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Abstract—This letter presents a new statistical model for
modelling urban scene SAR images by combining the Cauchy
distribution, which is heavy tailed, with the Rician back-
scattering. The literature spans various well-known models most
of which are derived under the assumption that the scene
consists of multitudes of random reflectors. This idea specifically
fails for urban scenes since they accommodate a heterogeneous
collection of strong scatterers such as buildings, cars, wall
corners. Moreover, when it comes to analysing their statistical
behaviour, due to these strong reflectors, urban scenes include
a high number of high amplitude samples, which implies that
urban scenes are mostly heavy-tailed. The proposed Cauchy-
Rician model contributes to the literature by leveraging non-zero
location (Rician) heavy-tailed (Cauchy) signal components. In the
experimental analysis, the Cauchy-Rician model is investigated
in comparison to state-of-the-art statistical models that include
G0, generalized gamma, and the lognormal distribution. The
numerical analysis demonstrates the superior performance and
flexibility of the proposed distribution for modelling urban scenes.

Index Terms—Urban modelling, SAR Imaging, Cauchy-Rician
distribution.

I. INTRODUCTION

THIS letter concerns with the statistical modelling of
urban areas in synthetic aperture radar (SAR) imagery,

which are mostly characterised by a high number of strong
scatterers caused by the man-made structures with dihedral or
trihedral configurations [1]. Especially, for SAR application
areas of classification, denoising and segmentation to utilise
an advanced and accurate statistical model leads to better
performances.

The standard model for the back-scattered SAR signal from
a given area, exploits a complex signal, with a form of R =
x1 + jx2 [2], [3]. The SAR literature abounds with multitude
of statistical models which are either based on the physics
of the imaging process or empirical. The simplest model for
SAR amplitude assumes the real (x1) and imaginary (x2) parts
are independent and identically distributed (i.i.d.) zero-mean
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Ercan E. Kuruoğlu is with Data Science and Information Technology
Center, Tsinghua-Berkeley Shenzhen Institute, China and is on leave from
ISTI-CNR, Pisa, Italy. (e-mail: ercan.kuruoglu@isti.cnr.it)

Alin Achim is with the Visual Information Laboratory, University of Bristol,
Bristol BS1 5DD, U.K. (e-mail: alin.achim@bristol.ac.uk)

M. A. Altınkaya is with the Department of Electrical-Electronics En-
gineering, Izmir Institute of Technology, 35430 Izmir, Turkey (e-mail:
mustafaaltinkaya@iyte.edu.tr).

Gaussian random variables. This leads SAR distribution for
the amplitude r =

√
x21 + x22 to become the Rayleigh model

which is valid provided there is no dominating scatterer in
the scene. When the Rayleigh model is not the case whilst
having various dominating scatterers, the real and imaginary
signal components become non-zero mean (δ 6= 0) Gaussian,
which hence lead amplitude distribution to become the Rician
distribution,

f(r|γ,∆) =
r

σ2
exp

(
−r

2 + ∆2

2σ2

)
I0
(
r∆

σ2

)
(1)

where ∆ =
√

2δ is the location parameter and I0(·) refers to
the zeroth-order modified Bessel function of the first kind.
Rician model is widely used to characterise SAR scenes
containing many strong back-scattered echoes. These include
natural targets such as forest canopy, mountain tops, sea waves,
as well as some man-made structures with dihedral or trihedral
configurations such as cars, buildings, or vessels [1], [4]–[7].

Notwithstanding their appealing theoretical properties, and
simple analytical structure, statistical models based on the
Gaussian assumption (Rayleigh-Rician) do not reflect the real
life phenomena in most cases for SAR reflections which
exhibit impulsive behaviour indicative of underlying heavy-
tailed distributions. Thus, there are numerous statistical models
in the literature which were developed to account for non-
Rayleigh cases, and proven to be successful for modeling SAR
imagery. A non-exhaustive list of models can be given as:
Gamma [8], [9], Weibull [10], [11], lognormal [12], K [8],
[13], G0 [9], [14], [15], generalized gamma (GΓD) [16], [17],
Stable-Rayleigh [2], [18], generalised-Gaussian Rayleigh [3].

Combining the Rician idea with the non-Gaussian and
heavy-tailed case via the Laplace distribution in [19], [20]
addresses both the non-Rayleigh and heavy-tailed character-
istics of amplitude SAR images. The Laplace-Rician model,
despite being limited to a Laplace distribution as the back-
scattered SAR signal components’ statistical model, showed
superior performance in modeling amplitude SAR images of
the sea surface [19], and for some other scenes such as forest,
agricultural [20] when compared to state-of-the-art statistical
models such as Weibull, lognormal, and K.

In a recent study [21], we have extended the Laplace-
Rician model by proposing a much more general case, where
the back-scattered SAR signal components are non-zero mean
Generalized-Gaussian distributed. We have demonstrated the
modelling capability of the GG-Rician model for ampli-
tude/intensity SAR images for illuminated scenes of urban,
agricultural, land cover and sea surface. The results have
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(a) (b)

Fig. 1. Surface scattering examples. (a) Distributed scattering, (b) Dominating
scatterer + multiple distributed ones.

Fig. 2. Real SAR example. Rectangle (left): distributed scattering. (right): a
number of strong scatterers.

demonstrated the superior performance and flexibility of the
GG-Rician model for all frequency bands and scenes, and its
applicability on both amplitude and intensity SAR images.

Despite the successful performance of the previously pro-
posed GG-Rician (incl. Laplace-Rician) distributions in seven
different classes of SAR scenes (sea, agricultural, mixed, etc.)
in [19]–[21], we have experienced that GG-Rician’s modelling
performance can be comparable to, and sometimes lower than
the GΓD and G0 models specifically for the urban SAR scenes
which include a high number of strong scatterers (such as
urban). We believe that heavy-tailed characteristics of the
generalised Gaussian family might not be impulsive enough to
fully demonstrate scenes with high number of large intensities.
Consequently, in this letter, we propose the use of the Cauchy
distribution for modelling the backscattered SAR signal real
and imaginary components in urban images whilst keeping
the Rician base model via non-zero location parameter of the
Cauchy density.

A. On the Rician Assumption

As was mentioned in the previous section, the fundamental
Rayleigh backscattering idea relies on the assumption that the
scene does not have any dominating scatterer whilst having a
distributed scattering mechanism. However, in various scenes
such as urban ones, the illuminated area may include one (or a
small number of) dominating scatterer(s) (Figure 1-(b)), and a
large number of non-dominant ones [22]. This phenomenon
can also be seen in a real SAR image in Figure 2. The
displayed scene within the rectangle on the left is a good
example of the distributed scattering whilst radar returns in
the rectangle on the right, includes various urban scene targets
(buildings, wall corners, etc.). Therefore, the scene on the right
includes quite a lot of high intensity returns, resulting in non-
distributed scattering. Hence, the assumption on which the
Rayleigh backscattering model is based upon would no longer

Fig. 3. Comparison for I and Q components of different SAR scenes.

Fig. 4. Laplace vs. Cauchy.

be valid. In the statistical point of view, this case results in the
signal components x and y still being iid, but this time with
non-zero-mean random variables. This statistical case is known
to be the Rician backscattering when the signal components
are Gaussian.

To prepare a physical base for the Rician assumption in
this letter, two different patches (urban and sea surface)
from a SAR scene were investigated. The utilised COSMO-
SkyMed SAR data incorporates an intensity SAR scene as
well as in-phase (I) and quadrature (Q) components of the
back-scattered SAR signal. For both urban and sea patches,
histograms of I and Q components were calculated which
are depicted in Figure 3. It is clear from Figure 3 that sea
and urban scenes have characteristically different component
distributions. Sea surface components are centred around the
origin (potentially Rayleigh based) with a mostly symmetric
form whilst distributions for urban components are skewed and
centred around a ”non-zero” data value. This simple example
provides a physical support to the use of Rician backscattering
specifically for urban SAR scenes.

B. On the Choice of Cauchy Distribution

The Cauchy distribution is known to be heavy-tailed and
to promote (statistical) sparsity in various applications. From
a purely theoretical viewpoint, our preference for the Cauchy
model over other candidate models stems from its membership
of the α-Stable family of distributions. Specifically, unlike
other empirical distributions able to faithfully fit distributions
with heavy-tails, α-stable distributions are motivated by the
generalised central limit theorem (CLT) similarly to the way
Gaussian distributions are motivated by the classical CLT.
Contrary to the general α-stable family, the Cauchy distri-
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bution has a closed-form probability density function, which
is defined by

p(x|γ, δ) = Ca(δ, γ) =
1

π

γ

γ2 + (x− δ)2
(2)

where γ is the dispersion (scale) parameter, which controls the
spread of the distribution, and δ is the location parameter.

Despite the remarkable performance of the Laplace-Rician
model [19], [20] in modelling various types of SAR scenes,
our motivation is to provide an amplitude model for urban
SAR scenes which clearly show heavy-tailed characteristics,
since they have more pronounced single reflectors when com-
pared to, for example, sea surface images. Figure 4 compares
Laplace and Cauchy distributions whilst their scale and lo-
cation parameters are the same. It is clear from this visual
representation that Laplace pdf is more peaked around the
location parameter whilst the Cauchy model has more mass
in the tails indicating better potential for modelling impulsive
characteristics. It is also interesting to note that the differences
between Laplace and Cauchy pdfs in Figure 4 resemble the
differences between sea and urban scenes in Figure 3. To this
end, Figure 3 also provides support to the need for heavier
tailed density for the urban scene modelling.

From another point of view, the need for heavier tailed
statistical data models can be modelled with various image
processing applications. The Cauchy distributions has been
investigated as a statistically sparse statistical model compared
to the Laplace in the literature [23]–[25] and provided a
remarkable performance in applications such as dictionary
learning, despeckling, deblurring.

II. THE CAUCHY-RICIAN DENSITY

We first start by assuming that signal components, x1
and x2 are non-zero Cauchy distributed as x1 ∼ Ca(δ, γ)
and x2 ∼ Ca(δ, γ). Consider the bivariate isotropic Cauchy
distribution, the characteristic function of which has the form
of ψ(t1, t2) = exp(jδ(t1 + t2) − γ|t|), where t1 and t2 are
components of the vector t, and |t| is the magnitude. The
probability density function (pdf) can be evaluated by taking
the 2D Fourier transform as

(3)f(x1, x2) =
1

(2π)2

∫
t1

∫
t2

exp(jδ(t1 + t2)) exp(−γ|t|)

× exp(−j(x1t1 + x2t2))dt1dt2.

We make a change of variables and rewrite x1 and x2 in
terms of variables y1 and y2, respectively as y1 = x1− δ, and
y2 = x2 − δ, which leads to

(4)f(y1 + δ, y2 + δ) =
1

(2π)2

∫
t1

∫
t2

exp(−γ|t|)

× exp{−j[t1y1 + t2y2]}dt1dt2.

We now convert this integral into the polar coordinates via
t1 = u cosφ and t2 = u sinφ

f(y1 + δ1, y2 + δ2) =

∫ 2π

0

∫ ∞

0

u exp(−γu)

(2π)2

× exp{−ju[y1 cosφ+ y2 sinφ]}dudφ.
(5)

where u = |t| and φ = arctan(t1/t2). If we reorganise (5),
f(y1 + δ1, y2 + δ2) becomes

(6)
=

1

2π

∫ ∞

0

u exp(−γu)

×
[

1

2π

∫ 2π

0

exp (−ju[y1 cosφ+ y2 sinφ]) dφ

]
du.

Then, using the identity for the expression in square brackets
from [26], we obtain [2]

f(y1 + δ1, y2 + δ2) =
1

2π

∫ ∞

0

u exp(−γuα)J0(u|y|)du.

(7)

where J0 is the zeroth order Bessel function of the first
kind. Here, we now have a bivariate density function, and
to have amplitude instead of two signal components, we take
the following polar transformation

f(r, θ) = rf(y1 + δ = r cos θ, y2 + δ = r sin θ), (8)

where r ≥ 0 and 0 ≤ θ ≤ 2π. Then, marginalising over θ
leads us to

f(r) =
r

2π

∫ 2π

0

∫ ∞

0

u exp(−γu)J0(uA(r, θ))dudθ. (9)

where A(r, θ) =
√
r2 + 2δ2 − 2rδ(cos θ + sin θ). Reorganis-

ing (9), we have

f(r) =
r

2π

∫ 2π

0

dθ

∫ ∞

0

u exp(−γu)J0(uA(r, θ))du. (10)

Using the identity below [27]∫ ∞

0

zn+1 exp(−az)Jn(bz)dz =
a2n+1bnΓ(n+ 3/2)√
π(a2 + b2)n+3/2

(11)

where a > 0, b > 0 and n > −1, we rewrite (10) for n = 0
as

f(r) =
rγ

2π

∫ 2π

0

dθ

[γ2 + r2 + 2δ2 − 2rδ(cos θ + sin θ)]
3/2

(12)

which corresponds to the Cauchy-Rician distribution. For δ =
0, it is straightforward to show that the distribution in (12) is
simplified to Cauchy-Rayleigh distribution of [2] as f(r) =
rγ/(r2 + γ2)3/2. Since the pdf expression in (12) is not in a
compact analytical form and it does not seem to be possible
to invert it to obtain parameter values, we employ a Bayesian
sampling methodology in order to estimate model parameters
of γ and δ. We leave the derivation of a closed-form parameter
estimation method for future work.

In particular, the method is a Metropolis-Hastings (MH)
algorithm, and in each iteration, it applies one of 3 different
moves: M1: Update δ for fixed γ, M2: Update γ for fixed
δ, M3: Update γ and δ where the probabilities of which are
selected as 0.4, 0.4 and 0.2 forM1,M2 andM3, respectively.
To test the parameter estimation approach, we create four
simulated data sequences and the proposed algorithm was used
to estimate δ and γ for each data set. The corresponding data
sets (δ, γ) are (2, 2), (4, 0.5), (5, 9) and (40, 15) all of which
have 1500 samples.
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Fig. 5. Modeling performance analysis in terms of the (a) RSE (each row represents SAR images, Ii), (b) KL-divergence, and (c) AICc.

The modelling results let us conclude that the location
parameter δ results are generally close to the real values (e.g.
δ = 2 is estimated as 2.011). Overestimation can be seen
for the scale parameter γ estimation results (e.g. γ = 0.5 is
estimated as 0.656), however, the statistical significance results
show remarkable performance as KL divergence values are
relatively small (between 0.038 and 0.057). Furthermore, the
estimated parameters are also statistically significant since p-
values are greater than 0.9999 for all four data sets.

III. EXPERIMENTAL RESULTS

The proposed method was tested on various urban SAR
data. We subsequently conducted experiments to determine the
best fitting distribution for given real urban SAR images. In
order to measure modelling performance, we used Kullback-
Leibler (KL) divergence, residual standard error (RSE), the
corrected Akaike information criterion (AICc) [28] and log-
likelihood (logLHD). The proposed method was tested on
20 different urban SAR images coming from TerraSAR-X,
and ICEYE. The performance of the Cauchy-Rician model
was compared to Laplace-Rician, Lognormal, G0, and GΓD
distributions. It is worth noting that other common models
such as the Rayleigh, Gamma, and K distributions have been
left aside from our simulations, since our previous work have
shown that they are less successful than the utilised reference
models [21]. The results are depicted in Figures 5 and 6, and
Table I.

Evaluating the sub-figures in Figure 5, in terms of the
KL divergence results for overall percentages, even though
the proposed model is the best model for 30% of the total
20 SAR scenes, G0 and Laplace-Rician models also perform
similar to the Cauchy-Rician. The superiority of the proposed
method can been seen from the RSE and AICc sub-figures.
The Cauchy-Rician model is the best model for all urban SAR
scenes in terms of the RSE and AICc values.

Figure 6 presents SAR images for two example urban scenes
and their modeling results in logarithmic scale. The log-scale
pdf modeling results in Figure 6 (c)-(f) confirm the numerical
results presented in Figure 5. Despite having slightly over-
estimates around the peak of the histogram, the Cauchy-Rician
specifically outperforms most of the reference models utilised
in this study with its strong tail modelling capability.

In order to quantitatively support the tail modelling per-
formance of the Cauchy-Rician model, we also performed a
simulation case for only the tails of the image histograms for
CDF (Ii) ≥ 0.75 and CDF (Ii) ≥ 0.90. In order to measure
how informative the tail modelling is, we used negative log-
likelihood ratio (− logLHD) and decided the best model which
minimises − logLHD. Table I presents the percentages of SAR
scenes for two different analyses. It is clear from the table
that the proposed Cauchy-Rician density performs better tail
modelling compared to state-of-the-art models such as G0, and
GΓD despite having only two model parameters. Figure 6 (e)-
(f) also provide visual demonstrations of the tail modelling
performance.

TABLE I
TAIL MODELING ANALYSIS

Tail samples
Cauchy Laplace

G0 GΓD LognormalRician Rician

CDF (Ii) ≥ 0.75 35% 0% 30% 15% 20%
CDF (Ii) ≥ 0.90 95% 0% 5% 0% 0%

IV. CONCLUSION

This letter introduced the Cauchy-Rician distribution to
characterise the amplitude of the complex back-scattered SAR
signal from urban scenes. Following the theoretical and phys-
ical aspects of the urban SAR scenes, the proposed approach
leveraged both heavy-tailed distributions and the Rician back-
scattering. Thanks to Cauchy distribution’s ability to model
heavy-tails, the proposed model further extended the idea
behind GG-Rician density [21] for SAR scenes that require
heavier tails than that of GG-Rician. Despite having only
two model parameters and exploiting only one member of α-
Stable distributions, the Cauchy-Rician density demonstrated
considerable improvement in performance compared to the
state-of-the-art advanced models such as G0 and GΓD.
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