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Spin-current density functional theory (SCDFT) is a formally exact framework designed to handle
the treatment of interacting many-electron systems including spin-orbit coupling (SOC) at the level
of the Pauli equation. In practice, robust and accurate calculations of the electronic structure of
these systems call for functional approximations that depend not only on the densities and cur-
rents but also on spinors explicitly. Here we extend the generalized Kohn-Sham (GKS) approach
of [Seidl et all. “Generalized Kohn-Sham schemes and the band-gap problem”, Phys. Rev. B 53,
3764 (1996)] to SCDFT. This framework entails the prominent cases of hybrid forms and meta-
generalized-gradient-approximations. We clarify that the exchange-correlation potentials conjugate
to the currents need to be computed within the GKS approach only when the spin currents are
included in the functional form explicitly. We analyze the consequence of this fact for various ap-
proximations and numerical procedures for the evaluation of SOC effects. The practical power of the
extended approach is demonstrated by calculating the spin-orbit induced/enhanced band-splittings
of inversion-asymmetric single-layer MoSe2 and inversion-symmetric bulk α-MoTe2. Key to these
results is the capacity to account for SOC self-consistently while employing energy functionals and
effective potentials that depend (implicitly or explicitly) on spin currents.

PACS numbers: 71.15.Mb, 71.15Rf, 31.15.E-

I. INTRODUCTION

Since the early days of quantum mechanics, spin-orbit
interactions have played a central role in our understand-
ing of the electronic properties of atoms, molecules, and
solids. The Dirac equation and its simplified version,1 the
two-component Pauli equation, were pinnacle achieve-
ments of that era, leading to a unified description of fine
structure and Zeeman splittings in practically all systems
known at the time, including those which would later
turn out to be crucial to the semiconductor revolution
(e.g., Ge, Si, and GaAs).2

In this century, the discovery of nontrivial topological
properties of the band structure of periodic solids, such
as topological insulators and Weyl semimetals, whose ex-
traordinary properties include quantized transport coef-
ficients, magnetoelectric response, chiral anomalies, non-
reciprocity, etc. has led to an explosion of interest in spin-
orbit interactions. Indeed, by making the electronic wave
functions complex even in the absence of a magnetic field,
the spin-orbit interaction sets the scenario for the non-
trivial response properties, band inversions and topologi-
cal quantum numbers that underlie the above mentioned
effects.3,4 In a parallel development, the emergence of
spintronics has raised the interest in non-collinear spin
textures both in real and in momentum space.5 For in-
stance, the phenomenon of spin-momentum locking – the
emergence of a spin texture in momentum space – is re-
sponsible for remarkable magneto-transport effects, such
as the unidirectional magnetoresistance.6

In this context, it has become more pressing than ever
to develop the tools of computational electronic struc-

ture so that they can be trusted to quantitatively predict
the impact of spin-orbit interactions on properties such
as spin-orbit splitting of bands, closing and re-openings
of gaps at topological phase transitions, the positions of
conical intersection (Dirac and Weyl points) in the Bril-
louin zone, the dispersion of Fermi arcs and the shape of
non-collinear spin textures.

Given the dominance of density functional theory
(DFT) on the landscape of computational electronic
structure, it seems natural to seek to include spin-orbit
interaction effects through an extension of the DFT
framework. What we mean by this is much more than
simply including the spin-orbit interaction as an addi-
tional one-body term in the Kohn-Sham equation of DFT
– an option that is already incorporated and widely avail-
able in existing electronic structure packages. Rather,
in order to achieve quantitative accuracy and predictive
power, we believe it is essential to include the effect of the
spin-orbit interaction in the many-body potentials that
appear in a (suitably generalized) Kohn-Sham theory.

The formal framework for implementing this program
has been known for a long time: it is the U(1) × SU(2)-
invariant Spin Current DFT (SCDFT), see Refs. 7,8.
This theory includes 16 external fields coupling to 16
densities, i.e., the scalar potential coupling to the par-
ticle density, the Zeeman magnetic field (three compo-
nents) coupling only to the spin density, the charge vec-
tor potential (3 components) coupling only to the orbital
current density, and, lastly, the SU(2) vector potential
(a 3 × 3 tensor) coupling to the spin current densities.
Depending on which functional form is invoked in the
calculations, there are several convenient ways of orga-
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nizing this extended set of densities and potentials; see
for example Refs. 9–11. Because it deals in a unified
fashion with the magnetic interactions and the spin-orbit
coupling, SCDFT appears to be the ideal framework to
simulate a multitude of materials useful for magnetism,
spintronics, orbitronics, valleytronics, and topologically
non-trivial states as described above.

In spite of its great promise, SCDFT has so far lagged
behind other DFT and non-DFT methods in its appli-
cation to real material. The reason for this delay can
be traced to the lack of good and transferable approx-
imations for the exchange-correlation (xc) energy func-
tional in terms of spin-current densities. In the last two
decades, it has become increasingly evident that accu-
rate calculations of the electronic structure, including in
particular band gaps and band splittings require func-
tionals that depend on the densities not only explicitly
(as in the traditional formulation of SCDFT) but also
implicitly, through single-particle spin orbitals.9,10,12–18

The emergence of orbital-dependent functionals began
with the widespread practice of including exact exchange,
or a fraction thereof, in the energy functional (the so-
called “hybrid” functionals), and gained momentum with
the development of “meta-GGA” functionals, in which
the traditional set of densities is augmented by the in-
clusion of the (spin-)kinetic-energy density. Most im-
portantly for SCDFT, it was realized that spin-orbital-
dependent functionals are explicitly required in any non-
trivial gauge-invariant formulation.19

The problem with orbital functionals is that, because
they are regarded as implicit nonlocal functionals of the
density, they must be differentiated with respect to the
densities in order to yield the Kohn-Sham potentials.
This differentiation is difficult, as it involves the func-
tional derivative of the orbitals with respect to the densi-
ties. The procedure is usually referred to as the “Effective
Potential Method” (OPM), and, while the resulting “Op-
timized Effective Potential” (OEP) is a legitimate local
Kohn-Sham potential, the benefits of locality are wiped
out by the complexity and costliness of the numerical
treatment.20–24

Experience in regular (Spin-)DFT has demonstrated
that the cost of implementing spin-orbital functionals
can be lowered, and the numerical treatment simplified
by switching to a generalized Kohn-Sham (GKS) frame-
work,25–27 which admits the use of non-local effective po-
tentials, as naturally appear in hybrid functional forms.
In fact, the key ideas of this approach are also used in cal-
culations involving meta-GGA functionals.22,28,29 In this
method, as in the OPM, the xc potential is expressed as
the sum of two parts: a functional of the spin-orbitals
– typically, but not necessarily, a fraction of the exact
exchange – plus a regular explicit functional of local den-
sities. This simple shift in perspective has far-reaching
consequences. The functional derivative of the explicitly

orbital-dependent part of the functional yields a nonlocal,
but simple potential – the Fock potential in the case of ex-
act exchange – while the functional derivative of the reg-
ular part yields a local potential as in the standard Kohn-
Sham formalism. The resulting GKS equation combines
the accuracy of exact nonlocal exchange with the flexi-
bility of semilocal density functional approximations for
the correlation energy. Crucially, band gaps calculated
in this manner become more closely related to the KS
gaps,27,30since part of the derivative discontinuity of the
exact functional is captured by the discontinuous depen-
dence of the orbitals on band occupation. The rigorous
theoretical foundation of the GKS approach is presented
in Ref. 26 for DFT. Here, we extend this approach to
SCDFT.
In doing so, we lay down the framework that allows us

to merge two previous works from some of the same au-
thors of the present work: the implementation31–34 and
application35,36 of the (regular) global hybrids in SCDFT
via the Crystal code and the (formal) proposal of Meta-
GGAs for SCDFT.19 This allows us to demonstrate that
at the heart of the success of the method is its ability to
include the dependence of the effective many-body poten-
tials on spin currents. Even when this dependence is only
implicit (as discussed below) its inclusion is essential to
obtain agreement with experimental results — whereas
conventional treatments of spin-orbit coupling fail. When
the inclusion of spin currents is explicit, it becomes nec-
essary to include the feedback on the effective-vector po-
tentials explicitly as well.
The paper is organized as follows: We start with an in-

troductory section on the (regular) Kohn-Sham approach
to SCDFT. We then describe the GKS approach and pro-
ceed to its application. We discuss first the prominent
case of exact exchange followed by an in-depth discus-
sion of global hybrid forms. We also discuss the case
of spin-current dependent Meta-GGAs. In this way, we
are able to highlight several crucial features which are
peculiar to the GKS approach of SCDFT. We apply the
approach to the calculations of valence-band splittings in-
duced/enhanced by SOC in inversion-asymmetric single-
layer, 2D, MoSe2 with spin-splitting (Rashba-I effect)
and inversion-symmetric bulk α-MoTe2 with spin-valley
locking (Rashba-II effect). After touching on near-future
developments, we conclude.

II. FORMAL ASPECTS

A. Spin-Current Density Functional Theory

In order to appreciate the key difference between
SCDFT and Spin-DFT (SDFT, the most popular flavor
of DFT), it is useful to start with the SDFT Hamiltonian:
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ĤSDFT =
1

2

∫
d3r Ψ̂†(r) (−i∇)

2
Ψ̂(r) +

∫
d3r [n̂(r)v(r) + m̂a(r)Ba(r)] + Ŵ , (1)

where Ψ̂†(r) = (Ψ̂†
↑(r), Ψ̂

†
↓(r)) denotes a two-component

creation field operator (↑ and ↓ refer to the spin “up” and
“down”); v represent an external scalar-multiplicative
potential that couples to the electrons via the particle-
density operator n̂ = Ψ̂†Ψ̂; Ba is the a compoenent of a
magnetic field that couples to the electrons via the spin-
density operator m̂a = Ψ̂†σaΨ̂ (σa denotes the Pauli ma-
trices σx, σy, σz). The last term of the right hand side
denotes the electron-electron interaction

Ŵ =

∫
d3r

∫
d3r′

Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)

2|r− r′|
. (2)

Unless otherwise stated, we use Hartree atomic units in
which ℏ = m = 1. Also note that, for notational conve-
nience, the Bohr magneton µB factor is absorbed in the
symbol Ba.

The SDFT Hamiltonian does not include either the
vector potential corresponding to Ba nor spin-orbit cou-
plings. For taking into account the latter interactions
in DFT fashhion, we consider the SCDFT Hamiltonian,
which can be obtained via the “minimal” substitution
−i∇ → −i∇+ 1

cA(r) + 1
cσ

aAa(r):

ĤSCDFT =
1

2

∫
d3r Ψ̂†(r)

[
−i∇+

1

c
A(r) +

1

c
σaAa(r)

]2
Ψ̂(r) +

∫
d3r [n̂(r)v(r) + m̂a(r)Ba(r)] + Ŵ . (3)

Above and in the following, we denote with bold char-
acters, A, quantities with spatial indices (Greek lower
indices, Aµ, when written explicitly); and use an arrow,

A⃗, to denote quantities with spin indices (upper Latin

indices, Aa, when written explicitly). Thus A⃗ denotes a
tensor with two indices Aa

µ. Both µ and a have values
x,y,z. Contractions over spatial indices are denoted with
“·”, Einstein convention is applied to intend summation
over repeated indices.

Eq. (3) includes besides the terms of the SDFT Hamil-
tonian also a (charge-) vector potential A(r) and a spin-

vector potential Aa(r). While A(r) is useful to rep-
resent an external magnetic field in the usual fashion
Ba = ϵaµν∂µAν , A

a(r) is useful to represent the (one-
body) spin-orbit couplings in the system.8,11,37 Note, in
our notation we absorb the prefractor µB

2 in the sym-
bol Aa. These vector potentials may be viewed as some
“induction” fields, in the sense that they induce particle
and spin currents in the systems on which they act. To
make the latter fact apparent and towards a proper den-
sity functionalization, let us expand the first term in Eq.
(3)

ĤSCDFT = T̂ + Ŵ +

∫
d3r n̂(r)ṽ(r) +

∫
d3r m̂a(r)B̃a(r) +

1

c

∫
d3r ĵ(r) ·A(r) +

1

c

∫
d3r Ĵa(r) ·Aa(r) , (4)

where

T̂ =

∫
d3r Ψ̂†(r)

(
−∇2

2

)
Ψ̂(r) , (5)

ṽ = v +
1

2c2
[A ·A+Aa ·Aa] , (6)

and

B̃a = Ba +
1

2c2
A ·Aa . (7)

Crucially, in Eq. (4) we also find the (paramagnetic)

particle-current operator ĵ = 1
2i

[
Ψ̂†∇Ψ̂−

(
∇Ψ̂†

)
Ψ̂
]

and the (paramagnetic) spin-current operator Ĵa =
1
2i

[
Ψ̂†σa∇Ψ̂−

(
∇Ψ̂†

)
σaΨ̂

]
. Therefore we may antic-

ipate that while SDFT may only accounts for particle-
and spin-density self-consistently, SCDFT must account
also for particle- and spin-current self-consistently (be-
low).

In fact, given the external fields v, Ba, A, and Aa, the
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ground-state energy may then be determined by means of a constrained-search minimization:38,39

E = min
(n, m⃗, j, J⃗)

{
F [n, m⃗, j, J⃗] +

∫
d3r n(r)ṽ(r) +

∫
d3r ma(r)B̃a(r) +

1

c

∫
d3r j(r) ·A(r) +

1

c

∫
d3r Ja(r) ·Aa(r)

}
,

(8)

with

F [n, m⃗, j, J⃗] = min
Ψ→(n, m⃗, j, J⃗)

⟨Ψ|T̂ + Ŵ |Ψ⟩ . (9)

In Eq. (8), the inner minimization stated in Eq. (9)
is carried out over all the antisymmetric many-electron
wave functions yielding the prescribed set of densities and
the outer minimization is carried out with respect to all
N -representable densities (see note at Ref. 40 for more
details). Eq. (9) defines a universal functional of the
densities and currents. The term “universal” (as usual)
highlights the fact that its definition does not involve
external potentials.

The Kohn-Sham scheme in SCDFT invokes the non-
interacting universal functional:

TKS[n, m⃗, j, J⃗] = min
Φ→(n,m⃗,j,J⃗)

⟨Φ|T̂ |Φ⟩ , (10)

which is obtained from Eq. (9) by setting Ŵ = 0. Here
and in the following Φ denotes a Slater determinant of
N single-particle orbitals as opposed to more general N -
particle antisymmetric wave functions Ψ. Crucially, as-
suming that the same set of densities is both interacting
and non-interacting v-representable, one may further de-
compose F as follows:

F [n, m⃗, j, J⃗] = TKS[n, m⃗, j, J⃗] + EH [n] + Exc[n, m⃗, j, J⃗] ,
(11)

in terms of the KS kinetic energy TKS[n, m⃗, j, J⃗], the

Hartree energy EH[n] =
1
2

∫∫ n(r)n(r′)
|r−r′| and a remainder,

Exc[n, m⃗, j, J⃗] — the xc-energy functional in SCDFT.
Given Exc, or an approximation thereof in practice,

the problem of determining the ground-state energies of
an interacting system is therefore translated into find-
ing the ground state of a non-interacting system. The
KS equations in SCDFT have the form of single-particle
Pauli equations including scalar, vector, and magnetic
fields:7,8[

1

2

(
−i∇+

1

c
AKS

)2

+ VKS

]
Φk = εkΦk , (12)

where

AKS = (A+ σaAa) + (Axc +Aa
xc)

= A+Axc , (13)

VKS = vH + (v + vxc) + σa (Ba +Ba
xc)

+
1

2c2
[
A2 −A2

KS

]
, (14)

in which

1

c
Axc(r) =

δExc

δj(r)
(15)

is an Abelian xc-vector potential,

1

c
Aa

xc(r) =
δExc

δJa(r)
(16)

is the a-th component of a non-Abelian xc-vector po-
tential, Ba

xc(r) = δExc

δma(r) is the a-th component of a xc-

magnetic potential, vxc(r) = δExc

δn(r) is a xc-scalar poten-

tial, and vH(r) =
∫
dr n(r′)

|r−r′| is the usual Hartree poten-

tial. The KS densities are obtained from the (occupied)
KS spinors as follows:

nKS(r) =

N∑
k=1

Φ†
k(r)Φk(r) , (17)

already used in the expression of vH,

m⃗KS(r) =

N∑
k=1

Φ†
k(r) σ⃗ Φk(r) , (18)

jKS(r) =
1

2i

N∑
k=1

Φ†
k(r) [∇Φk(r)]−

[
∇Φ†

k(r)
]
Φk(r) , (19)

and

J⃗KS(r) =
1

2i

N∑
k=1

Φ†
k(r)σ⃗ [∇Φk(r)]−

[
∇Φ†

k(r)
]
σ⃗Φk(r) .

(20)

By virtue of the non-interacting v-representability
assumption, the exact Exc yields the exact interacting
densities, which coincide with the KS densities: nKS ≡ n,

m⃗KS ≡ m⃗, jKS ≡ j, and J⃗KS ≡ J⃗.

As argued in the Introduction, spin-orbital function-
als can enable sufficiently general SCDFT applications.



5

For determining the effective local potentials from spin-
orbital dependent functionals, however, an extra set of
integro-differential equations needs then to be solved for
determining the corresponding local potentials. Such
a numerical task is subtle,20–24 and it usually exceeds
the cost of more straightforward generalized-gradient-
approximations (GGA). Fortunately, the cost involved
in the application of spin-orbital functionals can be low-
ered, and the corresponding numerical implementations
can also be simplified, by invoking an appropriate exact
generalization of the KS approach. This is usually han-
dled by admitting partially interactingKS systems, which
exhibit non-local effective potentials.26,41 Below, we spell
out and analyze the case for SCDFT.

B. From Regular to Generalized-KS Systems in
SCDFT

GKS systems can be introduced in SCDFT in a way
that is similar to (S)DFT by noting that the minimiza-

tion in Eq. (8) can equivalently be performed by invoking
different splittings of F [n,ma, j,Ja] and a different min-
imization procedure. In detail, let us consider:

F [n, m⃗, j, J⃗] = FGKS[n, m⃗, j, J⃗] + EGKS
Hxc [n, m⃗, j, J⃗] , (21)

where

FGKS[n, m⃗, j, J⃗] = min
Φ→(n,m⃗,j,J⃗)

⟨Φ|ÔGKS|Φ⟩ (22)

is the analogous of Eq. (10) but here ÔGKS may differ

from T̂ by including some interaction (below). Next, note
that

E = min
(n,m⃗,j,J⃗)

{
min

Φ→(n,m⃗,j,J⃗)
⟨Φ|ÔGKS|Φ⟩+ EGKS

Hxc

[
n, m⃗, j, J⃗

]
+

∫
d3r n(r)ṽ(r) +

∫
d3r ma(r)B̃a(r) +

1

c

∫
d3r j(r) ·A(r) +

1

c

∫
d3r Ja(r) ·Aa(r)

}
= min

Φ

{
⟨Φ|ÔGKS|Φ⟩+ EGKS

Hxc

[
n[Φ], m⃗[Φ], j[Φ], J⃗[Φ]

]
+

∫
d3r n[Φ](r)ṽ(r) +

∫
d3r ma[Φ](r)B̃a(r) +

1

c

∫
d3r j[Φ](r) ·A(r) +

1

c

∫
d3r Ja[Φ](r) ·Aa(r)

}
(23)

may be admissible, provided interacting and non-
interacting N - and v-representability hold true.
In practice, the form of GKS schemes depends upon

the detail of ÔGKS and EGKS
Hxc . A prominent example is

ÔGKS ≡ T̂+αŴ where α ∈ (0, 1] turns on the interaction
in the GKS reference system — yet the minimization is
restricted to single Slater determinants Φ, only — and
EGKS

Hxc ≡ (1−α)EDFA
Hx +EDFA

c ≡ EDFA
Hxc ; i.e., we mix Fock

exchange with (standard) LDAs or GGAs, in the form of
typical global hybrid approximations.

Approximations of this kind can fix, at least partially,
the self-interaction error of DFAs. They have been justi-
fied by the necessity of mimicking an exact (almost) semi-
local xc-hole by the combination of a non-local exact-
exchange hole with an approximate (semi-)local corre-
lation hole. Global hybrids and refinements thereof,

have been guided by the (so-called) adiabatic connec-
tion integration.25,41–44 But there is no prescription for
choosing an optimal value of the hybridization param-
eter α that works for all systems. One needs to de-
vise ways to find optimal values, driven by first principle
calculations,45–47 or consider more sophisticated forms
and procedure of hybridizations.30,48–50 Furthermore, the
optimization task always targets specific observables;
most commonly, energy gaps. These aspects have re-
ceived a huge attention and application in (S)DFT. In
this work we show that switching from Spin-DFT to
SCDFT is crucial for determining optimal mixing that
can work both for band gaps and band splittings of spin-
orbit coupled materials.

Hence, let us start with the functional form
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E[Φ] = TGKS[Φ] + αEFock
x [Φ] + EDFA

Hxc

[
n[Φ], m⃗[Φ], j[Φ], J⃗[Φ]

]
+

∫
d3r n[Φ]ṽ(r) +

∫
d3r v[Φ](r)B̃a(r)

+
1

c

∫
d3r j[Φ](r) ·A(r) +

1

c

∫
d3r Ja[Φ](r) ·Aa(r) ,

where

EFock
x [Φ] ≡ −1

2

∫
d3r

∫
d3r′

Tr {Γ(r, r′)Γ(r′, r)}
|r− r′|

, (24)

is the Fock exchange, here evaluated with GKS spinors,
and

Γ(r, r′) ≡
N∑

k=1

Φk(r)Φ
†
k(r

′) (25)

is the one-electron reduced density matrix (1RDM). In
Eq. (24), Tr denotes the trace over spin.

As announced, we shall consider “typical” global hy-
brids forms. With “typical”, we intend forms that mix
a fraction of Fock exchange, EFock

x [Φ], with GGAs (or
lower rung approximations).

Note, GGAs in SCDFT (as in Spin-DFT) may depen-
dent on all the basic variables and their gradients, but
not on other quantities (e.g. kinetic energy densities).

The corresponding (generalized) KS equation, then,
reads as follows

ĤGKS =
1

2

(
−i∇+

1

c
AGKS

)2

+ αV̂NL
x

+ VGKS (26)

where

AGKS = A+ (1− α)ADFA
x +ADFA

c (27)

with

ADFA
x/c = ADFA

x/c + σaADFA,a
x/c , (28)

V̂NL
x Φk =

δEFock
x [Φ]

δΦk
† = −

∫
d3r′

Γ(r, r′)Φk(r
′)

|r− r′|
; (29)

V̂NL
x is the Non-Local Fock potential — here evaluated

with GKS spinors. Next,

VGKS = V + vH + (1− α)VDFA
x + VDFA

c

+
1

2c2
[
A2 −A2

GKS

]
(30)

with

vH =

∫
d3r′

Tr Γ(r′, r′)

|r− r′|
(31)

and

VDFA
x/c =

(
vDFA
x/c + σaBDFA,a

x/c

)
. (32)

The GKS equations reduce to the regular KS equa-
tions for α = 0. For α ̸= 0, the xc-scalar, xc-magnetic,
and xc-vector potentials produced by EDFA

Hxc get, partially,

replaced by a fraction of the non-local potential V̂NL
x .

At α = 1, the DFA gives no contribution: we end up
with the HF approximation for the Pauli equation. In
passing, also note that, had we invoked a meta-GGA
instead of a GGA, the differentiation w.r.t. the spin-
orbitals would have generated additional terms from the
explicit dependence on the (spin-)kinetic-energy density
— yielding to terms like the ones already accounted for
in (non-collinear) SDFT.51

It is expedient to contrast the GKS equations includ-
ing exact-exchange, Eqs. (26)-(32), against the exact-
exchange approximation of the regular KS approach. In
the present GKS scheme, the non-local Fock potential
is directly given in terms of Γ(r, r′) [see Eq. (29)]. On
the other hand, in the regular KS approach to SCDFT,
exact-exchange leads to the 16 integro-differential OEP
equations that produce 16 local exchange potentials in re-
sponse to variations in 16 basic density components.9,10

At the present stage of development, the determination
of local exact-exchange potentials are both numerically
more involved and more costly than the evaluation of the
non-local Fock potential.

III. SCDFT VERSUS SDFT+SOC

The GKS-SCDFT framework allows us to include
SOC non-perturbatively and self-consistently in a den-
sity functional calculation. It is interesting to see how
this general framework adapts to various approximations.
For sake of simplicity, let us restrict to systems with
vanishing magnetization (m⃗ = 0) and vanishing parti-
cle currents (j = 0) but with non-vanishing spin currents

(J⃗ ̸= 0, i.e. a typical time-reversal symmetry preserving
system with SOC). Additionally, we consider systems for
which spin-currents are vanishing when SOC is turned
off. Thus, there are two main types of approximations to
be considered: approximations depending on all the basic
densities but currents; and those also including currents.
Of the latter class, there is also the case of those approxi-
mations that include currents but only implicitly. In view
of the complexity of this scenario, and in preparation of
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the calculations we shall perform in the next section, we
first review analogous Gedanken calculations.
Standard GGAs. As a first example, we may perform

a calculation by using a GGA that, like any standard
GGA, does not include a dependence on spin currents.
In detail,

EGKS
xc [Φ] ≈ EGGA

xc [n[Φ]] . (33)

Correspondingly, Eq. (15) implies A⃗GGA
xc = 0. Then, the

GKS equations we must solve look like the GKS equa-
tions of SDFT calculations, if it were not that SOC is also
added directly. Therefore, more appropriately, we should
regard the resulting equations as some approximate GKS
SCDFT equations. This interpretation is forced on us by
the fact that, by construction, the SDFT energy func-
tional is derived for systems described by the Hamilto-
nian reported in Eq. (1): i.e., for systems that do not in-
clude SOC. Via SDFT we may, however, include SOC as
a perturbation. This state of affair must be borne in mind
also when discussing the more involved cases reported
below. An evaluation of SOC can be performed in a

“second variational” step after the convergence of a “first
variational” SDFT calculations.52,53 Here, the “first vari-
ational” step is the diagonalization of the SDFT Hamil-
tonian (without SOC) in a set of basis functions, and
the “second variational” step is the diagonalization of the
SDFT Hamiltonian plus SOC in the basis of SDFT single
particle orbitals (a one-shot calculation, that is ordinary
first-order quasi-degenerate perturbation theory). It may
be tempting to iterate the procedure self-consistently un-
til convergence but, at the level of a regular GGA, the
effects of self-consistency are, usually, irrelevant.54,55 Our
formalism makes it apparent that the degree of the afore-
mentioned self-consistency cannot make up for the miss-
ing dependence of an xc-approximation on the spin cur-
rents in the selected GGA.

Global Hybrid. As a more subtle and advanced exam-
ple, let us perform a calculation by employing a regular
hybrid functional; i.e. consisting in a fraction of Fock ex-
change plus a complementary fraction of a regular GGA.
In detail,

EGKS
xc [Φ] ≈ EHybrid

xc [Φ] ≡ αEFock
x [Φ] + (1− α)EGGA

x [n[Φ]] + EGGA
c [n[Φ]] . (34)

In the absence of SOC, the Fock exchange can be
restricted to the usual one component (i.e., globally
collinear) form. When SOC is included, the Fock ex-
change must be upgraded to a two-component (i.e. non
collinear) form — as we have described in the previ-
ous sections. Next, to appreciate the difference of more
or less self-consistent calculations, it is instrumental to
scrutinize the short-range behaviour of the Fock-energy
density.19

For this purpose, coming back to Eq. (24), let us em-
ploy the shorthand notation

Qx(r, r
′) = Tr {Γ(r, r′)Γ(r′, r)} , (35)

and change integration variables by introducing the inter-
particle separation u:

EFock
x [Φ] = −1

2

∫
d3r

∫
d3u

Qx(r+ u/2, r− u/2)

u
.

We recall that Qx from Eq. (35) is the trace of a 2 × 2
matrix, and thus may be decomposed in the basis I,
σx, σy, σz. Next, a Taylor expansion of the spherical av-
erage around r, ⟨Qx⟩, to second-order in u gives:

⟨Qx(r, u)⟩ =
n2(r)

2
+

u2

6

[
2n(r)τ(r)− J⃗(r)⊙ J⃗(r)− n(r) ∇2n(r)

4

]
+O

(
u4

)
. (36)

Here, “◦” denotes contraction w.r.t. spin indices, and
“⊙” denotes a double contraction w.r.t. spin and real-
space indices,

τ(r) =
1

2

N∑
k=1

(
∇Φ†

k(r)
)
·
(
∇Φk(r)

)
, (37)

is the kinetic energy density of the occupied GKS spinors.
Eq. (36) shows that both the particle density and the
spin currents contribute — via the spinors — to the Fock
exchange energy-density at short range and, thus, they
also contribute to the corresponding non-local potential
V̂NL
x [see Eq. (29)] In passing also note that because the

kinetic energy density does not belong to the basic vari-
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ables of SCDFT, it must be regraded as a purely spinor-
dependent term.

From Eq. (36), we can appreciate the important fact
that a perturbative evaluation of SOC done in GKS-
SDFT at the level of a hybrid approximation unavoid-
ably misses the feedback from the implicit dependence
on the spin currents. For going beyond such a per-
turbative evaluation, it is necessary to include SOC
self-consistently. Adding SOC will turn on the spin-
currents. Therefore, unconstrained two-component spin-
orbital non-perturbative GKS-SDFT+SOC calculations
are nothing else but GKS-SCDFT calculations. Because
the dependence of EFock

x [Φ] on the spin currents is im-
plicit, however, such an equivalence remains subtle. The
crucial point is that, at variance with the previous GGA-
only case, the self-consistency in this latter case gains on
the feedback from the spin currents: both via the energy
functional EFock

x [Φ] and in the non-local potential V̂NL
x .

The effect of such a self-consistency may not be expected
to be irrelevant.

Spin-current-dependent MGGAs. Let us lastly perform
a calculation that invokes a functional form with an ex-
plicit dependence on the spin currents. This type of
form can be generated, for example, by “localizing” the

Fock exchange functional.19 A most direct way of doing
this is to perform a Gaussian re-summation of Eq. (36).
Straightforwardly, one gets

EJLP
x [Φ] = −3π

4

∫
d3r

n3(r)[
τ(r)− J⃗(r)⊙J⃗(r)

2n(r) − ∇2n(r)
8

] ,

(38)
Eq. (38) is a spin-current dependent generalization of
the Lee-Parr functional for exchange (JLP),19,56 which,
through Eq. (16), gives rise to the non-Abelian x-vector
potential

A⃗JLP
x = −3πc

16

n2(r)[
τ(r)− J⃗(r)⊙J⃗(r)

2n(r) − ∇2n(r)
8

]2 J⃗(r) . (39)

Therefore, Eq. (39) makes the switch from
SDFT+SOC to SCDFT explicit also at the level of the

GKS equations. The contribution of A⃗JLP
x may not be

expected to be minor.
In the next section, we shall make use of JLP to reduce

the cost of the numerical calculation of hybrid calculation
by using

EGKS
xc [Φ] ≈ EJMGGA

xc [Φ] ≡ αEJLP
x [Φ] + (1− α)EGGA

x [n] + EGGA
c [n] , (40)

where EFock
x [Φ] in Eq. (34) has been replaced with

EJLP
x [Φ].
In passing, we recall that the importance of the depen-

dence of density functionals on the particle current has
been largely demonstrated.57–69 The point stressed above
concerns instead the spin current which, to the best of
our knowledge, remains to be explored.

Last but not least, the derivation just above may be
extended to generate MGGA-correlation forms by reduc-
ing the non-locality of higher-level xc models. This is left
to future efforts together with other appealing possibil-
ities as outlined in the road map of developments given
below.

IV. APPLICATIONS

The aim of this section is to demonstrate the prac-
tical importance and flexibility of the GKS approach
of SCDFT for going beyond the perturbative treat-
ment of SOC. We shall consider the case of the SOC-
induced/enhanced band splittings that occur near the
top of the valence band of layered molibdenum dichalco-
genides. These systems are time-reversal symmetric and
the ground states have vanishing magnetization (m⃗ = 0),
vanishing particle current (j = 0), and, because of the

presence of SOC, non-vanishing spin currents (J⃗ ̸= 0).
The calculations we consider here showcase numerically
the different SOC evaluations discussed formally in Sec.
III.
Let us discuss formal aspects of valence band split-

tings in the presence of SOC and different symmetry
constraints. The systems here considered preserve time-
reversal symmetry (TRS):

ε↑k(k) = ε↓k(−k) , (41)

where εk are the energy values of band k at different
points of the first Brillouin zone (FBZ). Let us recall that
space inversion symmetry (SIS) results in the following
constraint on the band structure:

εσk(k) = εσk(−k) . (42)

TRS and SIS together imply bands which are dou-
bly degenerate in spin. The inclusion of SOC makes
the Hamiltonian spin-dependent, correspondingly spin-
up and spin-down states feel a different potential and
split, if allowed by symmetry.
The single-layer MoSe2 system preserves TRS but

breaks SIS, which, in the presence of SOC, leads to pos-
sible spin-splittings of bands that would otherwise be
doubly-degenerate at the SDFT level:

ε↑k(k) ̸= ε↓k(k) . (43)
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FIG. 1: SOC-induced/enhanced band splitting near the top
of the valence band of the MoSe2 single-layer obtained at
the level of a global hybrid (see text). Bands obtained
from SDFT calculations (without SOC) are in black; from
SDFT+SOC@SV obtained by correcting the SDFT results
by including SOC in a second variational step (in yellow);
and those obtained from the present work, which accounts
for SOC self-consistently, are in blue. The mixing parame-
ter between Fock exchange and PBE xc functional was set
at α = 0.15. Band structure images are produced with the
CRYSTALpytools Python interface to Crystal.70

In uniaxial (or low-dimensional) systems, such as 2D
hexagonal MoSe2, the spin-splittings are embodied by
the Rashba Hamiltonian (Rashba-I effect).71 Figure 1 A)
shows such spin-splitting at the high-symmetry point K
of the FBZ and along K-Γ and K-M paths. At the SDFT
level (black line), the top valence band is doubly degen-
erate. The spin degeneracy is lifted by SOC according to
Eq. (43); for instance, see the SCDFT description (blue
lines).

The α-MoTe2 hexagonal crystal is characterized by
stacked MoTe2 layers along the c crystallographic axis,
separated by van-der-Waals gaps. As both TRS and SIS
are preserved, the combination of Eqs. (41) and (42)
leads to:

ε↑k(k) = ε↓k(k) , (44)

so that all bands are necessarily spin degenerate. There-
fore, in the case of α-MoTe2, SOC enhanced band split-
tings are related to the dipole field of the locally asym-
metric Mo crystallographic sites. This so-called Rashba-
II effect results in the appearance of spatially local-
ized “hidden spin valleys” associated with the band
splittings.72,73 Figure 1 B) shows such enhanced band
splitting around K in the top of the valence band. At

FIG. 2: Rashba-I type SOC-induced spin-splitting at the K
point of the FBZ of 2D single-layer MoSe2 obtained at the
level of a global hybrid (see text). At the SDFT level (black
line), SOC is not included. Yellow and blue lines describe
computed spin-splittings from different treatments of SOC as
a function of α (i.e. fraction of Fock exchange): SDFT+SOC
second-variational (yellow line) and SCDFT (blue line), re-
spectively. Experimental data (red lines) are taken from Refs.
74–76. The atomic structure of the system is also shown.

the SDFT level (black lines), the two top valence bands
are spin doubly degenerate and are already split. With
SOC, the bands are still doubly degenerate according to
Eq. (44) but get further split (see the SCDFT blue lines).

We perform calculations with the Crystal23
package.77 We first report on calculations employing
a global-hybrid functional as in Eq. (34) , mak-
ing sure to allow for unrestricted two-component sin-
gle particle spinors, with the PBE generalized-gradient
approximation.78 Computational details are reported in
the supplementary material.79 (see also Refs. 34,80–91
therein). Below calculations are also performed and re-
sults reported for a regular GGA (PBE) and for the spin
current-dependent MGGA (JLP) as defined in Eq. (40).

We start by discussing Rashba-I type SOC-induced
spin-splitting in 2D single-layer MoSe2. A graphical rep-
resentation (side and top views) of the atomic structure
of this system is given in Figure 2. The splitting occurs
at the K point of the FBZ of the system and has been
measured by angle-resolved photo-electron spectroscopy
(ARPES) experiments (0.180-0.185 eV).74–76

Figure 2 reports the computed spin-splittings as a func-
tion of α (i.e. fraction of Fock exchange). All geometries
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FIG. 3: As figure 2 but for Rashba-II type SOC-enhanced
band-splitting at the K point of the FBZ of bulk α-MoTe2 ob-
tained at the level of a global hybrid (see text). Experimental
data are taken from Refs. 73,92,93. The atomic structure of
the system is also shown.

TABLE I: Single layer MoSe2: SOC induced splittings (in
eV), employing a pure GGA (α = 0) or hybrid and (J)MGGA
functionals (α = 0.15). Geometries were optimized with the
hybrid functional at the SDFT level.

GGA MGGA Hybrid JMGGA

SDFT 0 0 0 0

SDFT+SOC@SV 0.14 0.14 0.14 0.14

SCDFT 0.14 0.14 0.18 0.18

Exp. 0.180 - 0.185

were fully optimized for each value of α.

The following is observed: (i) The black line re-
ports the SDFT results: no spin-splitting is observed,
as expected; (ii) The yellow lines describes the re-
sults from one-shot second-variational treatment of SOC
(SDFT+SOC@SV). A value of 0.14 eV is obtained that
significantly underestimates the experimental values, (al-
most) independently of α.; iii) The blue line shows the re-
sults from SCDFT calculations. The experimental band
splittings are reproduced at values of α in the range 14-
17%. Correspondingly, the effect on the band splitting is
found to amount to 22% of the total SOC-induced split-
ting.

Next, we discuss Rashba-II type SOC-enhanced band-

TABLE II: Bulk α-MoTe2: SOC enhancement of band split-
tings (in eV) , employing a pure GGA (α = 0) or hybrid and
(J)MGGA functionals (α = 0.10). Geometries were optimized
with the hybrid functional at the SDFT level.

GGA MGGA Hybrid JMGGA

SDFT 0.22 0.25 0.23 0.25

SDFT+SOC@SV 0.22 0.31 0.29 0.31

SCDFT 0.22 0.31 0.32 0.33

Exp. 0.30 - 0.34

TABLE III: SCDFT fundamental band gap Eg (in eV). Ex-
perimental data are from Refs. 94–98. Computed values are
reported for α = 0.15 for MoSe2 and α = 0.10 for α-MoTe2.
Geometries were optimized with the hybrid functional at the
SDFT level.

MoSe2 MoTe2

GGA 1.47 0.71

Hybrid 1.99 1.05

JMGGA 1.65 0.71

Exp. 1.6-2.3 1.03

splitting in bulk α-MoTe2. A graphical representation of
the atomic structure of this system is given in Figure 3.
Here, two spin doubly-degenerate bands near the top of
the valence are already split at the SDFT level (black
lines) at the K point of the FBZ. The energy gap further
widens upon inclusion of SOC, by an extent that depends
on how spin-currents are treated.

The splitting has been measured by optical experi-
ments (0.30-0.34 eV).73,92,93 Figure 3 compares the ex-
perimental values with computed band-splittings from
different treatments of SOC as a function of α (i.e. frac-
tion of Fock exchange). We note that, for this system,
experimental values are more significantly spread, which
results in a more difficult quantitative assessment of the
different theoretical approaches. However, the following
is observed: i) SDFT values visibly underestimate exper-
imental results; ii) The SDFT+SOC@SV results are bet-
ter than the SDFT results, as expected; iii) The slope of
the SDFT(+SOC@SV) results, however, is significantly
different from the slope of the SCDFT results. As a con-
sequence of which, agreement for the band splittings is
obtained at an α which does not yield a band gap in
agreement with experiments. Indeed, the SV calculation
at a fraction α = 0.2 provides a splitting of 0.30 eV, but
the band gap is much too large at 1.47 eV.; iv) The exper-
imental band splitting is reproduced via SCDFT calcu-
lations at values of α in the range 0.06-0.15. It amounts
to about 20% of the total band-splitting at a fraction
α = 0.10.
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Tables I – III summarize our results on splittings and
fundamental band gaps for MoSe2 and MoTe2, employ-
ing, respectively, fractions α = 0.15 and α = 0.10 of Fock
exchange. We reiterate that by employing one and the
same hybrid form, we can reproduce the experimental
band gaps and splittings with one and the same value of
α (splittings of 0.18 and 0.32 eV, gaps of 1.99 and 1.05
eV, respectively, on MoSe2 and MoTe2).
We also stress that the difference in the slopes between

the yellow and blue lines in Fig. 2 and Fig. 3 can unam-
biguously be attributed to the different treatment of the
spin-currents. Such a dependence is implicitly encoded
in the Fock exchange and it can be exploited by taking as
an input spinors derived under the action of SOC. SDFT,
however, neglects SOC from the outset; so spin currents
vanish in the corresponding solutions. SDFT+SOC@SV
accounts for SOC but evaluates Fock exchange at the
level of SDFT spinors; thus, after the second variation
step, spin-currents do not vanish but are not used as a
feedback in the calculation. SCDFT, by construction,
evaluates Fock exchange under the action of SOC; thus
spin currents can drive the convergence toward more ac-
curate self-consistent results.

Finally, we pass to the GGA and the JMGGA cases.
Not surprisingly, of course, neither the experimental gaps
nor the splittings can be reproduced with a regular GGA
functional. Eq. (40) via Eqs. (38) and (39) makes ex-
plicit the dependence of the exchange energy on spin-
currents and brings forth the corresponding non-Abelian
exchange potential. JMGGA lowers the cost of the anal-
ogous global hybrid calculations — by reducing Eq. (34)
to (40) — yet maintaining accurate band splittings (0.18
and 0.33 eV). In doing so, however, the fundamental
band gaps are decreased (i.e. from 1.99 to 1.65 eV on
MoSe2, from 1.05 to 0.71 eV on MoTe2), which wors-
ens the agreement against the experiment, when com-
pared to the results of the full hybrid approximation.
Nonetheless, the JMGGA gap of 1.65 eV on MoSe2 is
still an improvement over the pure GGA value of 1.47
eV. SDFT+SOC@SV calculations underestimate split-
tings (0.14 eV on MoSe2, 0.22-0.31 eV on MoTe2).
In conclusion, among the cases here considered, only

the non-local Fock potential allows for a simultaneous
agreement against the experiment on both fundamental
band gaps and band splittings. If only band splittings
are required, comparably good results can be obtained by
replacing the non-local Fock operator by a computation-
ally cheaper and formally simpler semi-local spin-current
dependent approximation.

A. Near-future road-map for GKS-SCDFT

The results illustrated above show that GKS-SCDFT
is readily useful. Two questions can be posed, however:
(i) Will it be possible to get rid of the empiricism in-
volved in the determination of α, the “optimal” frac-
tion of exchange; or – we may ask — can the fraction

be determined self-consistently in SCDFT without hav-
ing to resort to other (computationally more demanding)
methodologies? (ii) Will it be possible to derive more ac-
curate functional approximations with an explicit depen-
dence on the spin-current? We foresee that the answer
to both questions is likely to be positive.
Question (i) may be resolved by upgrading a very re-

cent development for optimally-tuned range separated
hybrids,30 which has been shown to work both for molec-
ular and periodic materials.
Question (ii) may be answered by invoking the

U(1)×SU(2)-gauge invariant extension19 of more evolved
meta-GGAs than the case reported here for illustra-
tive purposes. Work is in progress on the SCAN99 and
TASK100 energy functionals and the like.

V. OUTLOOKS AND CONCLUSIONS

We have put forward a generalization of the Kohn-
Sham formalism (GKS), which admits the use of non-
local effective potentials firmly rooted in SCDFT. This
formulation is the analogous of the popular GKS formu-
lation of (Spin-)DFT.26 Here, we have spelled out and
analyzed the novel and subtle aspects that are uniquely
brought forth by the SCDFT framework. We have
demonstrated via applications that GKS-SCDFT read-
ily allows us to obtain results beyond the state-of-the-art
in electronic structure calculations for spin-orbit coupled
materials. By considering time-reversal symmetric spin-
orbit coupled states, we have demonstrated that the de-
pendence of the energy functional on spin currents is im-
portant even when it is only implicit, as in the prominent
case of Fock exchange. Global hybrid approximations
can yield significantly more accurate results when used
in GKS-SCDFT calculations rather than in perturbative
SDFT+SOC calculations.
In particular, we have applied GKS-SCDFT to the

evaluation of band gaps and SOC-induced band split-
tings in materials of great interest in spintronics and
valleytronics, with Rashba-I, Rashba-II effects. At the
level of the global hybrid approximations, we have shown
that by applying the self-consistent SCDFT treatment of
spin-orbit interactions one can find an optimal fraction of
Fock exchange which works well for both the fundamental
band gaps and the SOC-induced or -enhanced band split-
tings. We have shown that the widely used method for
refining Spin-DFT results via a second-variational treat-
ment of SOC can fail to reproduce the experimental re-
sults – superior agreement can be achieved by switching
from SDFT to full-fledged SCDFT calculations.
Efforts, in the near future, will be devoted to reduce

empiricism in finding the “optimal” fraction of Fock ex-
change. We believe that the optimally-tuned range sepa-
rated hybrids offer, presently, a valid and very promising
option.30 Furthermore, the illustrative case reported here
of a simple spin-current dependent meta-GGA suggests
that it is appealing to develop the extension of more re-
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cent and more evolved meta-GGA forms to SCDFT as
well.

Most importantly, already at this stage of the devel-
opment, the GKS approach of Spin-Current DFT can
offer significant improvements in the calculation of the
electronic structure of challenging spin-orbit coupled
materials.
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37 J. Fröhlich and U. M. Studer, Rev. Mod. Phys. 65, 733
(1993).

38 M. Levy, Phys. Rev. A 26, 1200 (1982).
39 E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
40 We note that the mathematical conditions for N -

representability and v-representability in SCDFT are
presently unknown. Non-trivial notable differences with

mailto:jacqueskontak.desmarais@unito.it
mailto:stefano.pittalis@nano.cnr.it


13

the case of standard DFT have recently been pointed out
in SDFT, which make an ensemble formulation necessary
even for N -representability101. Similar or bigger differ-
ences are expected in SCDFT. Thus, the domain of the F
functional in Eq. (9) is not known, and we have informally
assumed that it is sufficiently dense to approximate most
density sets that may occur in physical systems. Likewise,
when introducing the Kohn-Sham system, we will infor-
mally assume non-interacting v-representability based on
single Slater determinants. It is natural to expect that, the
N -representability and v-representability issues which are
prone to arise in SCDFT will be ameliorated (if not re-
solved) within an ensemble formulation, in which the ad-
missible non-interacting pure states would also comprise
linear combination of determinants.

41 R. Garrick, T. Gould, and L. Kronik, Adv. Theory Simul.
10 (2022).

42 J. Harris, Phys. Rev. A 29, 1648 (1984).
43 J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys.

105, 9982 (1996).
44 W. Koch and M. C. Holthausen, A Chemist’s Guide to

Density Functional Theory (Wiley - VCH, Weinheim -
New York, 2nd edition, 2001).

45 M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining,
and S. Botti, Phys. Rev. B 83, 035119 (2011).

46 J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 89,
195112 (2014).

47 A. Erba, J. Phys.: Condens. Matter 29, 314001 (2017).
48 L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer,

J. Chem. Theory Comput. 8, 1515 (2012).
49 N. L. Nguyen, N. Colonna, A. Ferretti, and N. Marzari,

Phys. Rev. X 8, 021051 (2018).
50 G. Prokopiou, M. Hartstein, N. Govind, and L. Kronik,

J. Chem. Theory Comput. 18, 2331 (2022).
51 J. E. Peralta, G. E. Scuseria, and M. J. Frisch, Phys. Rev.

B 75, 125119 (2007), URL https://link.aps.org/doi/

10.1103/PhysRevB.75.125119.
52 W. P. Huhn and V. Blum, Phys. Rev. Mater. 1,

033803 (2017), URL https://link.aps.org/doi/10.

1103/PhysRevMaterials.1.033803.
53 D. Koelling and B. Harmon, J. Phys. C Sol. State Phys.

10, 3107 (1977).
54 J. K. Desmarais, A. Erba, J.-P. Flament, and B. Kirtman,

J. Chem. Theor. Comput. 17, 4712 (2021).
55 J. K. Desmarais, A. Boccuni, J.-P. Flament, B. Kirtman,

and A. Erba, J. Chem. Theor. Comput. 19, 1853 (2023).
56 C. Lee and R. G. Parr, Phys. Rev. A 35, 2377 (1987).
57 J. F. Dobson, The Journal of Chemical Physics 98, 8870

(1993).
58 A. D. Becke, Canadian Journal of Chemistry 74, 995

(1996).
59 A. D. Becke, The Journal of Chemical Physics 117, 6935

(2002).
60 S. N. Maximoff, M. Ernzerhof, and G. E. Scuseria, The

Journal of Chemical Physics 120, 2105 (2004).
61 T. Burnus, M. A. Marques, and E. K. Gross, Physical

Review A 71, 010501 (2005).
62 J. Tao and J. P. Perdew, Phys. Rev. Lett. 95, 196403

(2005).
63 S. Pittalis, S. Kurth, S. Sharma, and E. K. U. Gross, The

Journal of Chemical Physics 127, 124103 (2007).
64 S. Pittalis, E. Räsänen, and E. K. U. Gross, Phys. Rev.

A 80, 032515 (2009).
65 E. Räsänen, S. Pittalis, C. R. Proetto, and E. K. U. Gross,

Phys. Rev. B 79, 121305 (2009).
66 M. J. T. Oliveira, E. Räsänen, S. Pittalis, and M. A. L.

Marques, Journal of Chemical Theory and Computation
6, 3664 (2010).

67 W. Zhu, L. Zhang, and S. B. Trickey, The Jour-
nal of Chemical Physics 145, 224106 (2016),
http://aip.scitation.org/doi/pdf/10.1063/1.4971377,
URL http://aip.scitation.org/doi/abs/10.1063/1.

4971377.
68 T. H. James W. Furness, Ulf Ekström and A. M. Teale,

Molecular Physics 114, 1415 (2016).
69 C. Holzer, Y. J. Franzke, and A. Pausch, The Journal of

Chemical Physics 157, 204102 (2022), ISSN 0021-9606.
70 B. Camino, H. Zhou, E. Ascrizzi, A. Boccuni, F. Bodo,

A. Cossard, D. Mitoli, A. M. Ferrari, A. Erba, and N. M.
Harrison, Comput. Phys. Commun. 292, 108853 (2023).

71 E. Rashba, Sov. Phys.-Solid State 2, 1109 (1960).
72 X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and

A. Zunger, Nat. Phys. 10, 387 (2014).
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