution (Arthur et al., 2007).

As an initial step of clustering, the optimal number of clusters, k, within
DMS dataset was defined by applying the advanced Elbow point discrimi-
nantmethod (Shi et al., 2021). Themethod proposes a statisticalmetric, co-
sine of interaction angle, from which an optimal number of clusters can be
estimated. Given that a set of time seriesX= x1, x2,…xn, where each series
represent a time-vector of a certain parameter at a pixel in the NA domain.
Clustering aims to partition the n time series into the number of clusters k=
1, 2,…L (L≤ n). The centroids corresponding to the cluster k are defined as
μ1, μ2,…μk. For example, if k=5, this means that X is divided into 5 groups
which have centroids μ1, μ2, μ3, μ4 and μ5. The within-cluster sum of the
squared error (SSE) is the sum of the square Euclidean distance between
each data point belonging to the same cluster and its cluster centroid. The
total SSE is given by:

SSEtotal ¼ ∑
L

k¼1
∑
n

i¼1
xi � μkð Þ2 (9)

The mean distortion (MD) of the dataset X of n pixels is given by:

MD ¼ SSEtotal=n (10)

https://www.mathworks.com/help/stats/fitrgp.html
https://www.mathworks.com/help/stats/fitrgp.html
https://www.mathworks.com/help/stats/kmeans.html
https://www.mathworks.com/help/stats/kmeans.html


Table 2
Simple linear regression between observedDMS and possible predictors. The R2 and
slopes values are for log-log space and normalized data as described in the text.

Parameter CHL SST MLD PAR SSS NO3 PO4 Si

R2 0.21 0.00 0.21 0.10 0.01 0.01 0.00 0.01
Slope 0.19 −0.01 −0.19 0.13 −0.05 0.04 0.02 −0.03

Table 3
Multilinear regression of DMS as a function of predictors. The contribution to R2 for
each of the independent variables is the decrease in total R2 with that variable omit-
ted. The sums of individual contributions of R2 are adjusted to equal the total R2.

Total R2 RMSE Normalized contribution to R2

CHL SST MLD PAR SSS NO3 PO4 Si

DMS 0.39 0.32 0.12 0.03 0.14 0.06 0.00 0.03 0.00 0.00
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The next step in the method is rescaling the vectorMD to span from 0 to
10 using Eq. (11).

SMD ¼ MD � min MDð Þ
max MDð Þ � min MDð Þ � 10 (11)

For three successive clusters a, b and c, where a, b, c ∈ 1, 2, …, L,
Eq. (12) can be used to calculate the Euclidean distance between each
two of them.

Eab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMDa � SMDbð Þ2 þ a � bð Þ2

q
(12)

The Elbow interaction angle αb is given by:

αb ¼ cos � 1 E2
ab þ E2

bc � E2
ac

2� E2
ab � E2

bc

� �
(13)

The smallest α indicates the optimum Elbow point in the space of α =
α1, α2, …αL−2 and the corresponding k is the estimated potential optimal
cluster number for the analyzed dataset.

2.6. Sea-to-air DMS flux

Daily sea-to-air DMS fluxes (FDMS; μmol m−2 d−1) from 1998 to 2021
were calculated using surface ocean DMS concentrations and the
ECMWF-ERA5 (Hersbach et al., 2020) reanalysis of 10 m neutral wind
speed by applying Eq. (14).

FDMS ¼ kDMS � DMS (14)

DMS in Eq. (14) represents the values in sea surfacewater concentration
(μg m−3). The assumption is based on DMS in the surface ocean being
strongly supersaturated to that in the overlying atmosphere (Wang et al.,
2020), and so the air-sea concentration difference ΔDMS is almost equal
to seawater DMS. The gas transfer velocity (kDMS) is estimated as a function
of neutral wind speed following Goddijn-Murphy et al. (2012) parametriza-
tion.

kDMS ¼ 2:1W10n � 2:8ð Þ ScDMS

660

� � � 0:5

(15)

where W10n is the neutral wind speed (m s−1) at 10 m above the sea sur-
face. ScDMS is the Schmidt number (diffusivity of DMS through seawater),
which is dependent upon sea surface temperature (SST) and is calculated
by Saltzman et al. (1993) as follows:

ScDMS ¼ 2674:0 � 147:12 SST þ 3:726 SST2 � 0:038 SST3 (16)

Eq. (15) is valid only when W10n > 1.33, otherwise, it gives negative
values. Negative kDMS are replaced by applying linear interpolation.

3. Results and discussion

3.1. Linear regression and predictors selection

The linear regression fit lines between daily binned observed DMS and
possible predictors (CHL, SST, MLD, PAR, SSS, NO3, PO4 and Si) individu-
ally are shown in Fig. 1A (frequency distributions are shown in Fig. S2),
whereas slopes and R2 values are summarized in Table 2. The strongest pre-
dictors of DMS in seawater are CHL and MLD (R2 = 0.21, n = 2236). The
positive correlation between CHL and DMS (slope = 0.19) can be attrib-
uted to the fact that DMSP, the precursor of DMS, derives from biological
processes, which are tracked by the abundance of CHL in surface seawater.
The deepening of the ocean MLD tends instantaneously to reduce the DMS
at the sea surface as a result of the vertical mixing and of the reduced expo-
sure to radiation, resulting in a reverse MLD-DMS relationship (slope =
6

−0.19). Gali et al. (2018) and Wang et al. (2020) reported a quasi-similar
R2 value of CHL-DMS using in situ global data, while the R2 is lower
using binning monthly 5° × 5° data (R2 = 0.14) (Gali et al., 2018). The
third strongest predictor for DMS is PAR which can describe 10 % of DMS
variance in a positive relationship. Notably, there is a strong similarity be-
tween the linear coefficients and R2 of the globally in-situ data (Wang
et al., 2020) and our daily binned satellite data obtained in the NA.

The applied multilinear regression model (Table 3), which employs a
combination of the eight predictors, outperforms the linear regression
model in terms of predictive ability (total R2 value of 0.39, which is higher
than that of any of the linear models). In addition, Table 3 shows that three
predictors (MLD, CHL and PAR) explain up to 32 % of the variability in
DMS. The SST and NO3 can explain the rest of the total variance while
the SSS, PO4 and Si have a negligible impact. To support this, we perform
the analysis of variance (ANOVA) on the implemented multilinear regres-
sion model of the eight predictors. The ANOVA sums of squares (Fig. 1B),
which show how much of the variance is explained by each component of
the decomposition, reveal similar contributions from the tested predictors
as themultilinear regression. No statistically significant (p< 0.05) contribu-
tion from SSS, PO4 and Si is observed (Table S2). For these reasons, we ap-
plied the machine learning model (GPR) using the 5 predictors (MLD, CHL,
PAR, SST and NO3) that contribute significantly to the total variance.

3.2. GPR training/ cross validation and testing/ evaluation

A 5-fold cross-validation strategy was used to develop the GPR model
(Fig. 1C). The 75 % of all the data used in model training and cross-
validation is subdivided into 5 subgroups. The iterations are repeated five
times and in each iteration, data from 4-folds is used in model training
while the data in the remaining fold is used for validation, such that a dif-
ferent fold is selected as a validation set each time (Fig. 1C). As a primary
step, we assessed four base kernel (covariance) functions which are expo-
nential, Matern 5/2, squared exponential, and rational quadratic, utilizing
the same 5-fold plan. Then, the four models executed by different kernel
functions were extended to the test data. The motivation was to identify
the best-performing (optimal) kernel function suitable for accurately
predicting DMS concentrations. The average evaluation measures of the
five trials corresponding to the 5-fold strategy are summarized in
Table S3. While the four applied kernel functions have quasi-similar mea-
sures, the best optimal GPRmodel for predicting DMS is the exponential co-
variance function. The GPR model based on the exponential covariance
function achieves the highest R2 value of 0.67 and the least root mean
square error (RMSE) of 0.24 for the training data. When extending to the
test data, R2 and RMSE reach 0.71 and 0.21, respectively. Therefore, the co-
variance exponential function of GPR was selected as the optimal regressor
for further analysis throughout this study. The model was saved and run to
obtain gridded fields of daily DMS (1998–2021) distributions over the NA.

Fig. 2A displays the comparison between observed and predicted DMS
by the developed GPR model. When compared to simple linear (Table 2)



Fig. 2. Predicted versus observed DMS (μmol m−3): (A) gaussian process regression presented in this work, (B\\D) previous estimates based on linear and multilinear
regressions (see Section 2.4). GPR performance (R2 and RMSE) are computed for the cross-validation and test datasets. The right panel represents joint probability
histograms where darker colors indicate higher probability; the colors are normalized so that the sum of total pixels is 1 in each plot. The dashed black lines represent the
change of DMS residual errors (observed–predicted) in each bin. MAE is the mean absolute error.
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Table 4
Summary of performance measures of ANN and RFR in predicting DMS in the NA.

ANN type RFR

Narrow Medium Wide Bi-layered Tri-layered

Number of fully conneted layers 1 2 3

Layer size 1st = 10 1st = 25 1st = 100 1st = 10
2nd = 10

1st = 10
2nd = 10
3rd = 10

Training/cross-validation RMSE 0.303 0.288 0.295 0.288 0.288 0.260
R2 0.47 0.52 0.50 0.52 0.52 0.61

Test RMSE 0.255 0.259 0.254 0.252 0.260 0.233
R2 0.58 0.57 0.59 0.59 0.57 0.65
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and multilinear (Table 3) regression models, it is clear that GPR can recon-
struct the observations with a markedly higher R2 value (0.71 against 0.39
of the multilinear model), which means that the selected machine learning
approach captures much more of the observed DMS variability. To bench-
mark the performance of our GPRmodel, we compared the predictive skills
of three existing empirical DMS algorithms (G18, VS07, and SD02) applied
to the daily binned NA data against the GPR. We found that the G18, VS07,
and SD02 did not accurately predict the NA DMS at high temporal and
spatial resolutions (Fig. 2B-D). The best performing of the current existing
numerical algorithms was G18 where R2 = 0.24 was achieved, but
quantitatively RMSE was higher than VS07 and SD02. The high RMSE
may be due to the use of the global coefficient (Eqs. (5) and (6)) in DMSP
retrieval (Gali et al., 2015) which may not be suitable on a regional scale.
It is worth highlighting that the applied multilinear regression in this
study performs better than G18, even using the same predictors (R2

moved from 0.24 [G18] to 0.35 [Table 3]).
The joint probability histograms between observed DMS and the resid-

uals (observed – predicted) are used to verify the variance of residual errors
around zero (right panel of Fig. 2). TheGPRhistogram shows that the resid-
ual errors are mostly centered around zero (dashed black line in the right
panel of Fig. 2), while G18, VS07 and SD02 skewed toward positive resid-
uals mainly at high DMS values. Quantitively, the DMS tested/ cross-
validated data points predicted by GPR have mean absolute error (MAE)
equal to 1.04 μmol m−3. Higher variability in residual errors is observed
for the other existing algorithms. For instance, G18, VS07, and SD02 yield
mean absolute error (MAE) equal to 1.96, 1.91, and 1.81 μmolm−3, respec-
tively (Fig. 2, right panel). Accordingly, compared to the other previously
published empirical approaches, the GPR model significantly improves
the representation of NA DMS variability, achieving significantly higher
prediction accuracy and lesser errors. Aware that the GPR model could be
biased due to the uneven distribution of in situ DMS measurements, we
constructed the joint probability histograms of DMS residuals versus
latitude and longitude, separately. The histograms (Fig. S3) show that
DMS residuals are mostly around zerowithout any tendency, not longitudi-
nally nor latitudinally.

Eventually, we evaluated the use of the GPR model to predict DMS by
excluding, from the analysis, the NO3 data, which are calculated using nu-
merical modeling techniques. In this way, we considered only predictors
that can be obtained directly (CHL, SST, and PAR) or indirectly (MLD)
from satellite observations. Excluding NO3 has no substantial effect on
GPR output. On the test data, the model can explain 0.68 of the observed
DMS variance (RMSE = 0.22) instead of R2 = 0.71 and RMSE = 0.21.

3.3. Comparison of GPR with ANN and RFR

The GPR model is then compared to previously applied machine learn-
ing algorithms: ANN (Bell et al., 2021; McNabb and Tortell, 2022; Wang
et al., 2020) and RFR (McNabb and Tortell, 2022), which were recently
used for seawater DMS prediction. To make a proper comparison, the
same predictors for DMS used in GPR were also used to train the ANN
and RFR algorithms and the same subset for testing was used to ensure
the repeatability of the models. We trained various types of ANN as
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single-layer, bi-layered, and tri-layered neural networks. Based on the
extension to the test dataset, the best performing ANN model is the bi-
layered model with an R2 value of 0.59 and an RMSE of 0.25, as shown
in Table 4. The RFR method provides slightly better results (R2 = 0.65;
RMSE = 0.23), compared to the individual ANN models. In comparison,
the proposed GPR model outperforms ANN and RFR algorithms over the
NA domain. The comparison shows that a fraction of 29 %, 35 % and
41–43 % of the DMS variance could not be captured by GPR, RFR and
different ANN methods, respectively. The comparative analysis suggests
that the proposed GPR is a promising approach to obtaining reliable DMS
concentration values suggesting that it may also be equally successful in
other oceanic regions or, perhaps, even on a global scale.

3.4. Monthly DMS distributions

The best GPR model based on the exponential function was used to cre-
ate gridded fields of daily DMS distributions across the NA covering the en-
tire period of 1998–2021. The DMS climatology from GPR was compared
geographically to the DMS from G18 (the best in previous arithmetic
methods) and the in-situ measurement-based climatology from Lana et al.
(2011); hereafter referred to as L11. The maps are presented in Fig. 3.
The statistical comparison of the three climatology products over the NA
domain is summarized in Table 5.

The maps in Fig. 3A display the climatological monthly mean sea
surface DMS concentrations predicted by the GPR model from March
to September (1998–2021). We restrict this discussion to the spring-
summer months due to the impossibility of calculating winter DMS con-
centrations at high latitudes. Winter DMS distribution maps are pre-
sented in Fig. S4. Relatively high DMS concentrations characterize the
northern part of the studied domain, essentially in summer (Jun-Aug).
The spatial features of the DMS concentration are mostly related to the
distribution of CHL and the CHL/MLD ratio (Fig. S5). This is reasonable
since we show that both CHL and MLD are the best predictors for ob-
served DMS. The seasonal trend of DMS concentration is evident: the in-
crease starting in March and peaking at about 2.94 ± 1.14 μmol m−3 in
July (Table 5) followed by a gradual decrease in September. The spring-
summer (March–September) mean DMS concentration over the domain
is 2.24 ± 0.48 μmol m−3.

The maps in Fig. 3B show the G18 DMS climatology. Note that the res-
olution of the data used to construct the G18 climatology is daily (0.25° ×
0.25°) during the same investigated period 1998–2021. Our comparison
(GPR vs. G18) indicates that G18 show lower concentrations than GPR dur-
ing March, August, and September, mainly over the northern areas of the
studied domain. From April to July, G18 shows mostly higher concentra-
tions over the whole NA. Most notably, G18 does not capture the zonal
decrease of DMS concentration toward the equator during summer (Jun-
August). Such low DMS concentrations below 50°N are evident by the
GPR and consistent with the latitudinal change of in situ DMS measure-
ments (Fig. S6) and are further supported by the spatial distributions of
CHL and CHL/MLD (Fig. S5). A possible explanation may be that Eq. (8),
used by G18, results in an overestimation of DMS concentration at high
PAR (Fig. S5) during the summer season.



Fig. 3. Spatial comparison of climatological monthly mean sea surface DMS concentration based on (A) GPR over 1998–2021, (B) G18 over 1998–2021, and (C) The L11
climatology from the extrapolation of gridded in situ measurements. (D) The difference between the GPR and G18 climatology. (E) The difference between the GPR and
L11. The pixels resolution of (A), (B), and (D) is 0.25° × 0.25° while (C), and (E) have 1° × 1° spatial resolution.
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Table 5
Statistics of sea surface DMS concentration comparisons among the GPR, G18, and in situ measurements (L11) climatology products over the NA waters. Percentages in
brackets indicate the relative difference (%) with respect to G18 and L11 climatology.

GPR G18 L11 GPR – G18 GPR – L11

Mean ± spatial standard deviation (μmol m−3) Spatial mean difference (μmol m−3)

Mar 1.17 ± 0.49 0.92 ± 0.70 1.34 ± 0.57 0.25 (+26 %) −0.18 (−13 %)
Apr 1.84 ± 0.65 2.15 ± 1.23 2.81 ± 1.23 −0.30 (−14 %) −0.98 (−34 %)
May 2.52 ± 0.61 3.72 ± 1.37 4.70 ± 1.33 −1.19 (−32 %) −2.18 (−46 %)
Jun 2.86 ± 0.82 4.06 ± 1.26 6.01 ± 3.18 −1.19 (−30 %) −3.14 (−52 %)
Jul 2.94 ± 1.14 3.41 ± 1.05 5.05 ± 1.92 −0.47 (−14 %) −2.11 (−42 %)
Aug 2.65 ± 1.16 2.54 ± 0.85 4.28 ± 1.47 0.12 (+04 %) −1.62 (−38 %)
Sep 1.70 ± 0.56 1.58 ± 0.59 1.60 ± 0.58 0.13 (+07 %) 0.09 (+06 %)
Mar-Sep 2.24 ± 0.48 2.63 ± 0.87 3.68 ± 0.85 −0.38 (−15 %) −1.45 (−39 %)
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The in-situ measurement-based L11 DMS climatology is presented in
Fig. 3C. The L11 data are interpolated/extrapolated 1° × 1° monthly
mean fields of DMS global climatology based on available oceanic DMS
concentration measurements worldwide taken between 1972 and 2009.
We cut the climatology in the studied NA domain, while the temporal cov-
erage is necessarily different between GPR and L11. In Jun, the L11 clima-
tology shows a relatively high concentration (6 μmolm−3) on average over
theNA domain, whereas the values reach up to 10 μmolm−3 in the south of
Iceland, the Norwegian Sea, and the Labrador Sea. Unlike GPR and G18
model climatology, DMS concentrations by L11 are unable to describe the
key characteristics of contributory predictors such as CHL and CHL/MLD.
This is probably due to the impact of high in-situ DMS concentrations hav-
ing a far-reaching impact on L11 extrapolation.

The maps in Fig. 3D show the difference between the GPR and G18 cli-
matology fields over the NA. The GPR model climatology is about 0.38
μmol m−3 lower than the G18 one (the relative difference is −15 %) in
the whole NA from March to September (Table 5). The maximum differ-
ence occurred in May and June which is 1.19 μmol m−3 (accounting for a
− 30 % in relative terms), mainly located in the southern sector of the
NA domain. In contrast, the GPR model climatology is about 0.25 (+26
%), 0.12 (+4 %), and 0.13 (+7 %) μmol m−3 higher than the G18 one
in March, August, and September, respectively. The major differences be-
tween GPR and G18 distributions are observed in correspondence to very
low CHL values, when DMS concentrations from G18 are mostly impacted
by the PAR value, resulting in a lower agreement between the CHL and
DMS distributions in G18 (Fig. S5). This can be seen particularly in the
southern sector of the study area, where GPR predicts a strong latitudinal
gradient of the DMS concentration across the 50th parallel which is not rep-
resented by G18. Further, high DMS concentration is found by G18 in the
coastal continental shelves (e.g., Infront of Ireland, the Irish Sea, and the
Bay of Biscay) as a result of extremes of phytoplankton biomass in such re-
gions, which is not observed in GPR.

The maps in Fig. 3E show the difference between the GPR and in situ
measurement-based climatology fields (L11). The GPR generally simulates
lower DMS concentrations than L11 (relative change is−39% in thewhole
NA fromMarch to September; Table 5), except for regions to the south and
southeast of Greenland in July and September. The GPR-based climatology
is quantitatively closer to the G18-based climatology than the in-situ L11-
based climatology over the NA domain, especially away from May and
June, as seen by the mean difference in Table 5. The L11 climatology's
mean values are consistently higher than the other two products, particu-
larly in May and June. These findings once again emphasize the potential
consequences of the L11 climatology's extrapolation bias. However, the
three products are fairly comparable in terms of displaying the DMS sea-
sonal cycle, showing high DMS concentrations from May to August.

3.5. DMS cluster analysis

The above findings demonstrate that DMS concentration over the NA
waters exhibits a wide spatial variation due to the variation of its independent
predictors. The k-means++algorithm is applied here to find oceanic regions
with comparable DMS seasonal patterns. Then, to better understand the
10
magnitude, initiation, and extension time of DMS peaks in each cluster, we in-
vestigate the annual cycle of DMS and how it is related to the potential predic-
tors (CHL, SST, MLD, PAR, and NO3) used in the model. Between March and
September, daily predicted DMS data from GPR are used at each pixel in the
NA basin (spatial resolution of 0.25° × 0.25°) in this analysis. The optimal
number of clusters is set according to the novel Elbow approach by Shi et al.
(2021), which performs better than the Calinski-Harabasz index (Caliński
and Harabasz, 1974) and the classic Elbow graph (Syakur et al., 2017) in
this analysis, setting the optimal cluster number to 7 (see Section 2.5 and
Fig. S7 for details).

The distribution of clusters (Fig. 4A) reveals a marked spatial variability
in DMS seasonal pattern over the NA during the investigated period. The
daily climatological sea surface DMS concentration and associated aver-
aged predictors in each cluster are presented in Fig. 4B. Notably, the DMS
seasonal cycle and the patterns of the predictors vary between the different
clusters (Fig. 4). DMS concentrations with large seasonal variability (large
standard deviation and high mean values as summarized in Table S4) are
locatedmainly toward theNorth of the studied domain represented by clus-
ters 1 and 7. In such oceanic regions, DMS and CHL increase simultaneously
from May, then DMS concentration continues growing, while CHL remains
stable or declining during summer (June–August). Geographically, cluster
6 appears to be representative of the center of the subpolar gyre. It is char-
acterized by a high DMS concentration for 3 months, from May to July. A
common feature observed in clusters 1, 6 and 7 is the sharp seasonal varia-
tion inMLD fromdeep in the early spring to shallow in the summer and fall,
accompanied by an excess of nutrients in the early Spring. This can be bet-
ter seen by looking at the data in Table S4 showing that the range of MLD is
the largest in those clusters. In those clusters, the time extent of the DMS
peak is longer compared to the other ones. This evidences that nutrients
from deep water upwelled by strong vertical mixing are necessary to in-
crease the phytoplankton activity and initiate the increase of DMS; later
on the enhanced PAR and the shoaling of the MLD stress phytoplankton
cells allowing the persistence of high DMS concentrations (Becagli et al.,
2013; Simo and Dachs, 2002; Vallina and Simo, 2007). These results are
in accordance with previous findings reporting that seawater vertical
mixing may affect the duration and magnitude of the DMS concentration
peaks also by creating stress conditions in the phytoplankton cells when
they are trapped in a shallow surface mixing layer. This favors the produc-
tion and release of significant amounts of DMS in seawater (Kwint and
Kramer, 1995; Laroche et al., 1999; Zhuang et al., 2011) and reduces its
dilution. Indeed, a recent study (Diaz et al., 2021) showed that marine or-
ganisms in shallow mixed layers, in late spring in the NA ocean, suffer
from high levels of oxidative stress. This aspect may contribute to the pro-
longed DMS concentration peak until late summer.

In the South side of the studied domain, clusters 4 and 5 represent the
region between 35° and 45° N, which have the minimum phytoplankton
biomass abundance and are characterized by a single spring bloom. This
is related to the ocean circulation in the NA (Friedland et al., 2016). In
this region, the bloom starts early in spring and propagates northward
driven by the NA drift current (Siegel et al., 2002), resulting in an early
bloom decay at the end of spring. Accordingly, the DMS concentrations
are the lowest (Table S4) with an early spring rise corresponding to the



Fig. 4. (A) Spatial distribution of the clusters obtained from the k-means++analysis of daily DMS (GPR) over theNA in 1998–2021. (B)meanDMS and the predictors annual
cycles (1998–2021) in each cluster. Colors on y-axes distinguish between variables.
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phytoplankton bloom. Clusters 2 and 3 are limited to coastal areas charac-
terized by a smooth seasonal cycle associated with an early bloom (maxi-
mum biomass in early May).
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Eventually, we observe an inverse seasonality between NO3 and
DMS demonstrating the complexity of DMS variability and showing
the importance of other predictors (CHL and MLD) over nutrient

Image of Fig. 4
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concentration. The consumption of nutrients by phytoplankton when
ambient conditions turn favorable (e.g., high SST and PAR in summer)
and the summertime stratification, which suppresses nutrient upwell-
ing, may explain the observed DMS-NO3 reversed seasonality.
Fig. 5. Climatological DMS sea–air fluxes over 1998–2021 derived from the predicte
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3.6. DMS flux distributions

The daily sea-to-air FDMS are calculated using the Goddijn-Murphy et al.
(2012) gas transfer velocity parameterization (see Section 2.6 for details)
d DMS concentrations (GPR) and Goddijn-Murphy et al. (2012) parametrization.
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Table 6
Monthly mean (±spatial standard deviation) of sea–air DMS fluxes in the North Atlantic region (35°–66° N, 55°–00°W). Total cumulative fluxes (integrated over the area of
each pixel in the domain) of DMS-derived sulfur (Tg) calculated from the GPR and compared against G18 prediction and in situ L11 climatology. For L11, the flux calculation
uses the climatic monthly mean sea surface temperature and wind speed during the study period.

FDMS (μmol S m−2 d−1) Cumulative sulfur emissions (Tg) Emission relative difference (%)

GPR GPR G18 L11 GPR–G18
G18

GPR–L11
L11

Mar 12.3 ± 4.9 0.30 0.24 0.36 +26 −17
Apr 16.8 ± 6.2 0.39 0.46 0.65 −16 −40
May 21.1 ± 5.0 0.49 0.75 0.97 −35 −50
Jun 22.9 ± 6.4 0.50 0.74 1.00 −33 −50
Jul 23.2 ± 8.6 0.51 0.63 0.93 −19 −45
Aug 22.2 ± 9.0 0.49 0.50 0.82 −02 −40
Sep 16.8 ± 5.3 0.37 0.36 0.37 +04 +01
Mar-Sep 19.3 ± 3.7 3.04 3.66 5.39 −17 −44
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and the DMS derived from GPR predictions. The monthly climatology of
FDMS computed from daily (0.25° × 0.25°) data is presented in Fig. 5. Sea-
sonal variation in FDMS is evident and mostly related to the DMS cycle
rather than wind speed. Predicted average FDMS in the NA ranges from
12.3 ± 4.9 μmol m−2 d−1 in March to 23.2 ± 8.6 μmol m−2 d−1 in
July, with an average of 19.3± 3.7 μmol m−2 d−1 fromMarch to Septem-
ber (Table 6). In early spring (March–April), FDMS above 50°N is lower than
below (in particular, to thewest), despite higherwind speeds (Fig. S8). Con-
versely, above 50°N FDMS increases from May and peaks in summer (June–
August), with the northern part of the domain characterized by a signifi-
cantly higher DMS sea-to-air transfer than the southern region. The inverse
seasonality of wind speed and FDMS indicates that FDMS is primarily driven
by high seawater DMS concentration, and thus the gas transfer velocity
(Eq. (15)) parameterized by wind speed appears to have a minor impact
on FDMS seasonality over the NA Ocean.

Furthermore, the total cumulative fluxes over the NA domain have been
calculated, to obtain DMS-derived sulfur emissions (Tg) from the daily
GPR/G18 and monthly L11 climatology. For L11, the flux calculation uses
the climatological monthly mean sea surface temperature and wind speed
during the study period from 1998 to 2021. L11 produces the highest
spring-summer DMS flux (5.39 Tg from March to September) presented
in Table 6. The GPR model yielded integrated sea–air DMS-derived sulfur
emission of 3.04 Tg, which is 17 % and 44 % lower on average than G18
and L11 estimates.

4. Conclusions

In the present study, machine learning models were evaluated for the
prediction of daily seawater DMS concentrations and their associated sea-
to-air emission fluxes. For this aim, ship-based DMS observations were
jointly analyzed with satellite oceanographic data and Copernicus-
modelled data. The study domain corresponds to the NA ocean and the re-
constructed dataset covers 24 years, from 1998 to 2021, at 0.25° × 0.25°
spatial resolution. Our results show that the optimal exponential GPR (se-
lected as the best performing machine learning model) captures up to 71
% of the observed NA DMS surface concentration, substantially improving
the predictive strength over traditional empirical algorithms. The GPR re-
sulted an efficient tool for obtaining reliable surface seawater DMS concen-
trations and it may be successful in other oceanic regions or over the entire
global ocean as well. This newmodeling approach predicts spatial DMS dis-
tributions that are coherent with the underlying patterns of oceanographic
variability. Most notably, DMS concentrations over the NA, and the result-
ing sea-to-airfluxes, resulted strongly driven by regional andmesoscale pat-
terns in phytoplankton biomass and seawater vertical mixing dynamics.
This results in a notable latitudinal gradient of the DMS concentrations
across the 50th parallel, particularly evident during the warm season,
which previous algorithms fail to reconstruct.

The cluster analysis further reveals the marked spatial variability of
DMS concentration in the NA, showing how varying seasonal patterns char-
acterize different regions of the domain. The amplitude and extent of the
DMS annual cycle are controlled by the joint impact of the predictors,
13
most noticeably, phytoplankton biomass abundance and vertical mixing
play intertwined roles in this. We observe that when there is a marked sea-
sonal variation in phytoplankton biomass, also the predicted DMS concen-
trations show a remarkable seasonality, with sustained peaks lasting
through spring and summer. Conversely, oceanic regions characterized by
a relatively flat phytoplankton biomass seasonal trend or by short-lasting
peaks are associated with lower summertime DMS concentrations. Seawa-
ter vertical mixing likely plays a double role in this. On the one hand, phys-
ical vertical mixing in the ocean strongly influences seawater productivity.
Oceanic regions which undergo deepmixing during the winter season (e.g.,
the North region of the studied domain) are among the most productive
areas as the deep mixing replenishes near-surface nutrients allowing for
long-lasting phytoplankton blooming, once the right light conditions
occur (i.e., spring). On the other hand, seawater vertical mixing may affect
the duration and magnitude of the DMS concentration peaks also by
stressing phytoplankton cells trapped in a shallow surface mixing layer,
which favors the production and release of significant amounts of DMS in
seawater and reduces its dilution.

The GPR-based sea-air flux in the North Atlantic is estimated to be 3.04
Tg S, from March to September, highlighting the importance of the study
area as a globally significant sulfur source to the atmosphere. Improving
the predictive accuracy of DMS concentration in seawater on both spatial
and temporal scales allows for a better understanding of the mechanisms
underlying DMS cycling and atmospheric export. More reliable DMS data
will also aid in improving predictions of biogenic sulfur aerosol concentra-
tions in the atmosphere potentially leading to a better understanding of the
oceanic sulfur-aerosol-cloud interactions. Future studies on the inter-
annual variability and long-term trends of DMS emissions are also possible
thanks to the presented high-resolution dataset and will be an object of fu-
ture investigations.
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