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Forum mission

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring):

I Fourier Transform Spectrometer (FTS);

I End-to-end (E2E) simulator;

I 9th ESA’s Earth Explorer mission (EE9);

I Complete emission spectrum at the top of the atmosphere (TOA) → unique
picture of the Earth’s radiative budget;

I 100− 1600 cm−1 region of the atmosphere (FIR and part of MIR) → more
than 95% outgoing longwave flux lost by our planet.

Targets:

I Upper Troposphere and Lower Stratosphere Water Vapor;

I Surface emissivity in polar and dry regions ;

I Cirrus clouds characteristics.

Final aim: improving the accuracy of climate models
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Direct and inverse problem

Direct problem: from the atmospheric status vector x find the simulated
spectrum y = F (x), with F known as forward model.

Inverse problem: from the measured spectrum y find the parameter vector x
(retrieval vector) which minimizes ||y − F (x)||.
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Direct problem

Radiative transfer equation (homogeneous mean, fixed frequency ω):

Lambert-Beer law + Planck law

d

dx
I (x) = −ρ(x)α(x)I (x) + ρ(x)α(x)B

(
T (x)

)
,

where:

I I is the intensity of light ray;

I x is the coordinate along the direction of the light beam;

I ρα is the attenuation coefficient;

I B
(
T (x)

)
is the Planck function depending on the temperature T .

Continuous solution for the altitude layer from 0 to xN :

I (xN ) = I (x0)e−
∫ xN

0 ρ(x)α(x)dx +

∫ xN

0

ρ(x)α(x)B
(
T (x)

)
e
∫ xN

x
ρ(x′)α(x′)dx′dx
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Inverse problem and Optimal Estimation method

Inverse problem: determine an estimate of x from the measurements y .

The inverse problem is very ill-conditioned.

Given a Gaussian measurement error ε = y − F (x), with Sy = E[εεt ].
Suppose there is an apriori estimate xa of x with error εa = x − xa and
Sa = E[εaε

t
a]. We can compute:

P(y , xa) =
1

(2π)
n
2 |Sa|

e

(xa − x)tS−1
a (xa − x)

2
1

(2π)
m
2 |Sy |

e

(y − F (x))tS−1
y (y − F (x))

2 ,

where:

I | . . . | is the determinant of A;

I n is the dimension of x ;

I m is the dimension of y .
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Inverse problem and Optimal Estimation method

We can rewrite P as:

P(y , xa) =
1

(2π)
n+m

2 |Sa| |Sy |
e
− 1

2

[
(xa−x)t S−1

a (xa−x)+(y−F (x))t S−1
y (y−F (x))

]

Optimal estimation method for the inversion:

The maximization of the probability that a given parameter vector is
compatible with the measurements is equivalent to the minimization of
the quantity:

χ2(x) = (xa − x)tS−1
a (xa − x) +

(
y − F (x)

)t
S−1

y

(
y − F (x)

)
.
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The minimization

Gauss-Newton method (GN) + Levenberg-Marquardt technique (LM):

xk+1 = xk +

(
K t

kS
−1
y Kk + S−1

a + αk diag(Kt
kS
−1
y Kk)

)−1

·

·
[
K t

kS
−1
y

(
y − F (xk )

)
+ S−1

a (xa − xk )

]
,

where k is the iteration index, αk is the Marquardt parameter at iteration k and
Kk = ∇F (xk ).

Why LM?

I the damping term αk helps in the inversion of the matrix to be computed;

I for large values of αk , xk+1 − xk goes to −∇χ
2(x)

α(x) , which is a descend

direction for the cost function.

Drawback: premature convergence.
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Surface emissivity

Emissivity of the surface of a material:
effectiveness in emitting energy as thermal radiation (visible radiation and
infrared radiation).
Each body re-emits part of the energy that reaches it in the form of thermal
energy, and reflects the rest.

For the energy conservation law:

Eabsorbed + Ereflected = Eincident .

Emissivity (ε) and Reflectivity (r) are defined as:

ε =
Eabsorbed

Eincident
,

r =
Ereflected

Eincident
,

ε+ r = 1.
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Iterative Variable Strength regularization (IVS)

Aim: Regularization of the retrieved surface emissivity profile.

Why?
No correlations in the a-priori VCM to avoid cross-talks between spectral ranges
with different sensitivity to surface emissivity → better reconstruction in the
transition intervals → oscillations in the retrieved profile.

Method:
It is an a-posteriori regularization consisting in adding a Tikhonov term to χ2 :

χ2(x) = (xa−x)tS−1
a (xa−x) +

(
y −F (x)

)t
S−1

y

(
y −F (x)

)
+ (xs −x)tRΛ(xs −x),

where

I xs is an estimate of the solution,

I RΛ = Lt
i ΛLi is such that:

I Li is a linear operator approximating the i-th derivative: (Lixk )j '
d i

dωi
xk (ωj ),

I Λ is a positive diagonal matrix such that Λjj = λ(ωj ).
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IVS regularization

Let

I k be the iteration count at convergence for the minimization of χ2 without
the regularization term,

I xOE ≡ xk+1,

I xs = 0,

then the G-N minimizer xΛ has the form:

xΛ = xk +

(
K t

kS
−1
y Kk + S−1

a + αk diag(Kt
kS
−1
y Kk) + RΛ

)−1

·

·
[
K t

kS
−1
y

(
y − F (xk )

)
+ S−1

a (xa − xk )− RΛxk

]
.
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IVS regularization

The procedure:

Starting with a large Λ(0) = λ(0)I , we decrease the profile until both the following
conditions are fulfilled:

I
∣∣xq

Λ(ω)− xq
OE(ω)

∣∣ ≤ we(ω)
√

Sy (ω, ω),

I νq
Λ(ω) ≤ wr (ω)νq

OE(ω),

where q is the regularization step, νΛ(ω) and νOE(ω) are the spectral resolutions
of the xΛ and xOE profiles respectively.

Decreasing the λ profile:
for each point ωj such that the conditions are not satisfied we multiply by a
triangular function tj (ω) :

with r = 0.99, h = 1 or h = 2.
The amplitude is set either with the independent variable, or in number of points

(ztri).
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Retrieval Qualifiers

I χ2;

I DOF: number of degrees of freedom of the solution;

I POQ (Profile oscillations quantifier, Ω1): given a profile xi = x(ωi ) it
measures its oscillations:

Ω1 =
1

n − 2

n−1∑
i=2

∣∣xi − xi−1 − xi+1−xi−1

ωi+1−ωi−1
(ωi − ωi−1)

∣∣√
(xi+1 − xi−1)2 + (ωi+1 − ωi−1)2
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Test scenarios

Sensitivity to emissivity in the FIR depends on the PWV of the atmosphere:
total atmospheric water vapour contained in a vertical air column of unit
area from the Earth’s surface to the top of the atmosphere

I Water case: PWV = 36.33 mm
→ wet atmosphere → no
sensitivity.

I Snow case: PWV = 3.31 mm
→ dry atmosphere → good
sensitivity.

I Desert case: PWV = 23.14
mm → fairly dry atmosphere →
some sensitivity.
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Results - water case
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Results - water case
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Results - snow case
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Results - snow case
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Results - desert case
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Results - desert case
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Conclusions, ongoing and future works

I the IVS for surface emissivity profile has been recently added to the official
algorithm;

I in the optimal IVS setting it turned out to be crucial to start from a strong
regularization and then softly reduce the λ profile in a quite large range of
wave numbers;

Future work

I Optimization of the retrieval grid.

I Global map for the sensitivity to emissivity in the FIR and MIR.

Thank you!
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Retrieval grid: fine vs coarse

I Fine grid
I Minimization of the smoothing error. Sharp features of the emissivity model

are reproduced.
I Reduced precision, possible biases.

I Coarse grid
I If the retrieval grid step is larger than the retrieval feature, the feature cannot

be reproduced.
I Good precision. Each retrieval point is the average of a large number of

measurements. Thus, the random error is smaller and there are no biases.
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Retrieval grid: fine vs coarse
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