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ABSTRACT

Context. The mechanisms regulating the transport and energization of charged particles in space and astrophysical plasmas are still
debated. Plasma turbulence is known to be a powerful particle accelerator. Large-scale structures, including flux ropes and plasmoids,
may contribute to confining particles and lead to fast particle energization. These structures may also modify the properties of the
turbulent, nonlinear transfer across scales.
Aims. We aim to investigate how large-scale flux ropes are perturbed and, simultaneously, how they influence the nonlinear transfer
of turbulent energy toward smaller scales. We then intend to address how these structures affect particle transport and energization.
Methods. We adopted magnetohydrodynamic simulations perturbing a large-scale flux rope in solar-wind conditions and possibly
triggering turbulence. Then, we employed test-particle methods to investigate particle transport and energization in the perturbed flux
rope.
Results. The large-scale helical flux rope inhibits the turbulent cascade toward smaller scales, especially if the amplitude of the initial
perturbations is not large (∼5%). In this case, particle transport is inhibited inside the structure. Fast particle acceleration occurs in
association with phases of trapped motion within the large-scale flux rope.
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1. Introduction

Charged particles energized to extremely high energies are
ubiquitous in the Universe, as shown by direct observations
in the heliosphere (Reames 1999; Dresing et al. 2023) and
inferred from remote observations of far astrophysical sys-
tems (Lazarian et al. 2012; Amato & Casanova 2021; Cristofari
2021). Despite decades of research on the topic, starting from the
seminal works by Fermi (1949, 1954), the mechanisms respon-
sible for particle acceleration in nearly collisionless plasmas are
still elusive.

Among different fundamental processes leading to effi-
cient particle energization (Fisk & Gloeckler 2012; Retinò et al.
2022), large-scale plasma turbulence has been central in differ-
ent recent theoretical and numerical efforts (e.g., Lazarian et al.
2020, and references therein). In particular, intermittency
gives rise to inhomogeneous patches of coherent structures,
such as vortices, current sheets, plasmoids, and flux ropes,
across a vast range of spatial scales (Matthaeus et al. 2015;
Marino & Sorriso-Valvo 2023). In the solar wind, these locally
generated plasma structures, whose origin is possibly associ-
ated with magnetic reconnection, are often complemented by
structures of solar origin traveling in the heliosphere (e.g.,

Malandraki et al. 2019). As a matter of fact, flux-rope-like struc-
tures are routinely observed in the heliosphere at different dis-
tances from the Sun (Hu et al. 2014, 2018; Khabarova et al.
2021; Réville et al. 2022, and references therein).

A first interesting aspect concerns the dynamical evolution of
“meso-scale” structures observed at both large (fluid) and small
(kinetic) scales (Viall et al. 2021). How meso-scale structures
are affected by the turbulent background in which they travel
and, at the same time, mediate the cascade of turbulence toward
smaller scales is still a puzzle. Different studies, performed in
the context of solar coronal loops, investigated the propagation
of magnetohydrodynamics (MHD) waves and the onset of
instabilities in magnetic flux tubes. Emonet & Moreno-Insertis
(1998) explored the dynamics of twisted flux ropes in a stratified
medium, mimicking their emergence from the solar convection
zone, while Srivastava et al. (2010) reported the evidence of
kink instability in the context of a solar flare. The propagation
of kink and torsional Alfvén waves, relevant for coronal heating
through, for example, the resonant absorption or the gener-
ation of the Kelvin-Helmholtz instability at the boundary of
coronal loops, has been extensively investigated (Terradas et al.
2008; Antolin & Shibata 2010; Antolin et al. 2014, 2017;
Magyar et al. 2015; Karampelas et al. 2017; Howson et al. 2017).
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Within the context of coronal heating, a complementary and
widely investigated approach considers the evolution of per-
turbed coronal flux tubes leading to energy dissipation through
magnetic reconnection events, eventually enhanced by fluid-
scale instabilities (Einaudi & Velli 1994; Georgoulis et al. 1998;
Einaudi et al. 1996, 2021; Galsgaard & Nordlund 1996, 1997;
Gerrard & Hood 2003; Archontis & Hood 2013; Threlfall et al.
2021; Cozzo et al. 2023). More recently, Díaz-Suárez & Soler
(2021, 2022) described the transition from linear phase-mixing
to turbulence – mediated by Kelvin-Helmholtz instability
– in a coronal loop perturbed by torsional Alfvén waves.
Díaz-Suárez & Soler (2022) also examined the role of the twist
in the magnetic field structure of the coronal loops, finding
that the twist has a stabilizing effect on the Kelvin-Helmholtz
instability, thus preventing the transition to turbulent behavior.

A second challenging issue regards understanding how these
structures mediate the transport and energization of particles. In
the solar corona, flux ropes – often associated with solar flares
– are known to produce intense X-ray emission (Pinto et al.
2015, 2016), thus being potential sites of intense particle accel-
eration (Turkmani et al. 2005, 2006; Gordovskyy & Browning
2011). A different perspective highlights the role of large-
scale structures, of which flux ropes are a sub-ensemble, in
trapping particles. Trapped particles may be quickly ener-
gized, as shown in numerous numerical and theoretical efforts
that investigated the role of magnetic reconnection in gen-
erating islands and plasmoids whose merging or contrac-
tion leads to efficient particle energization (Drake et al. 2006;
Oka et al. 2010; Kowal et al. 2011, 2012; le Roux et al. 2015,
2018, 2019; Pezzi et al. 2021). The role of particle trapping has
also been explored in the context of magnetic discontinuities
(Malara et al. 2021) and switchbacks (Malara et al. 2023). More
generally, plasma turbulence produces coherent structures pos-
sibly trapping particles and leading to fast particle acceleration
(Dmitruk et al. 2003, 2004; Drake et al. 2006; Servidio et al.
2016; Pecora et al. 2018; Pisokas et al. 2018; Trotta et al. 2020;
Sioulas et al. 2020; Pezzi et al. 2022; Lemoine 2022). In this
case, the acceleration process is quite complex and character-
ized by the interplay between stochastic acceleration due to tur-
bulent MHD fluctuations and experienced by all the particles
and, possibly, fast and intense energization associated with trap-
ping and perceived by a relatively small number of particles
(Ambrosiano et al. 1988; Sioulas et al. 2020; Pezzi et al. 2022).
These extensive works have been complemented by observa-
tional analyses studying particle acceleration in small-scale flux
ropes (Khabarova et al. 2015, 2016) as well as large-scale flux-
tube structures (Pecora et al. 2021; McComas et al. 2023). In
particular, Pecora et al. (2021) confirmed that twisted flux tubes
are a transport barrier for energetic particles, which, as a result,
are confined within or at the boundary of the flux tube itself
(Tooprakai et al. 2007, 2016; Krittinatham & Ruffolo 2009). In
the context of particle acceleration at shocks, turbulent structures
have been found to be responsible for additional energization
due to their ability to trap particles and, more generally, influ-
ence their transport properties (Zank et al. 2015). This complex
picture about the interplay between shocks and turbulent struc-
tures has been emerging in recent theoretical (Zank et al. 2021),
numerical (Nakanotani et al. 2021; Trotta et al. 2022, 2023), and
observational (Kilpua et al. 2023) studies.

This work furthers the present understanding of the two
above discussions. In particular, we address (a) how plasma
turbulence is influenced and perturbs a large-scale flux rope
and (b) how the perturbed flux rope affects particle transport
and energization, using a combination of MHD and test-particle

simulations. The MHD approach is adopted to investigate the
development of plasma turbulence in the presence of a large-
scale flux rope, generated as a Grad–Shafranov equilibrium with
parameters in qualitative accordance with those observed in the
solar wind (Hu et al. 2018). Test-particle simulations are then
employed to study particle transport and energization in the per-
turbed flux rope.

By performing different runs in which the flux rope is per-
turbed with large-scale fluctuations whose initial energy is varied
within two orders of magnitude, we show that the turbulent cas-
cade within the flux rope is generally inhibited. As the amplitude
of initial perturbations increases, this effect vanishes as turbu-
lence dominates on the effect of the large-scale magnetic struc-
ture. Then, we investigate how the turbulent flux rope influences
particle transport and energization by performing test-particle
simulations under a stationary assumption. Our main findings
are that, in cases of small perturbation amplitude, particle trans-
port is inhibited within the structure that can entrap particles.
While trapped, particles can experience an efficient acceleration
due to intense electric fields.

The structure of the paper is the following. Section 2
describes the adopted numerical models and the setup of numer-
ical simulations. Section 3 discusses how turbulence affects the
flux rope and what differences arise in the turbulent cascade
inside or outside the structure. Section 4 analyzes how particle
transport and acceleration is influenced by the presence of the
flux rope. In Sect. 5, we conclude by summarizing our findings.

2. Numerical model and simulation setup

The numerical method adopted in the current work combines
a compressible MHD algorithm and a test-particle code. The
MHD code is exploited to perturb the initial equilibrium, which
is characterized by a flux rope built through the Grad–Shafranov
technique. Test-particle methods allow us to analyze particle
transport and acceleration in the perturbed turbulent flux rope.
We provide details about the numerical model and simulations
setup here.

2.1. Compressible MHD solver

The MHD code numerically integrates the three-dimensional
equations of the compressible magnetohydrodynamics that, in
normalized units, can be written as

∂ρ

∂t
= −∇ · (ρu), (1)

∂u

∂t
= − (u · ∇) u +

1
ρ

[(∇ × B) × B] −
β0

2ρ
∇(ρT ), (2)

∂B
∂t

= ∇ × (u × B) , (3)

∂T
∂t

= − (u · ∇) T − (γ − 1) (∇ · u) T, (4)

where (ρ, u,T, B)(x, t) are, respectively, the magnetofluid den-
sity, velocity, temperature, and the magnetic field, while γ = 5/3
is the adiabatic index. Equations (1)–(4) are normalized as fol-
lows. Lengths, times, and velocities are, respectively, scaled
to the energy-containing scale LA, Alfvén crossing time tA =

LA/vA, and Alfvén speed vA = B0/
√

4πρ0, evaluated with the
normalizing magnetic field B0 and density ρ0. The algorithm also
includes the Hall and electron pressure terms in the induction
equation for the magnetic field, which were turned off for this
study.
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Fig. 1. Overview of initial two-dimensional equilibrium, showing the
maps of the kinetic pressure P (top) and the out-of-plane potential vec-
tor az (bottom).

The normalized pressure is P = β0ρT/2, where β0 is the
kinetic-to-magnetic pressure ratio evaluated with the normal-
izing quantities n0, B0, and T0, that is, in cgs units β0 =
n0kBT0/(B2

0/8π). This ensures that normalized density and tem-
perature are on the order of ∼1, and, in normalized units, β =
P/(B2/2) = β0 · (ρT/B2). Hence, the effective plasma β can
actually change in the computational domain due to either non-
homogeneous equilibrium quantities or possible perturbations.
We here set B0 = 5 nT, n0 = 10 cm−3, LA = 5 × 103 km, and
T0 ' 1.4 × 105 K, thus providing vA ' 35 km s−1 and β0 = 2.

Equations (1)–(4) are integrated prescribing a logarithmic
regularization to the density ρ ≡ eg and solving the equivalent
equation for g with the purpose of better describing possible dis-
continuities and shocks. Moreover, we integrate the MHD equa-
tions for the magnetic potential a in place of the magnetic field
B = ∇ × a to guarantee ∇ · B = 0.

Magnetohydrodynamics equations are integrated on a tri-
periodic cube of size Lx = Ly = Lz = L = 2πLA, dis-
cretized with Nx = Ny = Nz = N = 512 grid points in
each direction. The algorithm adopts a pseudo-spectral method
(Canuto et al. 2006) based on fast Fourier transform (FFTW)
routines (Frigo 1999) to compute the right-hand side of MHD
equations. Hence, spatial derivatives are computed in the Fourier
space, while products between variables are calculated in phys-
ical space. Then, the time evolution is performed through a
second-order Runge-Kutta scheme. In order to ensure numer-

Fig. 2. Three-dimensional magnetic field lines of equilibrium flux-rope
structure. Lines are colored with the magnitude of the magnetic field
vorticity; i.e., the current density.

ical stability, we adopted the standard dealiasing procedure at
kalias = 2/3kmax (kmax = N/2) and implemented hyper-viscous
terms (∝∇4) in Eqs. (2)–(4), with the hyper-viscous coefficients
ν ' 10−8. Here, we exploited the “COmpressible Hall Magneto-
hydrodynamics simulations for Plasma Astrophysics” (COHMPA)
code (Vásconez et al. 2015; Perri et al. 2017; Pezzi et al. 2017),
which employs a domain-parallelization strategy based on the
MPI paradigm.

Magnetohydrodynamics simulations are initialized by per-
turbing a two-dimensional Grad–Shafranov equilibrium, which
produces a flux rope. The details of the Grad–Shafranov tech-
nique are reported in Appendix A. The initial condition is char-
acterized by a decrease of kinetic pressure P, and an increase
of the out-of-plane magnetic vector potential az inside the struc-
ture with respect to the surrounding environment, as shown in
Fig. 1. The flux-rope width is LFR ' 2 LA, while the scale asso-
ciated with flux-rope gradients is L∆ ' LA. As described in
Appendix A, the magnetic field associated with the magnetic
vector potential az has a dipolar structure in the plane, while its
z-component increases in the flux rope with respect to the exter-
nal region. Owing to the presence of a parallel component in
the equilibrium magnetic field, magnetic field lines twist along
the flux-rope axis. Such a behavior can be appreciated in Fig. 2,
which displays the magnetic field lines colored with the intensity
of the current density, j = ∇ × B.

This configuration is often observed in the solar wind,
although the solar wind exhibits a large variability in terms of
flux-rope parameters and overall configuration (Hu et al. 2018).
The plasma β changes from the external value of ∼1.5 to the
internal value of ∼0.3 (red line in Fig. 3), while the local density
of magnetic helicity hm = a · B increases in the structure (blue
line in Fig. 3).

The initial equilibrium is perturbed with large-scale fluctu-
ations of magnetic field δb and bulk speed δu such that Hc =
〈δu · δb〉 ' 0 and Hm = 〈δa · δb〉 ' 0, with δb = ∇ × δa.
These fluctuations have a fully three-dimensional polarization:
δbx ∼ δby ∼ δbz ∼ δbrms/

√
3. In the Fourier space, the energy

is injected in the 2k0 ≤ k ≤ 7k0 shells, where k0 = 2π/LA = 1
and k = (k2

x + k2
y + k2

z )1/2, with a flat energy spectrum. Table 1
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Fig. 3. One-dimensional profile of β (red) and density of magnetic helic-
ity hm (blue) along x, evaluated at y = Ly/2.

summarizes the most relevant numerical parameters of MHD
simulations.

2.2. Test-particle solver

The normalized motion equations of Np = 103 test protons of
mass mp and charge e, namely,

drp

dt
= up (5)

dpp

dt
= α

(
E + up × B

)
(6)

are here integrated numerically. In Eqs. (5) and (6) rp, up, and
pp = γpup are the particle position, velocity, and momentum,
while E and B are the electric and magnetic fields generated
through the MHD simulations. We assume stationary electro-
magnetic fields and consider a static snapshot of these fields
when the turbulence is most developed (t∗ in Table 1; see below).
Periodic boundary conditions are also imposed on particle tra-
jectories in each direction. Equations (5) and (6) are scaled
analogously to the MHD simulations. In particular, the Lorentz

factor is γ = 1/
√

1 − (βAvp)2, where βA = vA/c ' 10−4.
Equations (5) and (6) are integrated by adopting the relativis-
tic Boris method (Ripperda et al. 2018; Dundovic et al. 2020;
Pezzi et al. 2022). The electric and magnetic fields are inter-
polated at the particle position through a trilinear interpolation
method (Birdsall & Langdon 2004). The electric field in Eq. (6)
is the inductive one derived through Ohm’s law: E = −u×B. We
neglect the resistive electric field for two reasons. First, hyper-
viscous terms in MHD simulations, including hyper-resistivity,
are not intended to describe any physical effects, but only to
complement the dealiasing procedure in stabilizing numerical
simulations. Second, their characteristic scale is much smaller
than the minimum particle gyroradius adopted in test-particle
simulations, as discussed in the following.

The parameter α = tAΩ0, where Ω0 = eB0/mpc is the proton
cyclotron frequency, is related to the extension of the turbulent
inertial range, since it can be rewritten as α = LA/dp, where dp is
the proton skin depth of the background plasma (Dmitruk et al.
2004; González et al. 2016). At variance with Pezzi et al. (2022),
we here consider nonrelativistic particles, with an initial speed of
∼vA in a β ∼ 1 plasma. In this case, 1/α roughly corresponds to
the initial particle gyroradius in normalized units. To require that
the particle gyroradius is larger than the grid size – thus avoiding
spurious numerical effects – we are forced to artificially reduce

Table 1. Parameters of perturbations used in the MHD simulations.

RUN δbrms/B0 δvrms/vA ∆t/tA t∗/tA

A 0.05 0.05 10−3 40
B 0.11 0.11 10−3 16
C 0.23 0.23 10−3 10
D 0.5 0.5 10−3 3.5

α. Considering the above normalizing parameters, α ' 50; that
is, rg ' 0.02 LA ' 2∆x and speed vp ' vA. We anticipate that the
resonant wave number associated with the particle gyroradius
kLA = LA/rg = 50 is close to the end of the inertial-like range
of turbulence and larger than either dealiasing scale and dissi-
pative scales at which the resistive electric field is expected to
become significant. To double-check, we verified that our results
in terms of acceleration and transport do not change by including
the resistive electric field. We note that the value of the particle
gyroradius is limited by setting it to be larger than the grid size.
Other methods, for example those based on the stochastic dif-
ferential equations (Wijsen et al. 2022), allow to consider much
smaller Larmor radii with respect to the ones considered here
through the parametrization of the transport processes, that is,
by prescribing the particle diffusion coefficient a priori.

When decreasing α to feasible yet unrealistic values such that
rg,0 > ∆x, we kept fixed small scales (the ones related to parti-
cle motion) and we implicitly decreased LA and the turbulence
correlation length lc. From this perspective, the initial particle
energy is about a few eV, compatible with the thermal plasma
population at temperature T0. Moreover, all other parameters are
similar to solar-wind observations. Such a procedure has already
been adopted in the literature (see, e.g., González et al. 2016).
An alternative, not implemented here, would be to set LA to real-
istic values such that lc ' 5 × 106 km and then increase the
initial particle gyroradius to values that can be afforded with
simulations (i.e., α ' 50). In this case, one may reach rela-
tivistic energies, thus relaxing the constrain on α since for rel-
ativistic particles rg = 1/α is no longer valid (Pezzi et al. 2022).
Another alternative would consider relativistic electrons (see,
e.g., Trotta et al. 2020). In this case, the α factor should include
the mass ratio mp/me since MHD is normalized essentially to
protons, while test particles would be electrons. This issue is not
crucial for our study since particle transport and energization are
regulated by the relative values of the particle gyroradius rg, the
turbulent correlation length lc, and the flux-rope characteristic
scales LFR and L∆. The variability of these parameters, as well
as the different options for setting particle energy and species,
will be explored in a future work.

We performed test-particle simulations by considering differ-
ent kinds of spatial injections for better understanding the role of
the flux rope in particle transport and acceleration. In particular,
protons are injected: (i) homogeneously throughout the entire
three-dimensional computational box; (ii) inside the large-scale
flux rope, namely, on the vertical line at (x, y) = (π, π); and (iii)
outside the large-scale flux rope, which is on the surface of the
open cylinder centered at (π, π) of radius r = π. The first injec-
tion is useful to understand global transport properties, while
the second and third injections allow us to distinguish regions
inside and outside the structure, respectively. For all these differ-
ent cases, initial particle velocities are distributed uniformly on
the surface of a sphere of constant energy. The numerical time
step is always set to 1/20 of the initial gyroperiod.
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Fig. 4. Time evolution of 〈 j2〉(t) for different runs in Table 1. Vertical
dashed lines indicate the time instant t∗ at which, for each run, we per-
form the subsequent analyses on turbulence and particle transport.

3. Turbulence and intermittency in twisted flux
ropes

In this section, we discuss how turbulence shapes the flux rope
and the peculiarities in the energy transfer process directly
caused by this large scale structure. As a result of the underly-
ing nonlinearities, the energy of perturbations, initially confined
at small wave numbers, transfers toward higher wave numbers.
A standard proxy of this nonlinear transfer is the time evolu-
tion of 〈 j2〉(t), with 〈. . .〉 being the average over the computa-
tional box, which is displayed in Fig. 4. In all our numerical
experiments, 〈 j2〉(t) increases to reach a peak, corresponding to
the time instant at which turbulent activity is most intense, here
denoted with t∗. With the exception of Run B, where the peak
was not fully reached at the end of the run, the peak is then fol-
lowed by a decreasing phase related to numerical dissipation in
these MHD simulations. Hereafter, we focus on the analysis of
turbulence at the peak time instant t∗.

The distribution of current structures in the plane perpendic-
ular to the flux rope axis, (x, y, z = Lz/2), is depicted in Fig. 5
for the different runs in Table 1. As expected, the different color
bar in each panel indicates that stronger initial perturbations are
associated with more intense current structures.

For small initial perturbation (top left panel), the most
intense current structures are localized along the shear of the
flux rope. Erratic current sheets are also observed in the region
outside of the flux-rope structure. At the shear location, current
structures are circular arcs in the plane perpendicular to the flux-
rope axis. These structures, which may be due to phase-mixing
along the shear (Valentini et al. 2017; Maiorano et al. 2020), are
elongated in the direction of the flux rope axis. This behav-
ior, which is expected from fundamental MHD anisotropy argu-
ments (Shebalin et al. 1983), can be appreciated from Fig. 6,
where the current density maps in the plane parallel to the flux-
rope axis, (x, y = Ly/2, z), are displayed for RUN A (top) and
RUN D (bottom). Multiple anisotropies, induced by both the
mean large scale field and the radial magnetic shear, may also
arise.

As the level of fluctuations increases, the current structures
distribute randomly in the plane perpendicular to the flux rope,
resembling the patch of current structures in fully developed
homogeneous turbulence simulations (e.g., Servidio et al. 2011).
This feature is confirmed by inspecting the current density maps
in the plane parallel to the flux rope axis (Fig. 6, bottom panel).

Indeed, in RUN D, current sheets are not localized within the
flux-rope boundary and tend to permeate the entire computa-
tional plane, diffusing particularly outside the flux rope. This
suggests that the coupling with the flux-rope shear is less rele-
vant in the presence of strong fluctuations, which can self-couple
to generate homogeneous-like turbulence.

It is worth noticing that the core of the flux rope is a region of
relatively weak current structures. Such a feature is particularly
clear in the case of small initial perturbations. This suggests that,
far from the shear region, the flux rope inhibits the development
of turbulence, and remains – at least in its inner part – a quasi-
equilibrium structure. This behavior can be expected since the
flux rope is an MHD equilibrium characterized by a net magnetic
helicity, and nonlinear couplings are formally depleted inside it
(Servidio et al. 2008).

Being a quasi-equilibrium structure, the flux rope is not com-
pletely destroyed by fluctuations, even for the strongest perturba-
tion level analyzed here, and despite the presence of small-scale
current structures flowing into the entire computational domain.
As it can be easily appreciated in Fig. 7, which displays, for
RUN D, the two-dimensional contour plots of the temperature
in the plane perpendicular to the flux-rope axis, the flux rope is
still present with its cold core. The temperature pattern is highly
structured outside the flux rope, where warm blobs of plasma on
large scales are surrounded by regions with temperature varia-
tions at smaller scales, co-located with intense small-scale cur-
rent sheets (bottom right panel of Fig. 5). These regions also
show blobs of cold plasma, possibly transported by turbulent
fluctuations from the central part of the flux rope. Such transport
is suppressed in cases of weak perturbations (not shown here).

In order to obtain further insights about the nonlinear cou-
plings occurring in the system, Fig. 8 shows the magnetic energy
spectra as a function of the wave numbers perpendicular (top)
and parallel (bottom) to the flux-rope axis. Perpendicular spec-
tra, Eb(k⊥), are computed by averaging along the parallel direc-
tion and assuming isotropy in the perpendicular plane (i.e., sum-
ming the energy over circular shells in the k⊥ plane). Similarly,
parallel spectra Eb(k‖) are calculated by averaging along the two
perpendicular directions in the spectral space. Before computing
the magnetic energy spectra, we removed the initial equilibrium
magnetic field, whose gradients are nevertheless confined to low
wave numbers.

As a result of nonlinear couplings, the energy of fluctuations,
initially confined at large scales, spreads toward higher wave
numbers. The energy-containing scale of fluctuations, visually
estimated as the location of the spectral peak in Fig. 8, is roughly
lc ∼ 1−1.5 LA. Velocity spectra are similar to magnetic ones,
while compressive effects remain, on average, weak. The trans-
fer of turbulent fluctuations is anisotropic, and parallel spectra
are generally steeper than perpendicular ones. In the perpen-
dicular directions, a power-law spectrum, with a slope compat-
ible with the Kolmogorov prediction, is generated and extends
for about a decade (6 . k⊥ . 50). At higher wave numbers,
numerical dissipative effects steepen the spectrum. Interestingly,
such a Kolmogorov-like spectrum also forms when initial fluc-
tuations are weak and the nonlinear coupling is also affected by
the coupling of the perturbations and the flux-rope shears via, for
instance, phase-mixing.

We complement the above-discussed global spectral analy-
sis with a local analysis, based on the increments of the magnetic
field B and the flow speed u and aimed at highlighting differences
occurring in turbulent transfer inside and outside the flux rope.
Given the 2.5D configuration of the equilibrium flux rope (i.e.,
three-dimensional vectors depending only on two independent
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Fig. 5. Two-dimensional overviews of current density | j| in the plane (x, y, z = Lz/2) perpendicular to flux-rope axis, for the different runs in
Table 1 computed at t = t∗.

variables), and considering that the most intense nonlinear cou-
plings occur in the directions transverse to the flux-rope axis,
the following analysis has been carried out in the (x, y) plane.
In order to improve the statistics, we performed an ensemble
average over all the Nz = 512 planes perpendicular to the flux-
rope axis. For consistency with the magnetic energy spectra, we
removed the initial equilibrium structure. Starting from the entire
plane (x, y), we extracted four straight cuts of length L/2 = πLA
along the x and y directions. Two of them are centered in the
equilibrium structure and are representative of the inner part of
the flux rope. Another two are instead placed at the boundaries of
the simulation domain and probe the fields outside the flux rope.
On each of these cuts, we separately computed the longitudinal
increments of the magnetic field, flow speed, and Elsasser vari-
ables. Finally, the two sets of increments have been combined in
the analysis to improve the statistics.

We first calculated the structure functions of order q as
S (q)

r = 〈∆Bq
r 〉, where ∆B indicates the generic longitudinal incre-

ment of the magnetic field at the spatial scale r. The structure
functions are expected to grow as power laws of the increments’
scale separation (Frisch 1995). Due to the intermittent nature of
turbulence, which is characterized by intense inhomogeneities in
both space and time at different scales, the scaling exponents ζq

of the structure functions, S (q)
r ∼ rζq, exhibit an anomalous scal-

ing as a function of the order q, which deviates from the linear
trend predicted by globally self-similar theories of turbulence
(Kolmogorov 1941; Kraichnan 1965). Consequently, the flat-

ness of magnetic field increments, defined as F(r) ≡ S(4)
r /[S(2)

r ]2,
exhibits an increasing power-law trend from large to small scales
(Frisch 1995; Carbone & Sorriso-Valvo 2014).

The top panels of Fig. 9 display the flatness F(r) of the mag-
netic field increments as a function of the scale separation r,
obtained inside (red) and outside (blue) the flux rope for RUN A
(left) and RUN D (right). Outside the flux rope, F(r) exhibits a
similar power-law increase in the inertial range (r & 0.2−0.3 LA)
in both RUN A and RUN D. Inside the flux rope, the profile
of F(r) is similar to what was found outside the flux rope for
RUN D. In contrast, the flatness F(r) does not exhibit the typi-
cal power-law range in the inertial scales for RUN A. These fea-
tures suggest that the fluctuations are intermittent outside the flux
rope, with properties that are qualitatively independent of the
initial perturbation’s amplitude. On the other hand, similar inter-
mittency is only observed inside the flux rope for large amplitude
perturbations.

To further investigate this aspect, in the middle panels of
Fig. 9 we show the scaling exponents ζq as a function of the
order q, obtained inside (red) and outside (blue) the flux rope
for RUN A (left) and RUN D (right). Given the limited range of
scales of the simulation, we adopted the extended self-similarity
method (Benzi et al. 1993) for estimating scaling exponents
more reliably. In both RUN A and RUN D, the magnetic field
scaling exponents computed outside the flux rope (circles) devi-
ate from the linear scaling ζq ∼ hq, where h = ζ2/2 indicates the
Hurst exponent, predicted by assuming the global self-similarity
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Fig. 6. Two-dimensional overviews of current density | j| in the plane
(x, y = Ly/2, z) parallel to flux rope axis, for RUN A (top) and RUN D
(bottom) computed at t = t∗.

Fig. 7. Two-dimensional overview of temperature T at vertical position
z = Lz/2 for RUN D t = t∗.

(dotted lines in middle panels of Fig. 9). To reproduce the
observed anomalous scaling trend, we performed the best fit of
ζq(q) adopting the following expression obtained from the p-
model (Meneveau & Sreenivasan 1987) (solid lines in middle
panels of Fig. 9):

ζq = 1 − log2[phq + (1 − p)hq]. (7)
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Fig. 8. Magnetic energy spectra for different runs in Table 1 computed at
t = t∗. Top and bottom plots show the perpendicular and parallel spectra,
i.e., Eb(k⊥) and Eb(k‖), respectively. The dashed gray line shows the
Kolmogorov prediction, k−5/3

⊥ (Kolmogorov 1941), as a reference. The
vertical violet line indicates the resonant wave number associated with
the initial gyroradius rg,0 of test particles.

The parameter p of the model, which represents the weight of the
energy repartition in the multiplicative process used to mimic
the turbulent energy cascade, is p ' 0.82 in RUN A outside
the flux rope and p ' 0.78 in RUN D both outside and inside.
Such values indicate strong intermittency, larger than typically
observed in neutral flows (Meneveau & Sreenivasan 1987) and
roughly compatible with estimates in the solar wind (Carbone
1993; Sorriso-Valvo et al. 2018) and in the terrestrial magne-
tosheath (Yordanova et al. 2008; Quijia et al. 2021). Conversely,
for small initial perturbations (RUN A) the magnetic field’s scal-
ing exponents exhibit a quasi-linear scaling inside the flux rope.
A quasi-linear trend of this kind can be associated with the inter-
action between turbulence and large-scale gradients of the flux
rope, which in turn tend to inhibit the complete development of
turbulence for low amplitudes of perturbations. As the level of
initial perturbations increases (RUN D), the values obtained for
ζq inside the flux rope indeed reconcile with the one observed
outside in the case of strong initial perturbations.

Finally, we complemented the above framework focusing on
the properties of intermittency by assessing how the nonlinear
energy transfer typical of the inertial range of scales is influenced
by the presence of the large-scale flux rope. To this end, we use
the ensemble of cuts defined above to estimate the Politano-
Pouquet law for homogeneous, locally isotropic, incompress-
ible MHD turbulence (Politano & Pouquet 1998; Carbone et al.
2009). Defining Y± = 〈|∆z±|2∆z∓

‖
〉 as the mixed third-order struc-

ture functions of the Elsasser variables z± = u ± (4πρ)−1/2b, the
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Fig. 9. Local analysis of turbulent properties inside and outside the flux rope for RUN A and RUN D. Top: flatness F(r) of magnetic field increments
as a function of separation scale r for RUN A (left) and RUN D (right) and for data sampled inside (red) and outside (blue) the flux rope. Dotted
line is the reference Gaussian flatness value. Middle: scaling exponents ζq as function of order q for RUN A (left) and RUN D (right) evaluated
inside (red) and outside (blue) the flux rope for the magnetic field. Dotted lines represent the linear scaling, while solid lines indicate the p-model
best fit for each data sample. The Hurst exponents h = ζ2/2 are 0.42 (inside) and 0.35 (outside) for RUN A and 0.40 (inside) and 0.42 (outside) for
RUN D. Bottom: Politano-Pouquet’s term Y(r) as function of separation scale r, computed inside (red) and outside (blue) the flux rope for RUN A
(left) and RUN D (right). The dotted lines indicate the linear scaling. Filled circles correspond to −Y(r) and empty circles to Y(r).

Politano-Pouquet law predicts

Y(r) = Y+(r) + Y−(r) = −
4
3
εr, (8)

where ε indicates the total energy transfer rate of the turbulent
cascade.

The bottom panels of Fig. 9 show the terms −Y(r) (filled
circles) obtained for RUN A (left) and RUN D (right) and
computed inside (red) and outside (blue) the flux rope. When
−Y(r) exhibits a linear scaling, an energy transfer toward
smaller scales occurs. Figure 9 also presents the values obtained
for Y(r) (empty circles), which, conversely, can be associ-
ated with an inverse energy cascade (Sorriso-Valvo et al. 2007;
Marino & Sorriso-Valvo 2023). As illustrated in the bottom pan-
els of Fig. 9, outside the flux rope for RUN A and both out-
side and inside the flux rope for RUN D, a rather pronounced
linear regime tends to emerge in the inertial range, which is
indicative of the occurrence of a direct turbulent energy transfer.

In contrast, inside the flux rope for RUN A, Y(r) is always
positive, thus suggesting the absence of energy transfer toward
smaller scales. Moreover, no linear trends are observed in the
range of scales corresponding to the inertial range outside the
flux rope. Interestingly, when computing the Politano-Pouquet
law inside the flux rope, a characteristic scale emerges (r∗ ∼ LA),
at which the scaling law breaks down for both RUN A and
RUN D. This could highlight both the energy-containing scale
of turbulence, lc ' 1−1.5 LA, or the coupling of the fluctuations
with the gradients of the background equilibrium, whose typical
size is again L∆ ' LA. The inhomogeneous equilibrium flux rope
may indeed dynamically influence the properties of the nonlin-
ear energy transfer (Wan et al. 2009), and the simple removal of
the equilibrium structures before the statistical analysis does not
exclude its possible dynamical effects on the cascade. By exten-
sively testing different regions outside the flux rope, we finally
observed that subtle variations in the emergence of a stable lin-
ear scaling in the Politano-Pouquet law may occur (not shown).
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These issues may be related to both the limited scale separa-
tion between the large-scale equilibrium flux rope and the tur-
bulent fluctuations, and the limited box size, which influences
the length of the cut (here, on the order of some correlation
lengths).

To summarize this section, the analysis of intermittency and
energy transfer rate confirms that the flux rope generally inhibits
the nonlinear transfer of turbulent energy across scales when tur-
bulence is relatively weak. In this case, other processes, includ-
ing linear phase-mixing, are responsible for transferring energy
toward smaller scales in the shear region of the flux rope. Other-
wise, in regions outside the flux rope, as well as inside of it for
large amplitude perturbations, the turbulence exhibits consistent
statistical features in terms of scaling laws and energy transfer
rate.

4. Particle transport and energization in twisted flux
ropes

In this section, we explore how the presence of the turbulent flux
rope influences particle transport and acceleration. We focus on
test-particle simulations where the static electromagnetic fields
are selected from the MHD simulations at t = t∗. Assuming static
fields implies that the characteristic times of particle transport
and acceleration are smaller compared to the times responsible
for the formation and possible dissipation of the underlying flux
rope. However, as discussed in the following, our results indi-
cate that the diffusive and slowest acceleration times are actu-
ally ∼103 tA, while the perturbed flux rope has been generated
within a shorter time, that is, t∗ ∼ 50−100 tA. Such a finding
would suggest performing test-particle simulations in non-static
fields (González et al. 2017; Trotta & Burgess 2019). We leave
this aspect for future works and justify the static assumption as
follows.

First of all, as they are quasi-equilibrium structures, it is not
unreasonable to assume that flux ropes are long-lived structures,
capable of traveling in the solar wind over times much longer
than the standard energy transfer time of fully developed turbu-
lence, the latter being a rough estimate of the dynamical time
associated with the turbulent flux rope. Moreover, our simula-
tions are in decay, while in the solar wind one could imagine
a continuous injection of energy at large scales responsible for
generating perturbed flux ropes statistically similar to the one
adopted in our test-particle simulations. In such a case, even if
dissipated, these perturbed flux ropes may be quickly generated
again by plasma turbulence on short time scales; thus, they are
available to efficiently contribute to particle transport and accel-
eration. Finally, acceleration processes occur with different char-
acteristic timescales and the fast energization process, which is
relevant for efficiently energizing trapped particles, has a char-
acteristic time shorter than or comparable to the dynamical time
associated with the turbulent flux rope.

Our analysis begins by exploring the properties of par-
ticle transport in physical space. For each type of particle
injection as described in Sect. 2, we calculated the running
time diffusion coefficients along each direction as Drun

ii (∆t) =

〈(∆rp,i(∆t))2〉/2∆t, with ∆rp,i(∆t) being the particle displacement
along the ith direction (i = x, y, z) during a time interval of
∆t = t−t0 (t0 = 0), and 〈. . .〉 the average on the particle ensemble.
Figure 10 shows the time evolution of the running time diffusion
coefficients perpendicular and parallel to the background mag-
netic field (i.e., to the flux-rope axis), which are, respectively,
Drun
⊥ (∆t) = (Drun

xx (∆t) + Drun
yy (∆t))/2 and Drun

‖
(∆t) = Drun

zz (∆t).
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Fig. 10. Time evolution of parallel Drun
‖

(∆t) (dashed lines) and perpen-
dicular Drun

⊥ (∆t) (solid lines) running diffusion coefficients for RUN A
(top) and RUN D (bottom).

For simplicity, we focus on the two extreme perturbations lev-
els, RUN A (top) and RUN D (bottom).

On short time lags, ∆t, interesting differences arise in Drun
⊥

for small amplitudes of the initial perturbations (RUN A). When
injecting particles inside the flux rope (red lines in Fig. 10),
the perpendicular diffusion coefficient is significantly smaller
than the corresponding values achieved by injecting particles
throughout the entire box or outside the flux rope (blue and
green lines in Fig. 10). We interpret this behavior as a trapping
effect of the flux rope, hindering perpendicular diffusion. The
particle escape from the flux rope, where perpendicular diffu-
sion is restored, is probably due to the underlying acceleration
process occurring within the flux rope, which prevents trapping
after reaching sufficiently large particle gyroradii. As the time
lag ∆t increases, these differences disappear, and running diffu-
sion coefficients, which do not depend on the kind of particle
injection, tend to reach a diffusive plateau in all cases. Since
particles also continue to be stochastically accelerated on long
times, the running diffusion coefficients do not formally achieve
the diffusive plateau.

To highlight that particles are actually trapped within the
large-scale flux rope in the case of weak initial perturbations
(RUN A), Fig. 11 shows the particle density in the plane per-
pendicular to the flux rope axis for the injection inside (top) and
outside (center) the flux rope and throughout the entire box (bot-
tom). We selected the time instant t ' 1200 tA, which corre-
sponds to the phase in which the perpendicular running diffu-
sion coefficient is weaker when injecting particles inside the flux
rope. Figure 11 shows that, in the case of injection inside the
structure, particles condensate inside the flux rope, thus limiting
the perpendicular transport. Conversely, when injecting particles
outside the flux rope, particles preferentially stay outside the
structure, though some particles enter it. Finally, when injected
throughout the entire box, a combination of the two effects is
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Fig. 11. Particle density in perpendicular plane (x, y) averaged along
the z direction for RUN A and at the time t ' 1200 tA. Top, center, and
bottom plots refer to injecting particles inside and outside the flux rope
and randomly in the entire box, respectively.

observed with a roughly ergodic particle arrangement in space
and a region of higher density in the flux rope.

We now explore the properties of particle acceleration in the
perturbed flux rope. In particular, Fig. 12 displays the time evo-
lution of the average kinetic energy for the different injections
considered in this work for RUN A. We focus here on this low-
amplitude run, where the influence of the flux rope on particle
dynamics is the most significant.
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Fig. 12. Average kinetic energy as function of time for RUN A. The
inset shows, for the case of uniform injection, the time evolution of the
average perpendicular (dot-dashed) and parallel (dashed) energies. For
reference, we also report the average kinetic energy with a solid line.

When injecting particles outside the flux rope (blue line)
or in the entire computational domain (green line), the average
particle energization displays a linear growth, possibly charac-
terized by two distinct regimes: the first one, which occurs for
t . 3000 tA, being faster than the second. Conversely, when par-
ticles are released inside the flux rope, the average energization
is exponential in the first time window (t . 3000 tA), while later
it shows a linear trend with a slope similar to the one achieved
with the other kinds of particle injections in this late time range.

The energy corresponding to the change from the (fast) expo-
nential growth to the linear one in the case of particles injected
in the flux rope roughly corresponds to a particle gyroradius
rg ∼ L∆. Indeed, since rg,0 = 0.02 LA and vp,0 ' vA, the con-
dition rg ' L∆ ' LA yields v ' 50 vA or 〈v2〉 ' 2.5× 103 v2

A. This
suggests that the mechanisms responsible for the fast accelera-
tion preferentially observed when injecting particles inside the
flux rope are, on average, no longer efficient when rg > L∆.
These mechanisms could presumably be active at the flux-rope
boundary, (and, thus, they are maximized when injecting par-
ticles in the flux rope) and associated with particles trapped in
the magnetic structures and experiencing an intense electric field
therein, essentially due to gradients in the plasma bulk speed
(Pezzi et al. 2022). To support this interpretation, we verified
that RUN B is still characterized by a double regime of accel-
eration. Similarly to RUN A, the first phase of energization is
exponential and breaks at a value of the average particle energy
compatible with rg ' L∆. However, the acceleration is faster in
RUN B compared to RUN A. Hence, the characteristic accelera-
tion timescale decreases as the intensity of turbulence increases.
Given the presence of the equilibrium magnetic structure with no
bulk speed counterparts, the first-order electric field is E ∝ δvB0,
where δv is the bulk speed perturbation and B0 is the equilib-
rium, inhomogeneous magnetic field. This rough estimate of the
inductive electric field indicates that stronger turbulence is asso-
ciated with more intense electric fields that accelerate particles,
thus implying a faster (on average) process of energization.

When injecting particles outside the flux rope or throughout
the entire box, the average particle acceleration still exhibits a
double phase, which is characterized by a fast yet linear initial
acceleration. This indicates that fewer particles still experience
the electric field responsible for fast acceleration compared to the
case of injection inside the flux rope, thus implying the steepen-
ing of the average energization process. In other words, a particle
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Fig. 13. Perpendicular (top) and parallel (bottom) kinetic energy as
function of time averaged over the whole particle set (solid line) and
for individual particles (shaded lines) for the case of uniform injection.

injected outside the flux rope has a finite yet low probability of
entering the flux rope. We note that for stronger initial perturba-
tions (RUN C and RUN D, not shown) the energization is similar
for all the different injections. This confirms that the intense tur-
bulent fluctuations mask the effect of the large-scale flux rope in
accelerating particles.

Therefore, turbulent fluctuations have a threefold impact on
particle energization. They generally allow for particle accel-
eration since the background flux rope is purely magnetic (no
electric field). Below a certain threshold, turbulence tends to
decrease the characteristic times associated with fast exponential
acceleration of trapped particles. Above the threshold, turbulent
fluctuations mask the effect of the underlying flux rope, thus pro-
ducing a detrapping effect on particles possibly confined in the
flux rope.

We further elucidate how particles are accelerated in the sim-
ulations by looking at their perpendicular and parallel energies.
In the inset of Fig. 12, it is shown that the mean perpendicular
energy (dot-dashed line) is systematically larger than the parallel
one (dashed line). In this analysis, performed for the case of uni-
form injection in the simulation domain, parallel and perpendic-
ular velocities for each particle are computed with respect to the
local magnetic field, which has been interpolated along the parti-
cle trajectory. Other injections are in qualitative agreement with
what is reported in the inset of Fig. 12. At the beginning of the
simulation, 〈v2

⊥〉 = 2〈v2
‖
〉 as a result of the isotropic injection in

velocity space. Suddenly, and up to times of t ' 100 tA, the aver-
age perpendicular energy increases much faster than the parallel
one as a result of fast acceleration processes related to particle
trapping in the large-scale flux rope. This leads to a preferentially
perpendicular energization. For longer times, the average paral-
lel energy also increases for the underlying second-order process

still energizing particles. Finally, for times of t > 1000 tA the
isotropy of the velocity distribution is restored as 〈v2

⊥〉 ' 2〈v2
‖
〉.

We anticipate that trapping and fast perpendicular energization
are recovered in all the different regimes we identified in the
averaged energization process. However, at the beginning of the
simulation, fast acceleration occurs in an environment weakly
accelerated by slower processes, such as second-order ener-
gization, which eventually isotropize the velocity distribution.
Hence, the effect of trapping and consequent fast perpendic-
ular energization is much more visible in the initial phase of
the time history of the average kinetic energy. Such a result, in
agreement with previous studies elucidating the role of particle
trapping in turbulent structures in their subsequent acceleration
(e.g., Dmitruk et al. 2004; Dalena et al. 2014; Kowal et al. 2012;
Sioulas et al. 2020; Trotta et al. 2020; Li et al. 2021; Pezzi et al.
2022), was here tested in a simulation dominated by a single,
large-scale structure immersed in a turbulent background. It is
therefore extremely interesting to address the interplay between
particle trapping and energization in such a setting.

An important insight about the complexity of the energiza-
tion mechanism is revealed in Fig. 13, where for the case
of uniform injection we show the perpendicular and parallel
energy history for the average sample (solid lines) and the
same quantities for some individual particles (shaded lines) ran-
domly selected from the entire sample. A rather complex picture
emerges, characterized by intense burst of acceleration occurring
at different times for different particles.

To clarify such a behavior, particles showing the most intense
energization were selected, and their dynamics were studied in
detail. Episodes of rapid acceleration have been found to be
related to trapping in the turbulent flux rope. This is shown in
Fig. 14, where the energy time-history of a single particle under-
going strong acceleration is shown together with its parallel and
perpendicular energies (black, blue, and red lines, respectively).
It is interesting to note that this particle was trapped and then
escaped the structure to be trapped later in another event of fast
acceleration. This behavior, made possible here by the periodic-
ity of the simulation, elucidates the possible behavior whereby
particles undergo multiple trapping events at different structures.
Such a scenario, successfully invoked previously for multi-stage
particle acceleration in localized networks of acceleration cen-
ters (Arzner & Vlahos 2004; Vlahos et al. 2004; Dalena et al.
2014), will be investigated in future works involving more than
one flux rope with different sizes. Rapid acceleration is driven by
strong increases in perpendicular energy. Furthermore, trajectory
analysis shows that such strong energization happens when trap-
ping in the flux rope is active (Figs. 14b–d). Contrarily, when the
particle is not trapped, no strong energization is observed.

To conclude, we remark that trapping is a local-in-time pro-
cess with a rather fast timescale that is experienced by few par-
ticles and leads, preferentially, to a perpendicular energization
(Fig. 14). This effect tends to anisotropize the velocity distribu-
tion function of particles (see Dalena et al. 2014). In contrast,
both the diffusive (in space) transport due to the magnetic turbu-
lence and the diffusive (in energy) transport due to the underly-
ing second-order energization mechanism – these occurring on
much longer timescales compared to trapping-related phenom-
ena – make the distribution function isotropic, as we observe, at
later times, in Fig. 12.

5. Conclusions

Turbulence in space plasmas is known to be structured and
characterized by a cross-scale path of structures, which include
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Fig. 14. Energy time-history and position of one of the most accelerated particles in the simulations. (a): total (black), perpendicular (red), and
parallel (blue) energy for one of the most accelerated particles in the simulations. (b)–(d): particle position during the shaded times in (a) colored
by particle energy. In the background, the magnetic field magnitude is shown in gray scale for the z = Lbox/2 plane.

magnetic islands, plasmoids, and turbulent eddies (Servidio et al.
2009). In addition to the presence of these structures dynamically
generated by turbulence, meso-scale structures such as flux ropes
can also be of solar origin due to their association with coro-
nal mass ejections (see, e.g., Hu et al. 2018; Pecora et al. 2021;
Long et al. 2023). Although with different parameters, magnetic
flux ropes are observed in the solar corona and are expected to be
crucial for energizing particles (see, e.g., Antolin & Shibata 2010;
Pinto et al. 2015; Díaz-Suárez & Soler 2021). More generally, the
presence of magnetic islands and plasmoids allows for fast parti-
cle energization, as shown by several authors in rather different
contexts (Drake et al. 2006; Kowal et al. 2012; Trotta et al. 2020;
Pezzi et al. 2022).

There are a number of antecedents of the present work
that introduce some of the concepts advanced in the present
study; examples include: effects of trapping and escape
on transport (Tooprakai et al. 2007, 2016); particle exclusion
(Seripienlert et al. 2010; Pecora et al. 2021); multi-stage accel-
eration (Dalena et al. 2014); and the importance of trapping in
particle acceleration (Ambrosiano et al. 1988). In this work, we
further elaborated these concepts by addressing (i) how turbu-
lence perturbs – and is influenced by – a large-scale flux rope;
and (ii) how a large-scale flux rope impacts particle transport and
energization.

To this aim, by means of three-dimensional compress-
ible MHD simulations performed with the COmpressible Hall
Magnetohydrodynamics simulations for Plasma Astrophysics
(COHMPA) algorithm, we built a twisted flux rope with the
Grad–Shafranov technique, and we perturbed it with large-scale
fluctuations. Distinctive behaviors are observed in the cases of
small or large amplitudes of the initial perturbations. Indeed, as
fluctuations are small, the turbulent transfer toward small scales
is generally inhibited by the presence of the large-scale structure,
as evidenced by the scaling exponents ζq of the structure func-
tions. On the other hand, in the case of intense perturbations,

these mask the effect of the flux rope and scalings exponents
reconcile with intermittent turbulence expectations. Our results
complement the recent works by Díaz-Suárez & Soler (2021,
2022), obtained within the context of coronal loops, since we
characterize the properties of turbulent transfer inside and out-
side the large-scale flux rope in detail. Such a characterization
may drive further analyses aimed at characterizing the turbulent
transfer in flux ropes observed in situ.

Similarly, the flux rope is of key importance in regulating
particle transport and acceleration in the case in which it is
weakly affected by turbulence. In this case, particles can be
trapped by the large-scale structure that inhibits their transport
in the directions perpendicular to the flux-rope axis. Particles
injected inside the flux rope generally have a higher probability
of being trapped within the structure. There, they can undergo
episodes of intense and fast acceleration due to gradients in the
electric field, mainly resulting from the presence of gradients in
the plasma bulk speed. This finding supports the recent obser-
vations by Pezzi et al. (2022), where a few particles, trapped
in large-scale coherent structures, were experiencing fast and
exponential energization, while the bulk of the particles were
undergoing the standard second-order energization leading to
diffusion in energy space. Owing to the presence of the large-
scale flux rope, the setup adopted here maximizes the probability
that particles are trapped and then energized during this peculiar
stage of their motion.

We note that by focusing on the idealized case in which parti-
cles move in a fractal set of scattering centers and undergo purely
stochastic energization when they collide with these scattering
centers, Sioulas et al. (2020) also showed that particles – trapped
within regions where scattering centers concentrate – can then
be efficiently energized through a pile-up of several stochastic
energization events. Our results do not contradict observations
by Sioulas et al. (2020), and further studies should be performed
to compare these different methods, thus also contributing to
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elucidating (i) the basic mechanisms leading to fast particle
acceleration in turbulent plasmas and (ii) the regimes of appli-
cability of idealized energization models to turbulent environ-
ments.

This first study focused on a flux rope in solar-wind condi-
tions, though in this system flux ropes exhibit a large variability
of their fundamental parameters (Hu et al. 2018). However, the
above questions are rather general, and other scenarios, charac-
terized by different parameters, deserve careful treatment. As an
example, we mention the interesting cases of coronal loops or
flux ropes observed at different distances from the Sun. Again
under the guise of understanding the interaction of Alfvénic
wave packets (Moffatt 1969; Parker 1965; Pezzi et al. 2017), fur-
ther studies will focus on the collisions of magnetic flux ropes,
possibly orientated along different axes, as well as the dynamical
evolution of multiple flux tubes.

To conclude, in future works we will explore a broader set
of parameters by changing (i) the ratio of the turbulent corre-
lation length with respect to the flux-rope size, (ii) the ratio
of the flux-rope size and the particle gyroradius, and (iii) the
typical scale of the large-scale flux-rope gradients. We also
assumed that the turbulent flux rope achieves a stationary state
in which we performed test-particle simulations. As discussed
at length, it can be expected that flux ropes are long-lived struc-
tures that survive for several dynamical times. However, in the
future, we intend to perform simulations with non-static field.
Finally, future work may exploit a different numerical model in
which we do not impose periodic boundary conditions for the
direction parallel to the flux-rope axis (Galsgaard & Nordlund
1996, 1997; Gerrard & Hood 2003), as considering a tri-periodic
computational box influences both the dynamical evolution
of the flux tube and the properties of particle transport and
energization.
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Appendix A: Grad-Shafranov equilibria

The Grad–Shafranov equation is an equilibrium-equation of
ideal MHD capable of describing several configurations, includ-
ing the reversed field pinch in fusion devices or the solar promi-
nences. Assuming a static plasma in the absence of visco-
resistive forces, the momentum equation (normalized as in
Sect. 2) reads as

j × B = ∇P, (A.1)

where j = ∇ × B is the current density and P is the kinetic
pressure. Equation A.1 is solved by decomposing the magnetic
field via the Euler potentials and assuming a relation between the
poloidal and the toroidal fluxes:

B = Aψ ẑ + ∇ψ × ẑ. (A.2)

The toroidal flux is hence proportional to the stream function
ψ (A being constant, for simplicity), which in turn is a poloidal
flux.

Here, we focus on the 2.5D configuration. Aψ ≡ Aψ(x, y) is
the out-of-plane magnetic vector potential az, with ∇ ≡ (∂x, ∂y).
By substituting equation (A.2) in (A.1), one obtains the follow-
ing PDEs:

− ∂xψ
[
∂2

xxψ + ∂2
yyψ + A2ψ

]
= ∂xP, (A.3)

− ∂yψ
[
∂2

xxψ + ∂2
yyψ + A2ψ

]
= ∂yP. (A.4)

The term in the brackets is essentially the Helmholtz equation,
which is null in the case of force-free states. The main differ-
ence is that the GS equation keeps the parallel component of the
magnetic field. Hence, magnetic field lines characterized by heli-
coidal states are allowed. This new degree of freedom provides
a richer variety of solutions.

Equations (A.3–A.4) are solved for a given differentiable
stream function ψ to provide the kinetic pressure P. Indeed, these
equations correspond to a Poisson equation for P:

∇2P = G, (A.5)

where

G = ∂x

{
−∂xψ

[
∂2

xxψ + ∂2
yyψ + A2ψ

]}
+ ∂y

{
−∂yψ

[
∂2

xxψ + ∂2
yyψ + A2ψ

]}
.

(A.6)

With the purpose of localizing the magnetic flux in a particular
region of the computational domain, we build the flux ψ through
the Blackman-Nuttall window. In particular, we initially consid-
ered the following one-dimensional axisymmetric profile:

ψ(x, y) = ψ0+ψ1 cos(r−π)+ψ2 cos(2r−π)+ψ3 cos(3r−π), (A.7)

with ψ0 = 0.355768, ψ1 = −0.487396, ψ2 = 0.144232, and
ψ3 = −0.012604 being opportune coefficients that control the
amplitude and the shear layer width of the flux function, while
r = 1.4

√
(x − x0)2 + (y − y0)2 with x0 = y0 = π. Then, we renor-

malized ψ such that 〈ψ〉 = 1.0, while its amplitude is 0.4. More-
over, A = 1.4. Within these parameters, the resulting magnetic
vector potential is the one reported in Fig. 1 (right). The mag-
netic field associated with such a potential evaluated through
equation (A.2) is shown in Fig. A.1. The in-plane magnetic

Fig. A.1. Contour plots of equilibrium magnetic field. From top to bot-
tom: Bx, By, and Bz.

field components have a dipolar structure, while the (toroidal-
like) field, Bz, is much more intense. Given the stream function,
ψ, equation (A.5) is solved by exploiting the periodic bound-
ary conditions and setting the minimum pressure to the value
P0 = 0.5. Finally, by using the adiabatic closure for an ideal gas,
we can obtain the density ρ and pressure T .

The choice of ψ, A, P0 (as well as ρ0 and T0) is rather arbi-
trary. We selected the above parameters to achieve a configura-
tion qualitatively similar to in situ observations in the solar wind.
Different configurations will be considered in a separate work.
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