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Abstract: The vast, untapped potential of the world’s oceans is revealing groundbreaking advance-
ments in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella
salina are emerging as resources for recombinant vaccine development with specific and heterologous
genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nan-
nochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae
have shown potential in combating diseases caused by the human papillomavirus, human immunod-
eficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum,
and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed
to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot
syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the
ability to express complex antigens and sustainable production. Additionally, the oceans provide an
array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and
immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but
also contribute to broader immunological and general health. This review explores the transformative
role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing
battle against infectious diseases.

Keywords: marine microalgae; recombinant vaccines; Nannochloropsis spp.; Dunaliella salina;
immunomodulatory agents; vaccine adjuvants

1. Introduction

The world’s oceans are being increasingly regarded as an untapped treasure trove of
bioactive compounds and organisms with remarkable therapeutic potential. Marine mi-
croalgae are common microscopic organisms growing as single cells, colonies, or extended
filaments. Microalgae represent the largest primary biomass in the marine ecosystem and
are emerging as key players in addressing global challenges such as climate change, energy
shortages, and food insecurity. They also serve as a potent source of pharmaceuticals and
bioactive compounds [1]. Microalgae [2,3] Nannochloropsis spp. and Dunaliella salina [4] are
used for recombinant vaccine development. Arthrospira platensis is edible and a rich source
of valuable secondary metabolites with medicinal properties. Microalgae are recognized
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as a significant source of nutritional supplements and metabolites for use in the pharma-
ceutical and nutraceutical industries [1]. These metabolites display various bioactivities,
including anti-proliferative, anti-oxidative [5], pro-apoptotic, and anti-aging. Microalgal
cell-free extracts have been explored as antimicrobial additives in food and feed formula-
tions to reduce reliance on synthetic preservatives and combat antimicrobial resistance.

Microalgae and Vaccines

D. salina is a green marine microalga belonging to the Chlorophyceae family, known
for its extreme salt tolerance and ability to thrive in salinities ranging from 0.05 to 5.0 M
NaCl [6]. It can maintain low intracellular sodium concentrations, making it ideal for
cultivation in high-salinity environments that reduce contamination risks. D. salina lacks
rigid cell walls, instead possessing a thin elastic membrane that allows rapid growth and
high biomass productivity combined with the accumulation of valuable carotenoids and
proteins under stress conditions. It was the first microalgal species commercially used
for β-carotene production and has additional applications in bioethanol fermentation and
biogas production [7]. Nannochloropsis salina is renowned for its high lipid content, par-
ticularly its ability to stimulate lipid accumulation upon nitrogen and nutrient starvation
stress [6]. It plays a significant role in global carbon and mineral cycles in oligotrophic
seawater. N. salina is used as a feed source in aquaculture and is considered a potential
alternative to fish oil because of its high content of polyunsaturated fatty acids, particularly
eicosapentaenoic acid. Its lipid production potential also makes it a promising candidate
for biofuel development. Both D. salina and N. salina are used for various biotechnological
applications, including vaccine production, due to their adaptability, sustainable produc-
tion, and ability to produce bioactive compounds and complex antigens under controlled
culture conditions [6]. Apart from microalgae, the ocean provides an array of innovative
bioactive compounds that serve as potent adjuvants for vaccines, delivery systems, and
immunomodulatory agents that contribute to broader immunological health [8,9]. Live
recombinant vaccines express antigens in target cells and use genetically engineered live
bacteria or viruses to elicit immune responses against a pathogen. They offer both safety
and long-lasting protection by combining the best features of recombinant and attenuated
vaccines. Interestingly, some of these vaccines are administered orally or nasally, such as
the nasal spray influenza vaccine and the oral polio vaccine [10,11]. Another important
advancement is the realization that so-called aquafoods, such as fish, mollusks, crustaceans,
and seaweeds, effectively enhance natural immunity due to their diverse and rich content
of biofunctional compounds and thereby complement the efficacy of live recombinant
vaccines [11]. In fact, aquafoods are abundant in essential nutrients such as proteins, amino
acids, omega-3 polyunsaturated fatty acids, vitamins, minerals, and pigments that pro-
mote immune competence [12] and help protect against infections [11]. Research into these
immune-boosting properties highlights their potential for disease prevention and improved
public health. Understanding the optimal daily intake of these compounds could further
improve dietary recommendations for enhanced immunity and reduced risk of infectious
diseases [12]. Sepsis, a life-threatening condition resulting from a dysregulated immune
response to infection, often stems from exposure to bacterial components, particularly
lipopolysaccharides (LPS) found in the outer membranes of Gram-negative bacteria [13].
The lipid A portion of LPS is vital for this immune activation, and alterations to its structure
can dramatically affect immune responses. Mass spectrometry-based structural analysis
has revealed that bacteria often modify their LPS structures in response to environmental
changes or during host infection to escape immune detection and response [14]. Inter-
estingly, certain marine bacteria, particularly those isolated from deep-sea environments
(e.g., Moritella spp.) exhibit immunosilence, possibly because of the length of the acyl
chain in their LPS. Therefore, uncovering novel microbial interactions may inform both im-
munology and therapeutic development [15]. In summary, the vast untapped potential of
marine ecosystems is yielding transformative advancements in the field of vaccination and
immune health. Marine-derived innovations, particularly from microalgae, offer significant
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promise in developing sustainable, effective vaccines. These organisms’ ability to produce
complex antigens and bioactive compounds under controlled conditions highlights their
role in advancing modern vaccine technologies. Including biofunctional compounds from
aquatic species enhances vaccine efficacy and contributes to broader immune support,
demonstrating the critical role of marine environments in human health. This review
focuses on the specific contributions of marine bioresources to vaccine strategies and im-
mune system modulation, discussing their immediate relevance to both human and animal
health applications.

2. Microalgae-Based Recombinant Vaccines

Vaccination is a key method for controlling and preventing many infectious diseases
and toxic reactions prior to encountering the responsible pathogen or toxin [16–21]. Vac-
cination relies on the active presentation of antigens to stimulate an immune response.
Vaccines can be categorized into live attenuated vaccines, such as those for smallpox and
measles, recombinant subunit vaccines, including those for hepatitis B, among others, and
RNA vaccines, such as the one for COVID [22–26]. The first proof-of-concept study for
microalgae-based vaccines was published nearly two decades ago, and various biophar-
maceuticals have been produced since then [9]. Scheme 1 illustrates the primary elements
involved in the development and evaluation of vaccines using genetically engineered
microalgae, including species selection, antigen processing, transformation methods, and
detection techniques. It also outlines the potential applications, technological advances,
and challenges associated with this approach.

2.1. Development of Microalgae-Based Recombinant Vaccines

Researchers developing microalgae-based vaccines for infectious diseases carefully
consider numerous factors, including selecting the appropriate microalgal species based
on their biological traits, designing the genetic construct with attention to antigen choice,
expression vector, codon optimization, and antigen glycosylation, as well as determining
whether the antigen should be secreted, encapsulated, or retained within subcellular com-
partments. Other critical considerations include the method of genome transformation
(whether in the nucleus or plastids and whether it should be stable or transient), and trans-
formation protocols. Furthermore, transgene and antigen detection need to be optimized,
and the immunization strategy and administration route planned—injection of purified
recombinant antigens, oral delivery using freeze-dried microalgae, or a combination of
both—along with evaluating protective efficacy through experimental challenges with
the target pathogen to ensure vaccine effectiveness. Although many algal species have
been identified, only a few have been engineered for recombinant vaccine production.
Chlamydomonas reinhardtii has been frequently used, largely due to the availability of ge-
netic engineering tools. Recently, other species such as D. salina and Nannochloropsis sp., but
also Schizochytrium sp., Thalassiosira pseudonana, and Chlorella pyrenoidosa have been utilized.
These efforts have led to the production of functional recombinant antigens, and in some
cases, the induction of immunoprotective responses in vaccinated individuals. Each mi-
croalgal species brings unique features that can be advantageous in producing recombinant
vaccines [9]. The interest in using microalgae for this purpose resides in their ability to
produce complex proteins and modify them post-translationally, and their sustainable large-
scale culturing supporting low-cost production, which makes them an attractive alternative
to traditional, expensive vaccine production methods [8]. Culturing in controlled environ-
ments ensures consistent quality and yields of recombinant proteins [27]. Chloramphenicol
at a concentration of 60 µg mL−1 was found to stop algal growth, providing a basis for
antibiotic resistance selection in genetic transformation. Moreover, the ubiquitin promoter
showed the highest expression of a downstream gene. Using this system, the hepatitis B
virus surface antigen (HBsAg) gene was successfully introduced into D. salina cells via elec-
troporation and its genomic integration confirmed through PCR and Southern blot analyses,
while the stable expression of the HBsAg protein was verified using enzyme-linked im-
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munosorbent assay (ELISA) and Western blot analysis [27]. Remarkably, both the transgene
and HBsAg expression remained stable for at least 60 generations in a chloramphenicol-free
medium, underscoring the robustness of this system for long-term protein production [27].
Antigens produced in microalgae have elicited immune responses against several viruses,
including HPV, Hepatitis B, and Zika in preclinical studies [28–35]. Microalgae also offer
the potential for developing edible vaccines, where the antigen-expressing microalgae
could be consumed to elicit the immunization response. Edible vaccines could simplify
vaccination and increase accessibility, especially in resource-limited settings. They could
elicit mucosal immunity, in which a “barrier immunity” is raised at the mucosal-associated
lymphoid tissue (MALT) [36] to intercept the pathogen before it enters the body. However,
the biggest challenge for edible vaccines remains to protect the antigen from degradation by
the digestive enzymes. In this respect, the recombinant antigens produced in microalgae are
protected by the algal cell wall and released at the MALT upon digestion. Although large
amounts of recombinant cells are needed for oral vaccine administration, freeze-drying
technology can enhance antigen concentration without losing its immunogenic properties.
In addition to providing potential immunization, microalgae also produce “high-value”
secondary metabolites with medicinal properties, such as antimicrobial and anti-cancer
that may be beneficial as supplements or metabolic support [37,38]. Certain Dunaliella
species contain immunomodulators that can work synergistically with the antigen. Ad-
ditionally, microalgae have unique growth advantages, such as efficient photosynthesis
and the ability to capture environmental CO2 [39,40], making them sustainable platforms
for biotechnological applications. As previously mentioned, species like D. salina hold
significant promise for recombinant protein production due to favorable traits such as ease
of cultivation, natural encapsulation, and immunomodulatory compound production, with
ongoing research into its genetic manipulation showing potential for developing scalable
vaccine systems. Its ability to grow in high-salt media, combined with advances in genetic
engineering techniques like codon optimization and vector design, positions D. salina as a
cost-effective, industrial-scale platform for producing recombinant antigens, particularly
for mucosal vaccine delivery, meeting the growing demand for low-cost, next-generation
vaccines [41]. Mucosal immunity is particularly important for defense against pathogens
as primary lymphoid organs and lymphocytic aggregates, such as the Harderian gland
of the eye and the already cited MALT, contribute to local immune responses, especially
through the production of secretory immunoglobulins (S-Igs) [42]. Apart from human vac-
cination, microalgae-based vaccines were developed to combat avian and animal diseases
and prevent their spreading to humans, a phenomenon known as zoonosis [43]. In fact,
by controlling animal diseases, vaccines can reduce the risk of some of these pathogens
crossing over to humans [44,45].

2.2. Applications of Microalgae in Veterinary Vaccines and Aquaculture

In animals, microalgae-based vaccines have successfully targeted the foot-and-mouth
disease virus, classical swine fever virus, white spot syndrome virus (WSSV), vibriosis, in-
fectious bursal disease virus, and Histophilus somni, the pathogen causing cattle respiratory
disease [9]. Microalgae-based vaccines could also be used to enhance immune responses in
aquatic animals. D. salina was used to develop a subunit vaccine targeting WSSV, one of
the most severe pathogens infecting crustacean species important for human consumption
such as crayfish, shrimp, crabs, and lobsters. A transgenic D. salina expressing high levels
of the bioactive WSSV VP28 protein was made and fed to crayfish, resulting in effective
protection against WSSV. This breakthrough showcased the potential of D. salina as a vac-
cine production platform, offering a cost-effective and scalable solution for preventing viral
diseases in aquaculture with potentially broad applications [46].
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Scheme 1. Overview of microalgae-based recombinant vaccines. (A): Fundamental steps in the
development of microalgae-based recombinant vaccines begin with the selection of an appropriate
microalgal species, often Dunaliella salina and Nannochloropsis salina, which are recognized for their
biotechnological potential. Genetic design and engineering define the features of antigen expression
and processing and the transformation method. Finally, the expressed antigen is detected, and its
vaccine efficacy is detected. (B): Microalgae-based recombinant vaccines have spurred technological
innovations in expression systems, improved stability and consistency, and robust scalability and
improvements that enhance commercial viability. Microalgae-based technology in vaccine production
could provide effective and sustainable solutions for both human and animal health. Regulatory
hurdles and possibly low market acceptance represent challenges to overcome that currently limit
the widespread adoption of these novel vaccines.
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In the same context, avian influenza [47–49] remains a significant global threat to
the poultry industry. Vaccination strategies focus on inactivated, live attenuated, virus
and recombinant viral hemagglutinin (HA) protein as the primary component of these
vaccine formulations. Subunit antigens have shown potential for inducing both local and
systemic immune responses in poultry, particularly when administered via the ocular route
involving the Harderian gland. Complex proteins, such as HA from the avian influenza
virus H5N2, a relatively mild virus periodically spreading in commercial cultures and
causing the culling of millions of infected birds, can effectively stimulate localized produc-
tion of HA-specific S-Igs and generate a specific systemic immune response. Therefore,
D. salina-produced HA-antigens may constitute a viable strategy for targeted vaccination
in poultry [42], especially if administered through food. Similarly, the product of the
H5HA gene from the H5N2 virus, a significant threat to both poultry and humans, was
expressed in D. salina and found to be bioactive and immunogenic. These findings high-
light the D. salina potential as an alternative biological platform for expressing complex
viral antigens, such as HA5r from the H5N2 strain, offering a novel approach to avian
influenza vaccine production through microalgal systems [50]. Apart from their use in
antigen production for vaccination, microalgae have also demonstrated potential in en-
hancing innate immunity in aquaculture. Dietary supplementation with Nannochloropsis
oculata over eight weeks has significantly improved growth, immune markers, and disease
resistance in Nile tilapia (Oreochromis niloticus) juveniles against the bacterial pathogen
Aeromonas veronii. Fish fed diets with 5% N. oculata showed significantly enhanced growth
parameters, including final body weight, weight gain, specific growth rate, and total feed
intake, while also reducing the feed conversion ratio compared to the control group. Fish
supplemented with 15% N. oculata showed enhanced immune response reflected in a sig-
nificant decrease in total protein, albumin, globulin, and the albumin/globulin ratio [51],
while liver enzyme activities, including alanine transaminase and aspartate transaminase,
remained unaffected. Immune markers such as serum lysozyme activity, nitric oxide, and
nitroblue tetrazolium levels were significantly elevated in fish fed 5% N. oculata diets.
Histomorphological analysis of hepatopancreatic and intestinal tissues revealed normal
structures in fish fed diets supplemented with 5% N. oculata. Higher N. oculata levels (10%
and 15%) led to significant upregulation of cytokines, including interleukin-1β, interleukin-
8, interferon-γ, transforming growth factor-β, and tumor necrosis factor-α (TNF-α), along
with downregulation of the antioxidant superoxide dismutase (SOD). Disease resistance to
A. veronii was also improved upon 10% and 15% N. oculata supplementation, highlighting
the beneficial role of N. oculata in promoting growth and enhancing immune responses in
Nile tilapia, and its potential as a valuable dietary supplement in aquaculture [51]. The
microalga Nannochloropsis sp. was used as a vaccine carrier to combat vibriosis in fish.
Vibriosis is a common disease affecting aquatic organisms, particularly fish and shellfish,
caused by bacteria from the Vibrio genus. Transgenic Nannochloropsis sp. was genetically
modified to express a fragment of an outer membrane protein kinase (OmpK) gene from
Vibrio species and was used as an oral vaccine for fish. The OmpK transgene remained
present and active for several generations of transgenic Nannochloropsis sp., confirming
its suitability as a vaccine carrier for aquaculture purposes [52]. While specific data on
the immunomodulatory benefits of microalgae for human consumption are still emerging,
some evidence suggests that consuming microalgae may also enhance innate immunity in
humans [53–55]. In conclusion, vaccination is a vital tool for controlling infectious diseases
by effectively presenting antigens to the immune system of several host species, including
aquatic invertebrates and vertebrates of commercial importance and, potentially, also in
humans. Microalgae-based vaccines have emerged as a promising sustainable, low-cost,
and scalable platform in the vaccination field.
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3. Marine Natural Products: Emerging Bioactive Compounds and Their Potential as
Vaccine Adjuvants and Therapeutics

Adjuvants, substances that boost the immune response to an antigen, are critical in vac-
cine formulation. Different marine-derived products have been shown to enhance vaccine
efficacy [56–59] and the exploration of marine-derived adjuvants represents a promising
frontier in vaccine development. Marine-derived secondary metabolites, with unique chem-
ical structures and diverse biological activities, may also improve vaccine efficacy through
desirable anti-inflammatory and antioxidant properties. COVID-19, caused by the outbreak
of the SARS-CoV-2 virus that resulted in a global health crisis, causes systemic infections
featuring tissue-damaging cytokine storms. This prompted the search for the discovery
and integration of various molecular and therapeutic approaches, including vaccines, an-
tivirals of synthetic and herbal origin, and immune-modulating treatments. Additions
such as forest bathing and other nature-connected practices have also been explored to
enhance physical and mental well-being, reduce stress, and boost immune function during
the pandemic [60–71]. By harnessing the unique properties of these marine compounds,
it is possible to create vaccines that elicit stronger and possibly more durable immune
responses while reducing tissue damage and protecting against oxidative stress, potentially
leading to better protection against a wide range of diseases. Polysaccharides, proteins,
and lipids extracted from marine algae, sponges, and mollusks have shown promise as
potent adjuvants, with one key example being fucoidan [72], a sulfated polysaccharide
from brown seaweed, with demonstrated immunostimulatory properties. Fucoidan can
enhance both humoral and cellular immune responses, making it an ideal candidate for a
vaccine adjuvant. Sulfated galactans found in red algae [73–75] are also emerging as potent
adjuvants with potential to enhance immune responses and provide antiviral protection.

3.1. Marine-Derived Polysaccharides as Potent Vaccine Adjuvants and Antiviral Agents

Sulfated galactans are linear polymers with alternating β-D-galactopyranose and
α-D-galactopyranose units. Two primary types are identified: carrageenans, which feature
a 4-linked α-galactose with a dextro-rotatory (D-) configuration; and agarans, with a lev-
orotatory (L-) 4-linked α-galactose component [75–77]. Carrageenan has shown antiviral
properties, because of its property of disrupting the interaction between the virus and host
cell receptors and preventing viral entry. Iota-carrageenan, a sulfated polysaccharide from
seaweed, at low concentrations (4 µg/mL) reduced cell death caused by the SARS-CoV-2
virus, while high concentrations of κ and λ-carrageenans (400 µg/mL) offered only partial
suppression, indicating that carrageenan/iota-carrageenan may be more effectively used
during the initial stages of infection [78]. An iota-carrageenan nasal spray effectively treated
common cold symptoms linked to human coronaviruses, reducing symptom recurrence
and improving viral clearance compared to placebo treatments [78]. A nasal spray combin-
ing xylometazoline hydrochloride and carrageenan has alleviated nasal congestion and
protected the respiratory mucosa from viruses [79]. Lozenges containing iota-carrageenan
have inactivated viral glycoproteins in the mouth, blocking viral effects. Iota-carrageenan
also neutralized a SARS-CoV-2 spike pseudotyped lentivirus, suggesting its potential effi-
cacy in COVID-19 prevention [80]. Marine-derived saponins from sea cucumbers [81] can
boost immunization [82] and could be incorporated into vaccine formulations as adjuvants.
Other adjuvants could come from marine lipids found in microalgae that can form stable
emulsions that increase the bioavailability of antigens and facilitate their uptake by immune
cells [56,59]. Molecules of marine origin could also serve as therapeutics or therapeutic
support. For example, infection with several viruses including SARS-CoV-2 infection
triggers the release of reactive oxygen species (ROS), increasing susceptibility to further
infection. Therefore, marine algae-derived compounds with strong antioxidant properties
like fucoxanthin and fucosterol (Figure 1) could counter oxidative damage, reduce overall
oxidative stress, and protect immune cells and host tissues during active infection.
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More specifically, fucoxanthin from Sargassum siliquastrum reduces DNA damage
and enhances antioxidant enzyme levels, while fucosterol boosts cellular antioxidant
enzymes and protects human hepatic cells from oxidative stress [83,84]. Table 1 summarizes
published information on marine-derived adjuvants and antioxidants and presents future
directions, emphasizing the potential of these compounds in antiviral treatments and the
need for ongoing research to better understand their mechanisms and full therapeutic
potential.

Table 1. Overview of marine-derived antioxidants and adjuvants for vaccine development and their
potential applications.

Marine-Derived Compound (Type) Application/Effect

Fucoidan (adjuvant from brown seaweed) Stimulates both humoral and cellular immune responses, enhancing
vaccine efficacy.

Saponins (adjuvant from sea cucumbers) Enhances antigen presentation, promoting a robust immune response
in vaccines.

Microalgae-derived lipids (adjuvant) Creates stable emulsions, improving bioavailability and offering
immunomodulatory properties.

Carrageenan (antiviral polysaccharide) Exhibits antiviral activity, especially against SARS-CoV-2, used in nasal
sprays and hygiene products.

Iota-carrageenan (antiviral polysaccharide) Reduces symptoms of common cold and inactivates viral glycoproteins.

Fucoxanthin (antioxidant from Sargassum siliquastrum) Mitigates DNA damage, enhances antioxidant enzyme levels, and
protects cells from oxidative stress.

Fucosterol (antioxidant from marine sources) Boosts cellular antioxidant defenses and protects human hepatic cells
from oxidative damage.

Other marine natural products [85] from sea urchins, sea cucumbers, sponges, soft
corals, and microalgae exhibited various bioactive properties, including antioxidant, anti-
inflammatory, anti-cancer, and immune enhancement properties. Moreover, marine natural
products have yielded antimicrobials against coronavirus (SARS-CoV-2 and its variants),
tuberculosis, H. pylori, and HIV, making them promising resources for managing sev-
eral pathologies [86]. The anti-inflammatory mechanisms of marine natural products
in SARS-CoV-2 infection are particularly notable, as they offer therapeutic benefits with
fewer cardiovascular side effects compared to other chemical agents used in COVID-19
treatment. With their ability to target multiple pathways involved in immune regulation
and inflammation inhibition, these products hold significant potential for further clinical
applications, making the sustainable development of marine ecosystems critical for future
biomedical advances [86]. Dendritic cells (DCs) bridge innate and adaptive immunity by
presenting foreign antigens to T-cells and secreting cytokines that activate and coordinate
the adaptive response and lead to long-lasting responses [87]. Activating DCs is considered
a crucial strategy to improve vaccination efficacy. In this context, a novel marine-derived
immunomodulatory sulfolipid, β-SQDG18, appeared to be capable of priming human
DCs independent of TLR2/TLR4 and to trigger an effective immune response in vivo [88].
β-SQDG18 promotes DC maturation and increases expression of MHC II molecules and
the co-stimulatory CD83 and CD86 proteins, along with pro-inflammatory cytokines such
as IL-12 and INF-γ, which are necessary for antigen presentation to CD4+ T-cells. Mice
vaccinated with ovalbumin combined with β-SQDG18 (1:500) generated anti-ovalbumin Ig
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titers comparable to conventional adjuvants. In a melanoma model, vaccination of C57BL/6
mice with β-SQDG18-adjuvanted hgp10 peptide induced a protective response, slowing
tumor growth and extending survival [88].

3.2. Bioactive Compounds from Marine Sources: Antiviral Potential and Immunomodulatory Effects

Marine-derived bioactive molecules, such as griffithsin, and plitidepsin, a cyclic
depsipeptide isolated from Aplidium albicans (Figure 2), are currently undergoing clini-
cal trials to assess antiviral efficacy [89]. Several marine phytochemicals can bind with
key SARS-CoV-2 drug targets and possess anti-inflammatory and immunomodulatory
effects, potentially mitigating COVID-19 complications. The structures of the anti-COVID
compounds mentioned in this section are shown in Figure 2 to illustrate the diversity
of marine-derived molecules. These structures encompass different chemical classes
of substances, demonstrating the extensive arsenal available from marine sources to
combat coronaviruses, particularly SARS-CoV-2. This diversity should serve to inspire
new semi-synthetic and clinical studies aimed at optimizing existing natural structures
or their combined use in therapy to achieve stronger activities against variants of SARS-
CoV-2 or new coronaviruses that may emerge in the future. Molecular docking [90]
and MD simulation studies by Quimque et al. evaluated the binding affinity of marine
alkaloids scedapin C and norquinadoline A (Figure 2) against SARS-CoV-2 targets [89].
Both compounds demonstrated a high binding affinity for PLpro, a crucial enzyme in
SARS-CoV-2 replication and immune response suppression, with the same study sug-
gesting that scedapin C and norquinadoline A may inhibit PLpro, potentially blocking
viral replication and activating immune responses. The efficacy of the marine alkaloid
fostularin-3, chimyl alcohol, palmitoleic acid, cannabigerolic acid, and acitretin against
SARS-CoV-2 was also investigated. Molecular docking and MD simulations revealed that
fostularin-3 forms hydrogen bonds and hydrophobic interactions with residues in the
Mpro enzyme, a key target for anti-SARS-CoV-2 drugs [89]. Caulerpin, an alkaloid from
various marine algae, showed strong binding to the SARS-CoV-2 main protease (3CL-
pro) and favorable pharmacokinetic properties, while molecular docking indicated its
potential to halt the virus’s life cycle and its anti-inflammatory effects by downregulating
pro-inflammatory cytokines involved in COVID-19’s hyperinflammatory phase. Fur-
thermore, C-phycocyanin, a pigment from the blue-green algae Arthrospira platensis [91],
has shown potential to inhibit SARS-CoV-2 non-structural proteins (nsp-8, nsp-7, and
nsp-12), with docking studies suggesting its ability to block nsp-12, a key protein in viral
replication. Moreover, nutrient-rich spirulina has been suggested to enhance immune
function and reduce inflammation, which could be beneficial for COVID-19 manage-
ment [89]. Marine polyphenols, including quercetin from brown algae (genus Sargassum),
exhibit antiviral properties. Consistent with this observation, different studies indicate
that quercetin-based treatments may alleviate respiratory symptoms and inflammation
associated with COVID-19 in vivo [89]. However, quercetin is classified as a PAINS (pan-
assay interference compound), which refers to molecules that non-specifically interact
with multiple biological targets and can lead to misleading results in drug screening
assays [92,93]. Due to its promiscuous binding behavior, quercetin’s antiviral effects may
not always stem from specific interactions with viral proteins, and thus, further studies
are needed to confirm its therapeutic potential while accounting for these non-specific
effects [94].
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Studies by Song et al. [95] assessed the anti-SARS-CoV-2 activities of the above-
mentioned marine sulfated polysaccharides, including sea cucumber sulfated polysaccha-
ride (SCSP), fucoidan from brown algae, iota-carrageenan from red algae, and chondroitin
sulfate C from sharks. SCSP demonstrated the strongest inhibitory activity, potentially
blocking viral entry into host cells, whereas fucoidan has shown promise in reducing
inflammation and enhancing vaccine responses, warranting further research [95]. Molec-
ular docking studies evaluated briarane-type diterpene excavatolide M from gorgonian
(Briareum excavatum) for its ability to bind SARS-CoV-2 TMPRSS2 and the potential of
illimaquinone, a marine sponge metabolite, against SARS-CoV-2 target proteins, includ-
ing papain-like protease, compared to standard antiviral drugs [89]. An in silico study
identified esculetin ethyl ester from marine sponge Axinella cf. corrugata as a compound
with a strong binding affinity to SARS-CoV-2 protease N3, while seaweed lectins, including
griffithsin (Figure 3) from Griffithsia sp., inhibited various enveloped viruses in silico [89].
Griffithsin has shown the ability to block SARS-CoV spike glycoprotein and prevent viral
entry into host cells, which recalled clinical trials aimed at investigating its potential against
HIV and SARS-CoV-2.
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Overall, we can conclude that marine-derived bioactive molecules have promising
potential applications for combating COVID-19. Some, like spirulina (Arthrospira platensis)
are already in use [96], while others, such as griffithsin and plitidepsin (Figure 2), have
entered clinical evaluation. Ongoing studies are crucial to further explore their therapeutic
potential and determine their efficacy against viruses from the beta coronavirus family [89].

Table 2 summarizes marine-derived compounds identified through molecular docking
studies and other approaches [89] for their specific interactions with SARS-CoV-2 proteins.
Scedapin C, norquinadoline A, and fostularin-3 show potential in inhibiting key viral
enzymes such as PLpro and Mpro, which are crucial for viral replication. Additionally,
caulerpin and C-phycocyanin exhibit anti-inflammatory properties alongside their ability to
block viral replication. Others, such as marine-derived polysaccharides like fucoidan and
iota-carrageenan, target viral entry, while griffithsin shows promise in blocking the spike
glycoprotein. These compounds offer potential as therapeutic agents against COVID-19 by
targeting specific proteins involved in the virus’s life cycle.

https://www.rcsb.org/3d-view/3LL2/1
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Table 2. Marine-derived compounds targeting SARS-CoV-2 proteins and their potential activities [89].

Compound Marine Source SARS-CoV-2 Protein
Target Potential Activity Ref.

Scedapin C Scedosporium
apiospermum PLpro

Inhibits viral replication and
activates immune responses by

blocking PLpro activity
[97]

Norquinadoline A Scedosporium
apiospermum PLpro

Inhibits PLpro, potentially blocking
viral replication and boosting

immune response
[97]

Fostularin-3 Alpysinidae Mpro
Forms hydrogen bonds and

hydrophobic interactions with Mpro,
potentially inhibiting virus

[98]

Caulerpin Caulerpa racemosa Mpro
Inhibits virus life cycle,

anti-inflammatory properties by
down-regulating cytokines

[99,100]

Quercetin Brown algae
(Sargassum genus) ACE2 receptor

Disrupts ACE2 receptor interactions,
reduces respiratory symptoms

and inflammation
[101]

Fucoidan Brown algae Viral entry proteins

Inhibits the S-glycoprotein of
SARS-CoV-2 and disrupts the ERK

signaling pathway.
Anti-inflammatory and enhances

vaccine response

[95]

Iota-carrageenan Red algae Viral entry proteins Potential to block viral entry [102]

Chondroitin sulfate C Sharks Viral entry proteins Potential to block viral entry [95]

Excavatolide M Gorgonian
(Briareum excavatum) TMPRSS2 Shows potential to inhibit TMPRSS2 [103]

Illimaquinone Marine sponge PLpro Inhibits papain-like protease,
antiviral potential [104]

Esculetin ethyl ester Marine sponge
(Axinella cf. corrugata) N3 protease Strong binding affinity to

N3 protease [105]

Griffithsin Griffithsia sp. (seaweed) Spike glycoprotein Blocks spike glycoprotein,
preventing viral entry into host cells [105,106]

Beyond predictive in silico studies, preclinical trials have also highlighted marine
compounds’ therapeutic and prophylactic potential [107]. Various concentrations of fu-
coidan, specifically RPI-27 and RPI-28, extracted from Saccharina japonica have demon-
strated antiviral activity against SARS-CoV-2 in Vero cells. RPI-27 significantly inhibited
infection (EC50 = 0.08 µM), showing greater efficacy compared to RPI-28 (EC50 = 1.2 µM).
Carrageenans, may prevent SARS-CoV-2 entry through the nasal cavity by interacting
with the virus’s positively charged membrane. Additionally, plitidepsin showed 90%
inhibitory activity at 0.88 nM against SARS-CoV-2, far exceeding the efficacy of the antivi-
ral remdesivir [107]. Another marine compound, gallinamide A, from the cyanobacteria
Schizothrix, inhibited cathepsin L and significantly reduced viral load. Furthermore, the
above-mentioned lectin griffithsin has shown high specificity for viral glycoproteins, ef-
fectively inhibits early-stage viral infection in a dose-dependent manner, and completely
protected SARS-CoV-2-infected rats treated with it (100% survival). The already discussed
esculetin ethyl ester has also been shown to inhibit the SARS-CoV 3CLpro/Mpro en-
zyme, further highlighting the antiviral potential of marine-derived compounds [107].
Remarkably, marine natural products [108–112] are particularly advantageous over syn-
thetic chemicals [113] in treating COVID-19 due to fewer adverse cardiovascular effects. An
example is pseudopterosin from the Caribbean sea whip, which has been used to prevent
skin irritation [114]. Marine organisms have endured for millions of years, developing
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metabolites that enable them to survive harsh conditions. Some of these metabolites, found
in microalgae, exhibit antiviral properties and help combat various diseases, with microal-
gae being abundant in amino acids, saccharides, vitamins, minerals, and metabolites that
support immune health. Cyanophyta algae, particularly spirulina, demonstrate potent an-
tiviral activity. Clinical trials with spirulina involving 30 patients showed promising results
in reducing viral infections [115,116]. Marine microalgal polysaccharides like naviculan
from Navicula directa (Bacillariophyta) and polysaccharides A1 and A2 from dinoflagellate
Margalefidinium polykrikoides (formerly Cochlodinium polykrikoides) have shown antiviral
efficacy against HIV-1 and influenza type A virus [117]. Nutrient-rich microalgae such as
Chlorella (Chlorophyta) have boosted immune responses and are used in cancer treatments.
In particular, hydrophilic extracts from Chlorella have shown potential for lowering blood
sugar, reducing hyperlipidemia, and improving immunity, while the green microalga
Haematococcus lacustris (formerly Haematococcus pluvialis) is rich in astaxanthin [118], which
enhances IgA, IgG, and IgM immunoglobulin production by activating T-helper cells,
improves immune response via NK cells, and reduces stress-related inflammation [119].
Navicula directa has shown antiviral activity against herpes simplex virus 1 (HSV-1) and her-
pes simplex virus 2 (HSV-2). Additionally, A. platensis has exhibited antiviral effects against
mumps, influenza, HIV, polio, and measles viruses, while Nostoc flagelliforme (Cyanobacteria)
has been effective against influenza A and herpes viruses [117].

3.3. Other Marine-Derived Antimicrobials

With the term “antimicrobials”, we refer to a broad category of substances that kill
or inhibit the growth of microorganisms. This includes antibiotics, antifungals, antivirals,
and antiparasitics. Several noteworthy antimicrobials have been identified from marine
sources, particularly sponges and their associated bacteria (Figure 4, Table 3).

Table 3. Marine-derived antimicrobials discussed in the Section 3.3.

Marine-Derived
Antimicrobial Marine Source Activity Organism(s) Active

Against References

Mycalamide A & B New Zealand sponge (Mycale sp.) Antiviral, antitumor,
protein synthesis inhibition

Murine coronavirus A59,
HSV, Polio, Influenza virus [120]

Vidarabine Sponge (Cryptotethya crypta) Antiviral

Herpes simplex virus
(HSV), Cytomegalovirus,
Varicella zoster virus
(VZV)

[121,122]

Trisindoline Sponge (Callyspongia siphonella) Antibacterial, cytotoxic S. aureus, Bacillus subtilis [123]

Andrimid Sponge (Hyatella sp.) and bacteria
(Pseudomonas fluorescens)

Broad-spectrum
antibacterial

Methicillin-resistant
Staphylococcus aureus
(MRSA), Salmonella
enteritidis, Vibrio harveyi,
Yersinia ruckeri

[124,125]

PM181104 Marine sponge (Spirastrella
inconstans var. digitata)

Antibacterial, protein
synthesis inhibition

MRSA, Enterococci, S.
aureus (resistant and
sensitive strains)

[126]

Aurantoside K Sponge (Melophlus sp.) Antifungal

Amphotericin B-resistant
C. albicans, Cryptococcus
neoformans, A. niger,
Penicillium sp., others

[127]

Puupehedione Verongid sponge
Antitumor, anti-angiogenic,
antimicrobial,
immunomodulatory

Various microbial
pathogens [120,128]
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Mycalamide A and Mycalamide B, antiviral compounds derived from a New Zealand
sponge (Mycale sp.), were first reported for their antiviral activity in the late 1980s. These
compounds also exhibit antitumor properties and inhibit protein synthesis, showcasing
activity against murine coronavirus A59, HSV, and polio viruses. Mycalamide A has addi-
tionally demonstrated the ability to inhibit influenza virus replication [120]. Vidarabine,
a purine nucleoside analogue isolated from the sponge Cryptotethya crypta, gained promi-
nence as one of the first successful antiviral agents licensed in 1977. Despite being largely
replaced by acyclovir due to its toxicity and poor solubility, vidarabine remains significant
for its effectiveness against herpes simplex virus, cytomegalovirus, and varicella zoster
virus (VZV) [121]. It is particularly valuable for treating acyclovir-resistant strains of HSV
and VZV and is still used in ophthalmic procedures in the European Union [122]. Trisindo-
line, identified in extracts of Callyspongia siphonella, is responsible for significant antibacterial
and cytotoxic activities. Compounds such as 5-bromotrisindoline and 6-bromotrisindoline
were isolated through bioactivity-guided fractionation, exhibiting effective antibacterial
properties against S. aureus and Bacillus subtilis [123]. Andrimid, a peptide antibiotic
originating from Hyatella sp., displays a broad spectrum of antibacterial activity against
both Gram-positive and Gram-negative bacteria, including methicillin-resistant S. aureus
(MRSA) and bacterial pathogens including Salmonella enteritidis, Vibrio harveyi, and Yersinia
ruckeri [124]. This compound was isolated from a bacterial strain associated with the
sponge and has also been sourced from Pseudomonas fluorescens. The widespread occur-
rence of andrimid among delta-Proteobacteria suggests a role for horizontal gene transfer
in its dissemination [125]. PM181104, a thiazolyl cyclic peptide antibiotic derived from
the marine sponge Spirastrella inconstans var. digitata exhibits potent antibacterial activity
against MRSA and other bacterial pathogens. Characterized by various analytical methods,
PM181104 effectively inhibits bacterial protein synthesis and has demonstrated minimal
inhibitory concentrations (MIC) against both resistant and sensitive strains of S. aureus and
Enterococcus sp. Notably, it has shown non-toxicity to mammalian cell lines, positioning it as
a promising therapeutic agent. In in vitro testing against a variety of organisms, PM181104
revealed strong inhibitory action on S. aureus with an MIC range of 0.008 to 2.048 µg/mL,
and its efficacy was comparable to that of standard antibiotics in various in vivo models
of infection [126]. Aurantoside K, sourced from Melophlus sp., has shown inhibitory ac-
tivity against various pathogenic fungi, including wild-type and amphotericin B-resistant
C. albicans. Its antifungal efficacy extends to Cryptococcus neoformans, demonstrating poten-
tial against a range of fungal pathogens [127].

Marine-derived antimicrobials hold significant promise for enhancing vaccine de-
velopment and efficacy. Notably, compounds such as Puupehedione, isolated from the
Verongid sponge, demonstrate diverse beneficial properties, including antimicrobial, and
immunomodulatory activities [120,128] that enhance the immune response, potentially
improving vaccine effectiveness. Furthermore, specific marine compounds could be incor-
porated into formulations to target pathogens directly or strengthen immune recognition.

4. Marine-Derived Delivery Systems for Vaccines

Marine biodiversity [129–131] promises innovative vaccine delivery systems (Scheme 2)
with potential for high biocompatibility, biodegradability, and ability to be engineered
for targeted delivery, making them ideal candidates for modern vaccine development.
One prominent example is chitosan [132], a biopolymer derived from the exoskeletons of
crustaceans, which has gained attention for its ability to form nanoparticles and encapsu-
late antigens. Chitosan-based delivery systems can protect the vaccine’s active ingredients,
enhance mucosal immunity, and provide controlled release, thereby improving the vaccine’s
effectiveness. Additionally, liposomes and other lipid-based carriers, sourced from marine
organisms, have been utilized to encapsulate and deliver vaccine antigens with high efficiency.
These carriers can be engineered to mimic natural cell membranes, facilitating the fusion with
target cells and enhancing antigen presentation. Moreover, marine-derived exosomes [133],
extracellular vesicles naturally released by cells [134], have shown promise as novel delivery



Vaccines 2024, 12, 1263 16 of 26

vehicles. These vesicles can be loaded with vaccine antigens and possess intrinsic properties
that aid in targeted delivery to immune cells, enhancing the immune response.
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Scheme 2. Flowcharts of marine-derived delivery systems for vaccines illustrate the key components
and advantages of marine-derived materials used in vaccine delivery systems. (A): Highlights
the types of marine-derived materials, including microalgae and crustaceans, and outlines the
various delivery systems such as chitosan-based systems, liposomes, and exosomes. It details their
specific applications, including encapsulation and controlled release mechanisms. (B): Focuses on
the advantages of marine-derived delivery systems, emphasizing biocompatibility, biodegradability,
and targeted delivery capabilities. Additionally, it outlines the applications of these systems in both
vaccine and drug delivery.



Vaccines 2024, 12, 1263 17 of 26

As previously mentioned, chitosan, a biopolymer sourced from different marine or-
ganisms [135,136] has gained significant interest in the realm of drug delivery systems.
It has been explored for its potential in various applications, including the development
of chitosan composites and nanoparticles for a range of drug delivery methods [137].
Other marine polysaccharides, such as fucoidan, have also been used in drug and vaccines
delivery systems. In particular, fucoidan-based nanoparticles have potential as vaccine
delivery systems. In this context, fucoidan-N-(2-hydroxy-3-trimethylammonium) propyl-
chitosan (FUC-HTCC) nanoparticles were evaluated as adjuvants for the anthrax vaccine
(AVA) [138,139]. These nanoparticles, which combine the marine polysaccharide fucoidan
with a modified form of chitosan, were shown to be effective in enhancing vaccine effi-
cacy. When used in conjunction with the anthrax vaccine, the FUC-HTCC nanoparticles
significantly increased the titer of protective IgGs, indicating a stronger humoral immune
response. Moreover, their uptake by dendritic cells, which are crucial for initiating immune
responses, was notably efficient. The enhanced immune response led to superior protection
against anthrax toxin in mouse models, demonstrating their potential for vaccine delivery
and as adjuvants [138]. Nano-based drug delivery systems, showcasing the potential of
chitosan, along with other marine-derived materials, have been applied as nanocarriers
for anticancer drug delivery systems, offering improved efficiency and targeting [140].
Studies have shown that chitosan nanoparticles have advanced parenteral drug delivery,
oral drug administration, non-viral gene delivery, and vaccine delivery [141,142], partic-
ularly for mucosal vaccines [132]. The adjuvant potential of chitosan is largely due to its
mucoadhesive nature, which allows it to interact with negatively charged mucosal surfaces.
This feature enables non-invasive, needle-free vaccine administration, promoting both
systemic and mucosal immune responses. The chitosan free amino groups contribute to
controlled antigen release, transfection, enhancement of permeation, and inhibition of
efflux pumps, which are critical for effective vaccine delivery. Chitosan’s ability to enhance
transmucosal absorption is especially advantageous for vaccines, as it facilitates antigen
uptake across mucosal surfaces, thereby improving immune responses [132]. When used as
an adjuvant in mucosal vaccines, chitosan has been shown to induce robust antibody and
T-cell responses [143,144]. To optimize its solubility and broaden its medical applications,
chitosan can be modified through acylation, alkylation, and sulfation that improve its
effectiveness as a vaccine adjuvant, particularly when formulated into micro- or nanopar-
ticles. Chitosan microspheres are especially effective, as they provide controlled release
of antigens, outperforming commonly used materials like polylactic acid (PLA) and poly
(lactic-co-glycolic) acid (PLGA) in this role [132]. This controlled release helps eliminate
the need for repeated vaccine doses, a significant advantage over conventional vaccine
formulations. Overall, chitosan’s unique properties make it a highly effective material for
enhancing vaccine delivery and immune responses.

Multimeric forms of keyhole limpet hemocyanin (KLH) represent another example of
marine-derived systems for vaccine delivery (Figure 5). KLH, a large barrel-shaped metallo-
protein found in the hemolymph of the marine mollusk Megathura crenulata, plays a crucial
role in the development of therapeutic agents targeting cancer and other immune-related
diseases. While KLH itself is not a drug, its ability to stimulate a targeted immune response
has made it invaluable in immunological research and the immunopharmaceutical industry
for over 50 years. KLH exists in two isoforms, KLH1 and KLH2, with monomeric molecu-
lar weights of 390 kDa and 360 kDa, respectively. Its structure consists of 20 monomers,
each containing 7–8 functional domains that bind two copper ions (Cu2+) and one oxygen
molecule. The didecameric (20-unit) assembly of KLH is highly glycosylated, making it
ideal for hapten conjugation and as a carrier molecule in vaccines. Unlike synthetic alterna-
tives, KLH cannot be easily produced in a laboratory due to its intricate structure and size,
so it is commercially extracted from the mollusk’s hemolymph. Despite its potent immuno-
genicity, KLH does not trigger harmful immune reactions in humans, making it a safe and
effective immunomodulatory agent. It has been used extensively in both experimental and
clinical settings, underscoring its value in advancing therapeutic approaches and vaccine
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delivery systems [145]. Overall, marine ecosystems, with their abundant biodiversity,
provide a wealth of materials for innovative vaccine delivery systems. From chitosan’s
mucoadhesive properties to fucoidan-based nanoparticles and KLH, marine-derived sub-
stances enhance immune responses and improve antigen delivery. These natural materials
offer biocompatibility, biodegradability, and targeted delivery capabilities, making them
invaluable in the development of more effective and accessible vaccines. Their unique
properties promise to revolutionize vaccine technology by improving stability, immune
activation, and precision in targeting specific immune pathways.
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Figure 5. (A) KLH is depicted in a barrel-shaped structure, visualized using cryo-electron microscopy
with 3D coordinates (PDB ID 4BED). (B) KLH functions as a hapten conjugate, allowing it to bind
small molecules. (C) KLH is utilized as a carrier molecule in vaccines, aiding in the delivery and
presentation of antigens for an enhanced immune response. This picture is freely available at the link
https://www.mdpi.com/1660-3397/20/8/528 (accessed on 9 September 2024) [145].

5. Marine-Derived Antineoplastics

As mentioned previously, several marine-derived compounds including polysaccha-
rides, peptides, proteins, phenolic compounds, and alkaloids are currently being studied
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for their use as possible cancer treatments. Their origins are from several taxonomic groups,
such as brown algae, marine fungi, polychaete worms, sponges, and tunicates [126], high-
lighting the need to preserve the marine biodiversity. One such compound, trabectedin,
paved the way for marine antineoplastics as the first derived from a marine animal, the
Caribbean sea squirt Ecteinascidia turbinata, a tunicate. Trabectedin is now used to treat
soft tissue sarcoma [127]. In 2022, a phase 3 clinical trial showed that a combination of
trabectedin and doxorubicin was more effective in treating metastatic leiomyosarcoma
than the first-line treatment of doxorubicin alone [128]. Additionally, trabectedin and
its structural derivative lurbinectedin are under examination for treatment of soft tissue
sarcoma and relapsed ovarian cancer in combination with doxorubicin. Lurbinectedin was
approved after a phase 2/3 trial in 2020 for the treatment of small cell lung cancer that
is resistant to platinum-based chemotherapy [129,130]. Several derivatives from various
marine invertebrates exhibit anticancer, but also anti-parasitic, antihypertensive, antifungal,
antiviral, antibacterial, and immune-modulatory activities [146,147]. Extracts from mol-
lusks also show antioxidant, anticancer, anti-infective, and cardiovascular protective effects.
Sea cucumber protein hydrolysates are particularly noted for their ability to reduce reactive
oxygen species accumulation and scavenge free radicals [148]. Other bioactive substances
being evaluated as potential cancer inhibitors include the cryotin enzyme from shrimp and
protamex from snow crabs, as well as antioxidant neutrase from sea urchins [114].

6. Conclusions

The exploration of marine-derived substances represents a frontier in medical science
that holds immense promise for human health. Marine natural products significantly
contribute to vaccine development. The unique ability of microalgae to produce complex
antigens and bioactive compounds under controlled conditions underscores their critical
role in creating sustainable and effective vaccines suitable to modern technologies. Beyond
vaccines and biotechnology to express complex antigens in microalgae, the ocean’s bounty
includes powerful adjuvants, advanced delivery systems, and immunomodulatory agents
that can significantly enhance immunological responses and vaccine effectiveness. Novel
antimicrobial compounds may enhance vaccine performance. Also, marine organisms
have provided numerous antiviral compounds. Marine bivalves, for instance, are rich in
alkaloids, terpenoids, steroids, polysaccharides, and peptides, all of which have potential
antiviral properties [146,147]. Remarkably, marine compounds feature excellent unique
biocompatibility, biodegradability, and targeted delivery capabilities that promise to revolu-
tionize vaccine technology and contribute to broader human health. They improve stability,
enhance immune activation and the targeting of specific immune pathways, making them
invaluable in the quest for better immunization strategies. Many of these bioactives exhibit
additional desirable properties, including antioxidant and cardiovascular normalization,
that improve their tolerability and desirability as drug. Marine invertebrates like mollusks,
sponges, crustaceans, and echinoderms are excellent sources of bioactive compounds,
including peptides, phenols, steroids, alkaloids, terpenoids, and strigolactones [12]. Bioac-
tives from the Mytilidae family of mussels include proteins, lipids, carbohydrates, polyun-
saturated fatty acids, and iodine, all known for their antimicrobial and anti-inflammatory
properties. Remarkably, marine-derived compounds are emerging as particularly promis-
ing in oncology [149,150]. While promising for human health applications, marine-derived
products also have certain disadvantages. A primary concern is their potential toxicity, as
seen with vidarabine, which limits their safe therapeutic use due to harmful side effects.
Additionally, sustainability may become an issue when the harvesting of marine organisms
can threaten marine ecosystems and biodiversity, especially for slow-growing species. The
extraction and isolation of these compounds are often complex and expensive due to their
low natural concentrations, making large-scale production difficult. Furthermore, regu-
latory challenges arise because these novel compounds often lack comprehensive safety
data, leading to prolonged approval processes. Finally, many of these substances have
mechanisms of action that are not yet fully understood, complicating their development
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and integration into existing therapeutic frameworks while posing risks of unforeseen side
effects. These marine innovations are not only paving the way for more effective vaccines
but also contributing to a more comprehensive approach to disease prevention and human
health. In the quest to rapidly broaden the library of safe bioactives to support human
health, new applications of model organism research may accelerate progress toward
the characterization of their biological properties, mechanism of action, and toxicological
properties. The fruit fly Drosophila melanogaster, for example, is an excellent whole-animal
model suited to perform rapid miniaturized pharmacological testing. Despite substantial
morphological differences, flies and humans share about 75% of disease-related genes and,
crucially, also share their higher order connection in pathways [151,152]. Conservation
extends to key toxicological pathways, which makes it possible to leverage the month-long
lifespan of the fly to detect even trace level activation during chronic exposure to predict
possible health consequences in a fraction of the time needed for equivalent studies in
vertebrates [153]. Similarly, miniature drug assays using analytical amounts of testing
compounds and wild-type or ad hoc mutant fly lines, or “humanized” flies expressing
specific human proteins, can yield information on biological activity, dose-response effects,
and, when combined with extensive Drosophila genetic resources and “omics” approaches,
also mechanism of action [152,154–156]. Drosophila does not reproduce all the complexities
of human physiology, e.g., it only has innate immunity. However, Drosophila can be used
effectively to probe the effects of both single compounds and mixtures on development
and on the fundamental pathways conserved throughout evolution, economizing time
and costs. Such studies could enable rapid prioritization of promising bioactives [157] for
escalation to longer and costlier vertebrate and clinical research studies, and they could
also provide unique insights into molecular mechanisms and toxicity. Collaborative efforts
among marine biologists, pharmacologists, and immunologists are vital to unraveling
the mechanisms by which marine compounds modulate immune response and devel-
oping innovative strategies to bolster vaccine performance. Integrating marine-derived
antimicrobials into vaccine formulations may improve stability and effectiveness, which
is particularly important in the face of emerging infectious diseases. As the exploration
of oceanic resources continues, it is crucial to protect marine ecosystems to sustain their
biodiversity and health and ensure the continued availability of these valuable compounds.
Marine biotechnology holds immense promise for advancing medical science, and ongoing
research and technological advancements are vital to unlock the full therapeutic potential
of marine-derived compounds. By investing in marine biotechnology, we can enhance our
ability to develop effective vaccines and treatments, contribute to a more comprehensive
approach to disease prevention and immune health, and emphasize the importance of
sustainable practices to safeguard our oceanic resources.
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