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S1. Euclidean graph generation algorithm

A Euclidean graph (EG) describing the raw path of cracks or
other line-shaped features can be generated from an
8-connected skeletonized bitmap image with complete
information retention (i.e. with a two-way correlation between
the EG vertices and the bitmap foreground pixels). The edges
of the generated EG (primal EG) reflect the 8-connected
neighborhood of each skeletonized bitmap pixel. The EG
generation process is based on the assembly of the sub-EGs
built from each connected foreground pixel cluster in the
skeletonized image. The process is thus composed of an image
scan and a graph building algorithm, the former seeking for
unvisited pixel clusters and the latter exploring each located
cluster with an exhaustive process analogous to the depth-first
search (Figure S1). More in detail, when the scan process
locates a foreground unvisited pixel, the graph building
procedure begins using the former as initial working pixel. The
working pixel is marked as visited, then a corresponding new
EG wvertex is generated and the 8-connected pixel
neighborhood is explored. If an unvisited foreground pixel is
located in the working pixel neighborhood it is marked as
visited, a new vertex is added to the EG and a new edge is also
added, connecting the new vertex with the working pixel
vertex. The located pixel will be the working pixel for the next
iteration. If more than one unvisited foreground pixel is found,
the remaining ones are also marked as visited, their
corresponding vertices and edges are generated and added to
the EG and the vertices are saved in a temporary buffer for later
exploration. If an already visited pixel is found, the
corresponding vertex is searched on the EG and, if not already
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present, a new edge is inserted between the latter and the
working pixel vertex. The building procedure terminates when
unvisited pixels are no more available (i.e. when unvisited
pixels are no more present in the current pixel neighborhood
and no vertices are available in the temporary buffer). The
bitmap scan procedure can then be resumed looking for the
next unprocessed cluster. The resulting primal EG retains all
information from the original skeletonized bitmap, each vertex
acquiring the geometrical coordinates of the corresponding
skeleton pixel and each edge reflecting its 8-connected pixel
neighborhood. It is worth noting that, originating from a digital
image, all vertex coordinates in the primal EG inherit the
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Figure S2. Parasitic 3-cycle artefacts (triangles) generated at the skeleton
branching points (a). The improved EG generation algorithm (b) adds a
diagonal edge (NW in figure) only if none of the two proximal pixels (N, W)
is a foreground pixel and rejects a diagonal edge (NE) if one proximal pixel is
foreground (E). Resulting EG without parasitic triangles (c).
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Figure S1. Algorithm for EG generation from a skeletonized bitmap. A graph vertex (black dot) is generated for a corresponding skeleton foreground pixel (gray
squares) and its 8-connected pixel surroundings (red square perimeter) are checked for the presence of other foreground pixels. A new graph vertex (red dot) is
generated for each foreground pixel found and a corresponding graph edge (red line) is inserted. The first vertex found will become the next working vertex (red
filled dot) while the others are saved for successive exploration (red empty dots). The procedure is iterated until exhaustion of vertices to be explored (a—n).
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corresponding image pixel coordinates and are therefore
represented by integer values.

A possible issue related to the described algorithm is the
creation of small 3-cycle artefacts (triangles) in case of some
branching pixel configurations, because the building process
generates an edge for the 8-connected neighborhood of each
pixel (Figure S2a). If this is an undesired behavior (as in the
present work), it can be corrected by ensuring that edges in
diagonal directions (i.e. NE, NW, SW and SE) are added only
if the related proximal pixels in the axis directions (i.e. E, N, W
and S) are not foreground pixels (Figure S2b). This results in
an EG without parasitic triangles (Figure S2c).

S2. Subgraph recovery algorithm

Several small subgraphs in primal EG that belong to genuine
cracks are inevitably filtered out during the first noise removal
process. In the subsequent merging step, large distal edges are
then introduced in the working EG in place of the removed
subgraph. The latter can be recovered by performing a specific
search on the primal EG for each distal edge (i.e. with length
>2 pixels) present in the working EG. Distal edges can result
only from the subgraph merging process because all EG edges
originating from the skeletonized bitmap connect two
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Figure S3. Recovery of small subgraphs corresponding to EG long edges.
Subgraphs in primal EG are eligible for distal edge replacement if at least two
end vertices (empty dots) are positioned inside the acceptance circle (a). The
final subgraph to be inserted (if any) is the one with the smallest distances
between its end vertices and the distal edge vertices (see text for details). The
selected subgraph is inserted in the crack EG by replacing the former distal
edge with two new edges (b).

neighboring pixels and thus their length is always <2 pixels.
The recovery process is implemented for each distal edge as
described below. An acceptance circle is established using the
distal edge midpoint as centre and the edge length as diameter
(Figure S3), after multiplication of the latter by a given
constant (1.5 in this work). The enlarged acceptance circle
defines the area in which eligible subgraphs are searched in the
primal EG. A subgraph is eligible for insertion in the merged
graph if it has at least two end vertices inside the acceptance
circle. A cost parameter defined as the sum of the distances
from the long edge vertices to their respective nearest subgraph
end vertices is calculated for each eligible subgraph (provided
that each distance is smaller than the distal edge itself). The
subgraph with the smallest cost parameter is selected among
the eligible subgraphs (if any). The selected subgraph from the
primal EG is then inserted in the merged subgraph by
substituting the distal edge with two new edges. In order to
avoid introduction of undesired artefacts, only the shortest path
between the selected subgraph end points is actually added to
the merged subgraph. If needed, this procedure can be iterated
by searching for other small graphs to be inserted within the
two newly added long edges.

S3. Artefact removal algorithm

In this work, an algorithm is used for the removal of
skeletonization artefacts based on the identification, on each
crack, of the main crack path and its lateral branches. The
algorithm is implemented by a series of shortest path searches.
The polished crack EG is then built by assembling the located
main path with the lateral branches in decreasing size order
identified thereafter. The main advantages of this approach are
the elimination of every residual cycle in the EG (that, given
the specific samples investigated in this work, are all assumed
to be artefacts) and the identification of all significant crack
branches with contextual removal of small branches and
parasitic features generated in the skeletonization process
(pruning).

The main crack path of each crack subgraph (Figure S4a) is
located by finding the largest of all the shortest paths
connecting two end-vertices of the subgraph itself
(Figure S4b). The first (largest) secondary branch is identified
by evaluating all the shortest paths that depart from the
remaining end vertices and reach the main path, then selecting
the largest one (Figure S4c). Further branches can be identified
by iterating the latter procedure with the remaining unassigned
end vertices (Figure S4d—f). The procedure is terminated when
the obtained branch size is lower than a given minimum limit

; b ;7 © 7
/_/_AN_/_/ j>/
1 1

d) ;e ; ) 7
3 3 3 4
9 9 9
1 1 11 1 11

Figure S4. Artefact removal algorithm. A crack EG with 12 end vertices shows several skeletonization artefacts as parasitic small arms and cycles (a). The main
path of the crack is located on the EG seeking the most distant end vertices and computing the shortest path between them (b). Secondary branches are found
seeking shortest paths from the remaining end vertices to the already found path in decreasing size order until the minimum limit is reached, effectively removing

all artefacts (c—f).



or when no more unassigned end vertices are available on the
crack subgraph. The sub-EG obtained by adding all found
paths (Figure S4f) is therefore free from secondary branches
smaller than the minimum allowable size limit and it is also
free from cycles (Section S3.1). Moreover, the described
algorithm allows to build a hierarchy of lateral branches
ordered by size that can also be classified on the basis of their
branch connection (i.e. as secondary branch if connected to the
main path, as tertiary branch if connected to a secondary
branch, and so on). In this study, the size of the main and
secondary branches is defined as the path length (calculated as
sum of all edge lengths). All paths are then located by the
Dijkstra’s shortest path search algorithm (Section S3.1).
However, EG-based crack description allows to use other path
size definitions (e.g. the path vertices count), the final choice
depending mainly on analysis goals and computational cost.
Moreover, the use of EG path descriptions allows to implement
an effective optimization transforming the crack EG into an
equivalent, more compact representation based on weighted
graphs (Section S3.2).

S3.1 Shortest path search algorithm

The main crack and the lateral branch paths are computed with
the Dijkstra’s algorithm for shortest path search in weighted
graphs, where the edge weights are set according to the
Euclidean distances between its vertices. The main path is
located on the crack subgraph looking for the longest of all
shortest paths in the crack EG connecting two end-vertices.
This can be carried out by running the Dijkstra’s algorithm
from each end vertex (and also from vertices with degree >3 in
case that some branch ends in a small cycle instead of a
degree-1 vertex). The shortest path from an end vertex to the
located main path can then be evaluated by running the
Dijkstra’s algorithm from the end vertex itself until it reaches
a vertex belonging to the main path. The search for the first
lateral branch is performed by running this latter procedure
from all the remaining end vertices and selecting the longest
path found. The located lateral branch is then added to the main
path in the polished EG. All the remaining branches can be
later located in decreasing length order by iterating the search
process and adding each found path to the EG under
construction. The process is terminated when there are no more
unassigned end vertices available or the last obtained lateral
branch length is lower than the given minimum limit. If a
branch classification based on the branch degree is needed
(i.e. first order if main path, second order if branch attached to
the main path, third order if branch attached to a first order
branch and so on) this may be easily accomplished by labeling
each vertex, as soon as it is located, with its respective degree.
Notice that no cycles can be contained in the polished EG
because it is built starting from the main path (that is cycle-free
because is the result of a shortest path search) and adding all
the successive secondary branches (that are also cycle-free
because they are all shortest paths starting from end vertices).

83.2 Search with smaller weighted graph

The localization of the crack main path and the lateral branches
on the EG can be a computationally intensive task because
large crack subgraphs can have dozens or more end vertices. In
the present context, however, all searches start from and end in
branching or end vertices. An internal path of degree 2 (i.e.
constituted exclusively by vertices with degree 2) is therefore
always traversed by the search algorithm that never ends on
any of its vertices. It is thus possible to build a simplified
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Figure S5. Compact weighted graph for shortest path search in crack EGs. A
crack EG (a), here with all unitary length edges, can be replaced by an
equivalent weighted graph (b) where each internal path composed by degree 2
vertices (filled dots) is replaced by a single edge with weight equal to the sum
of all of its components. All vertices with degree other than 2 are preserved
(empty dots). For each pair of corresponding paths in (a) and (b) the length of
the former is equivalent to the path weight of the latter (e.g. the path between
the end vertices 4-C" in the weighted graph has a cumulative weight equal to
the length of the corresponding path 4—C in the EG).

weighted graph replacing each of these sub-paths with a single
edge, provided that its weight is the sum of all the lengths of
the replacing edges (Figure S5). All other edges in the
weighted graph are assigned a weight equivalent to the edge
length in the original EG. If two internal paths end in the same
pair of vertices, the weight corresponding to the shortest one is
applied to the single replacing edge (in more general contexts,
special cases like the latter must be however handled
specifically, see Figure S6).

The resulting compact weighted graph is equivalent, from the
search algorithm standpoint, to the original EG. This
conversion can be particularly valuable for crack EGs because
they consist mostly of quite long chains of degree-2 vertices,
thus resulting in a remarkable size reduction and,

consequently, in a shorter search time. After performing the
search on the compact graph, the complete path can be located
on the full crack EG by evaluating on it only the shortest path
between the two found end vertices.

Figure S6. Special cases in compact weighted graph generation from a generic EG (a), such as multiple internal paths ending in the same vertex pair (blue) or
cycles starting and ending in the same vertex (red), can be handled with a weighted multigraph representation (b) or by retaining selected degree-2 vertices (c). All
edges in the depicted EG have unitary length (a); numbers indicate edge weight (b, c).



S4. Crack correlation search algorithm

Possible correlations in contiguous cracks are seeked by using
a specific algorithm based on the relative orientation and
distance of their respective EG end parts (Figure S7).

Two cracks are considered part of a bigger crack if both
eligible end vertices fall within an acceptance region
(Figure S7b) computed from the complementary end vertex
and if the relative angle of the crack end directions falls within
a given acceptance window (Figure S7c¢). Eligible cracks are
quickly located with a preliminary proximity screening based
on rectangles encompassing all end vertices positions of each
crack EG representation. All end vertices of each eligible crack
pair are then evaluated against all end vertices of the
complementary crack. The crack end direction for the
evaluation of the acceptance region and the relative angle is
calculated with the linear fitting of vertices near the end vertex,
which can be easily obtained from the crack EG.
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Figure S7. Contiguous crack correlation. Two cracks (a) are considered parts
of a bigger crack if the end vertices of the two crack sub-EGs fall within the
complementary end vertex acceptance region (b) and the relative angle of the
terminal parts (c) is within an acceptance range. Direction of crack end is
computed with terminal path vertices (in red).

S5. EG-EG quantitative comparison algorithm

There are many reasons to compare different EGs, including
the quality evaluation of an acquisition process (by correlating
the resulting EG with a reference EG using suitable
performance metrics) and the assessment of crack time
evolution (by comparing EGs of the same crack acquired at
different times). Correlation may be established between two
crack EGs by determining the length of their respective
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Figure S8. EG-EG path comparison. A reference EG with a defined overlap
tolerance area (a). A sample EG (black) superimposed to the reference EG (b).
The part of the sample EG corresponding to the reference EG falls within the
overlap area while the non-matching part falls outside it (c). Sample EG with
path labeled as matching (blue) or non-matching (red) with some edges
partially attributed to both categories.
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matching path (i.e. the length of the path parts of each EG that
overlaps with the other, assuming that the spatial position of
both EGs vertices belongs to the same coordinate system). The
overlapping path is defined as the subpath of each EG that
whose distance from the path of the other EG is not greater
than a given tolerance (Figure S8). An overlap area can thus be
established for each EG within which a second EG can be
defined as overlapping (Figure S9a). It is worth noting that
with this definition some edges can be considered both
partially overlapping and partially non-overlapping. If the
maximum distance between each pair of connected vertices
(i.e. the maximum length for all EG edges) is significantly
smaller than the overlap tolerance, the overlap area can be
approximated by the union of points that are no farther than the
tolerance distance from at least one EG vertex. In this situation
the EG-EG correlation can be carried out (with reasonable
approximation) by direct comparison of the vertex positions of
each EG. If, however, there are edges with length comparable
to or greater than the overlap tolerance, these must be replaced
by a series of collinear connected nodes in order to fulfill the
above condition (Figures S9b—S9c). In this work, the
maximum allowable edge length is set to half the overlap
tolerance and each longer edge is subdivided into several
shorter ones. Therefore, assuming the aforementioned
conditions, in order to compare two crack EGs (EG, and EG,)
it is possible to use the following procedure, which must be
iterated for each vertex V in EG;:

1) The sum of the length of all edges connected to V is
computed.

2) Avertex V'is searched in EG, with V=V’ distance less than
or equal to the overlap tolerance.

3) If the vertex V' is found, the vertex ¥ on EG; is labeled as
overlapping and the half of the computed edge length sum
is added to the overlap accumulator.

4) If the vertex V" is not found, the vertex ¥ on EG; is labeled
as non-overlapping and the half of the computed edge
length sum is added to the non-overlap accumulator.

At the end of all iterations, the overlap accumulator contains
the estimated cumulative length of the parts of EG, path that
overlap with EG,, while the non-overlap accumulator contains
the estimated length of the remaining EG, path parts non-
overlapping with EG,. Moreover, all the vertices in EG, are
identified either as overlapping or as non-overlapping with
EG,. The procedure is then repeated by inverting the EGs in
order to find the parts of EG, that overlaps (or does not
overlap) with EG,. It is important to notice that the overlapping
parts of EG, and EG, can have (slightly) different length
because they are obtained from different EGs. In order to
perform a quality evaluation of a sample crack EG (EGg) using
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Figure S9. EG overlap area (blue) defined for a given tolerance (a). The union
of the circles centered on the EG nodes (red) with radius equal to the overlap
tolerance can effectively approximate the overlap area if the maximum edge
length is not longer than a fraction of the overlap tolerance. An EG with longer
edges (b) can be replaced with an equivalent EG (c) with additional nodes
(small dots) in order to ensure the correct maximum edge length (here depicted
as half of the overlap tolerance).



a reference ground truth EG (EGy), it is possible to define the
following quantities:

TP = (Og + Og)/2 (1)
FP = Ny ()
FN = Ny (3)

where Oy is the length of the EGg path that overlaps with EGy,
N is the length of the EGg path that does not overlap with EGg,
Oy is the length of the EGy path that overlaps with EGg, Ny, is
the length of the EGy path that does not overlap with EGg, TP
is the true positive (i.e. the length of the path correctly
identified by EGy), FP is the false positive (i.e. the length of
EGg path not corresponding to EGy) and FN is the false
negative (i.e. the length of EGy path that is not identified by
EGg). Here the TP value is calculated as the mean of the sample
and the reference overlapping paths.

With the TP, FP and FN defined above, several well-known
quality evaluation indicators can be computed based on the
matching EG path length instead of the typical segmentation
pixel count, including the following:

TP
P= (4)
TP + FP
TP
R=_—"—"1— (5)
TP+ FN
TP
oU=————— (6)
TP+ FP + FN
P R
Fl=2" (7)
P+R

where P is the precision, R is the recall (also known as
sensitivity), IoU is the intersection over union and F1 is the
F1-score (all dimensionless).

S6. EG smoothing algorithm

In this work, a simple iterative algorithm for EG smoothing is
implemented that acts on internal (degree 2) vertices, leaving
untouched all end vertices (degree 1) and all branching vertices
(degree >3). For each iteration, every internal vertex is
replaced by a new vertex placed in the midpoint between the
position of the vertex itself and the preceding one on the EG
path. Referring to the example given in Figure S10, the internal
vertex 2 (Figure S10a) is replaced (Figure S10b) by a new
vertex (2', red) positioned in the midpoint between vertex 2
and the preceding end vertex / (that is left untouched). Vertex
3 is replaced by a new vertex (3') placed in the midpoint
between vertices 2 and 3, and so on for all the remaining
internal vertices. A new vertex is then inserted in the midpoint
between the last internal vertex and the connected branching or
end vertex (6"). This process results in the first smoothing
iteration cycle, where all internal vertices are replaced and the
total EG vertex count is incremented by one (Figure S10c).
The same mechanism is applied to the second cycle
(Figure S10d), resulting in a new EG with one more vertex
(Figure S10e). The optimal number of cycles is determined by
the final application. The described procedure results in a new
EG with all branching and end vertices unmodified but all the
existing internal vertices are moved to new positions (and with
some new internal vertices added).
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Figure S10. EG smoothing algorithm. Internal vertices in initial EG (a) are
replaced by new vertices (red dots) located in the midpoint of each edge (b).
The resulting smoothed EG with one more internal vertex (c) is subjected to a
new iteration (d) giving a two-cycle-smoothed EG (e). In (f) the pristine EG
(black) and the two-cycle-smoothed EG (red) are compared.
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S7. Crack edge identification algorithm

The local crack width can be defined as the distance of the
intersection points between the crack edges and a given
measurement line. The latter can be either perpendicular to the
crack tangent in the width measurement point or, as in the
present work (Figure S11a), parallel to a given fixed direction
(the strain vector). The crack appears as a valley on the image
intensity profile computed along the measurement line (Figure
S11b). The crack edges can thus be found by locating the first
intersection (starting from the centre of the crack) of the image
intensity profile with an appropriate threshold value
(Figure Sllc).

The determination of the best threshold value for crack edge
estimation is thus a critical step for width measurement. In the
present study, the threshold value is computed locally for each
measurement line with the algorithm described below, aimed
at finding the relevant intensity values for both the deep crack
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Figure S11. Crack width determination. Crack image (a) with a measurement
line (4—-A’, white), a crack EG (orange) and two detected crack edges (yellow).
Intensity profile along the measurement line (b) with identified points for edge
threshold determination (min, max; and max,). Intensity profile (c) with crack
edge threshold and crack edge point determination (B and B’). The
measurement line depicted here is very short for the sake of clarity (typical
sampling point count is >200).



and the sample surface even in the presence of significant
surface texture. Firstly, a measurement line is established with
the center located on the EG path. Two boundary points are
then identified on the measurement line departing from its
central point (that is located inside the crack because it lies on
the intersection with the crack EG) and moving in both
directions until the sampled image intensity exceeds a specific
threshold value. The latter is defined as 75% of the median
intensity value of all sampled points (Figure S11b). Two
maximum intensity values max; and max, outside the
boundary points, are then located moving outwards until a
local intensity maximum is found (i.e. until the last value of
monotonic intensity increase). The minimum value min is
calculated as the minimum intensity value of sampled points
between the identified boundary points. The edge threshold
value #4 is finally calculated as the linear combination between
the minimum and the mean of the two maximum intensity
values found, as in the following:

max, + max,

th= (1-c,) min + ¢, 0<c, <1 ()

where c,, is the linear combination coefficient. The value for ¢,
in this study is 0.5 (i.e. at the midpoint between the minimum
and the mean of the maximum values). The two crack edges
are finally located by finding the first intersection of the
sampled intensity profile with ¢4, departing from the
measurement centre of the line (Figure S1lc). Thanks to this
procedure, no local maximum (value) is captured in the depth
of a large crack, where image noise can easily produce
spurious fluctuations. A distinct advantage is the possibility,
when required, to adjust the coefficient ¢, with a specific
calibration in order to improve the final measurement
precision. Width values obtained along the crack path can be
used to calculate the averaged crack width or to build the crack
width profile. Because the measurement line is arbitrary-
oriented, the related image intensity profile is determined by
calculating a series of sampling points along the measurement
line itself by interpolating the neighboring image pixel values.
The method used in this work is the bilinear interpolation of
the four pixels nearest to each sampling point.



