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ABSTRACT: The fabrication of enzyme-based biosensors has
received much attention for their selectivity and sensitivity. In
particular, laccase-based biosensors have attracted a lot of interest
for their capacity to detect highly toxic molecules in the
environment, becoming essential tools in the fields of white
biotechnology and green chemistry. The manufacturing of a new,
metal-free, laccase-based biosensor with unprecedented reuse and
storage capabilities has been achieved in this work through the
application of the electrospray deposition (ESD) methodology as
the enzyme immobilization technique. Electrospray ionization
(ESI) has been used for ambient soft-landing of laccase enzymes
on a carbon substrate, employing sustainable chemistry. This study
shows how the ESD technique can be successfully exploited for the
fabrication of a new promising environment-friendly electrochemical amperometric laccase-based biosensor, with storage capability
up to two months without any particular care and reuse performance up to 63 measurements on the same electrode just prepared
and 20 measurements on the one-year-old electrode subjected to redeposition. The laccase-based biosensor has been tested for
catechol detection in the linear range 2−100 μM, with a limit of detection of 1.7 μM, without interference from chrome, cadmium,
arsenic, and zinc and without any memory effects.
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■ INTRODUCTION

The fields of green chemistry and white biotechnology look at
biocatalysts as cutting-edge technology, thanks to their ability to
exploit the selectivity and low energy requirements of enzymes
to create nontoxic biosensing devices. In the construction of a
successful performing enzymatic biosensor, many fundamental
factors must be taken into consideration.1 Among them, the
choice of the correct immobilization method of the bioreceptor
on the surface of the transduction system is considered a crucial
one.2,3 The immobilization procedure must preserve the
maximum activity of the bioreceptor and improve the
performance of the device in terms of storage and reuse, the
latter being mandatory in order to reduce the pollution due to
disposable devices. The immobilization procedure is capable of
facilitating the recycling of enzymes, allowing a reduction in the
cost of the biosensor production process by up to 50%.4

An enzyme could undergo changes in its physical and
chemical properties upon immobilization, depending on the
choice of the immobilization method. Thus, the maintenance of
the catalytically active structure is a key factor to maximize the

stability and reactivity of the enzyme in its immobilized
state.5−10

Up to now, the two main strategies exploited to construct
highly sensitive laccase-based biosensors are the hard-working
covalent attachment of the bioreceptor on the surface and the
physical adsorption. In both the cases, poor results have been
achieved in terms of stability in time and storage, the latter
having the further drawback to be carried out at 4 °C.2,5

Here, we demonstrate how the use of the electrospray
deposition (ESD) technique to perform ambient soft-landing
immobilization can be employed for the production of a durable
and reusable low-cost laccase-based biosensor. The electrospray
ionization (ESI) technique11,12 has aroused considerable
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interest, thanks to its ability to generate sprays of charged
monodispersed nanoaggregates, which can be delivered to
surfaces with very low kinetic energies (soft-landing), producing
thin and uniform coating films of fine particles.13−16

The ESD technique is based on the use of a low-concentration
solution of the molecule of interest flowing in a small capillary
held at a high voltage (typically a few kV) with respect to a
grounded counter electrode a fewmm away.17,18 At the tip of the
emitter, the surface tension of the liquid competes with the effect
of the high electric field. When the latter balances the surface
tension, the so-called “Taylor cone” is formed. Inside the cone,
the Coulomb explosion creates a spray of charged droplets. The
size of the droplets, in some cases down to nanometers,
continues to decrease as the solvent evaporates and, at the end, a
gas of molecular ions is formed.19,20 This approach provides
effective deposition of the molecules that can also be carried out
at ambient pressure or in a controlled atmosphere, with a
significant reduction in the cost and time of the process
compared to those in vacuum techniques. Furthermore, the ESD
process that can be easily automated requires a very small
amount of material to be sprayed, making deposition possible in
safe, compact, and portable devices. ESD saw its first application
in nuclear physics to fabricate a thin layer of radioactive material
as a source of high-energy particles (α or β).12,21−23 Later, the
methodwas applied tomolecules, over a wide range of molecular
weights, for example, low-weight molecules, synthetic polymers,
proteins, and DNA.17,18,24−29 Thus, ESD has been employed in
the formation of layers of semiconductive ceramics such as
metal-oxide films,30 modification of silicon surfaces with layers
of silk-forming peptides to enhance the adhesion of living cells,
preparation of DNA and protein samples for scanning tunneling
microscopy,31 formation of protective polymer coatings on
electrode surfaces,25 as well as applications for biosensors and
biochips (e.g., protein-/DNA-microarray and microfluidic
devices),18,32 antifouling or biocompatible coatings for medical
devices, high-performance filter media,33 biomaterial scaffolds
for tissue engineering,34−36 nanotechnology, and nanoelec-
tronics.19 Moreover, the combination of high-flux ESI sources
with mass spectrometric selection in vacuum led to the
deposition of polyatomic ions with well-defined composition,
charge states, and kinetic energy to prepare controlled interfaces
for applications in energy storage, catalysis, soft materials, and
biology.15,37,38 Among all these applications, ESD has also been

used to prepare surfaces with ceramic, nanoparticles, or polymer
coatings designed to accept bioactive species or to inhibit
bacterial adhesion to enhance cell growth39 and to immobilize
proteins for in situ analysis with other techniques,35,40 as well as
to write two-dimensional (2D) metallic nanostructured patterns
for surface-enhanced Raman spectroscopy using silver nano-
particles.41,42

In this work, we demonstrate the feasibility of using the ESD
technique at room temperature and atmospheric pressure for the
direct soft-landing deposition of bioactive molecules on
unmodified commercial carbon screen-printed electrodes (C-
SPE) and describe all the steps needed to produce a coating of
bioactive species that can be used in the manufacturing of
electrochemical biosensors. The bioactive species chosen is the
laccase enzyme from Trametes Versicolor (EC 1.10.3.2), which
is considered the most suitable “green catalyst” enzyme
requiring only oxygen molecules as reactants and producing
only water molecules as byproducts.43 This enzyme belongs to
the oxidoreductase class of enzymes with the molecular weight
in the range 60−100 kDa, synthesized by plants, fungi, some
bacteria, and insects;44 thanks to its catalytic activity and the
wide range of substrates, it can be used in various fields of
industrial applications from bioremediation to environmental
and agri-food. However, as stated by Alvarado-Ramiŕez et al.2

“Despite all the advantages of using laccases, some disadvantages
include lack of long-term operation, stability, or inability to recover
the enzyme, making it impossible to use laccase at an industrial
scale”. This work paves the way to overcome these limitations by
employing soft-landing deposition as immobilization.
In 2020, Castrovilli et al.45 have presented a laccase-based

biosensor fabricated by the ESD set up using the procedures
described in detail for the first time here. This biosensor, which
uses a carbon black-modified electrode via drop-casting, shows
good anchorage stability of laccase and near 100% retention of
its performances up to 25 washes without any enzyme leaching.
In the following, we will present a new untreated laccase-based
carbon biosensor (eLac-C-SPE) that, reaching stability up to 63
washes (twice the washes of the previous biosensor45) and
demonstrating an unprecedented reuse feature, exceeds the
performances of the previous one and makes this new device a
low-cost, environment-friendly, and economically sustainable
option.

Figure 1. Schematic of the ESD setup and a picture of the Taylor cone generated during deposition (on the left); table of the voltages and geometric
parameters in the ESD process and an enlarged scheme of the deposition region (on the right).
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The retaining of enzyme activity after ESD immobilization, as
well as the analytical performances of the manufactured
biosensors in terms of working and storage stability, the limit
of detection, the linear range of the amperometric response,
repeatability, sensitivity, selectivity, and accuracy have been
demonstrated. The details of the studies to find the optimal
operative conditions to fabricate the biosensor are reported in
the Supporting Information.

■ MATERIALS AND METHODS
Chemicals and Instrumentation. Fungal laccase from Trametes

versicolor (TvL) (E.C. 1.10.3.2, activity: 0.5 U/mg), ethanol (99.8%),
methanol (99.8%), formic acid (95%), syringaldazine (98%), and
catechol (99%) were purchased from Sigma Aldrich (Merck Group)
and used as provided by the company. All the solutions were prepared
using double-distilled water (Milli-Q system, Millipore). The catechol
was used in 1 mM solution with citric acid/sodium citrate buffer 0.1 M
at pH 4.5 for amperometric measurements. The study of the percentage
of the organic solvent to be used for the spray solution has been
performed using a citric acid/sodium citrate buffer 0.1 M at pH 4.5,
following the syringaldazine assay. The electrochemical measurements
were performed using the portable potentiostatPalmSens4 (Palm
Instrument, TheNetherlands). The spectrophotometric measurements
were performed using a Jasco ultraviolet−visible (UV−vis) V660
double-beam spectrophotometer. The image of the deposit on the C-
SPE was acquired using the Olympus IX53 Microscope and the
Malvern Panalytical Morphologi 4-ID. The small-angle X-ray scattering
(SAXS) measurements were performed at SAXSLab Sapienza with a
Xeuss 2.0 Q-Xoom system (Xenocs SA, Sassenage, France) equipped
with amicrofocus GeniX 3DX-ray Cu source (λ = 1.5419 Å) and a two-
dimensional (2D) Pilatus3 R 300K detector placed at a variable
distance from the sample (Dectris Ltd., Baden, Switzerland). The
amount of laccase deposited was quantified using a custom quartz
crystal microbalance (QCM) manufactured at the Istituto di
Inquinamento Atmosferico (IIA) of the CNR, Area di Ricerca di
Roma 1 in Montelibretti (Rome, Italy).46,47 The screen-printed
electrodes used for the tests of deposition were the MetrohmDropSens
screen-printed carbon electrodes DRP-110 (C-SPEs) with carbon
working (4 mm diameter) and counter electrodes, and an Ag reference
electrode.
Electrospray Deposition Setup. The ESD setup is shown in

Figure 1, where the counter electrode (target) at ground is replaced by a
C-SPE.
The entire setup is located in a protected environment at ambient

pressure and temperature in order to avoid jet fluctuations. The stability
of the jet, illuminated by an LED, was monitored in real time during the
entire deposition by means of a 6 × 16 mm 10° monocular
(SPECWELL) coupled to a BRESSER MikrOkular Full HD digital
camera. The LED and the camera were positioned at right angle to
achieve the best contrast of the image of the cone, as shown in the inset
of Figure 1, in which the characteristic shape of the Taylor cone48 is
visible. The instrumentation consists of a Pump 11 Elite infusion
(Harvard Apparatus) equipped with a Hamilton syringe (250 μL total
volume), which is connected to a silica capillary (300 μm internal
diameter) ending with a steel needle (100 μm inner diameter), where a
high voltage is applied. Between the needle and the target, a focusing
electrode (cone) has been added. This electrode changes the spatial
electric field between the needle and the counter electrode and prevents
electric disturbances. It also improves the control of the deposition area
in the process.49

The alignment between the spray needle, the focusing cone
electrode, and the target is a crucial parameter in deposition. Moreover,
the distance between these three elements can be influenced by the
composition of sprayed solution.50 In the insets of Figure 1, a schematic
description with typical values of distances and applied voltages is
shown. Once the voltages were fixed, a series of focusing cones of
different shapes and sizes was tested in order to find the conditions for
continuous and uniform deposition over the entire area of the SPE
working electrode (see Table S1 in the Supporting Information). In

order to quantify the amount of enzymes deposited with the different
cones as a function of the deposition time and to connect these
quantities to the activity of the deposited laccase, these depositions
were carried out on a quartz microbalance. With respect to our previous
work,45 here, the choice of a focusing electrode with a larger inlet
diameter (Φ1 = 12 mm) and a shorter distance between the cone and
the needle (6 mm compared to 9 mm of the previous work) favors a
better definition of the spray and the formation of a more uniform layer
of laccase. The overall distance of the substrate from the needle is
shorter in this setup. This is about 13 mm because the commercial C-
SPE has a thickness of 1 mm. In the previous work,45 home-made
electrodes printed on a polyester sheet with a thickness of about 100 μm
were used. Moreover, the area of graphite deposition in the C-SPE is
larger (4 mm diameter) compared to the carbon black SPE (3 mm
diameter) and has to be considered more uniform. Indeed, the
manufacturing procedure of the home-made carbon black electrodes
involved the modification of the graphite surface by drop-casting a
solution of carbon black nanoparticles. As it is known,51 the drop-
casting procedure has no control in the shape of the film produced, and
this may have led to the formation of a coffee-ring of carbon black
nanoparticles, making the surface exposed to the deposit of the laccase
no longer uniform. The details of the studies performed to identify the
optimal deposition parameters are described in Section 1 of the
Supporting Information.

Laccase Preparation for Ambient Soft-Landing Immobiliza-
tion by Electrospray. The stock solution of laccase was prepared by
diluting Sigma-Merck-lyophilized laccase in 5 mL of MilliQ water to a
final concentration of 5 μg/μL and split into Eppendorf tubes
maintained at −18 °C. For the preparation of the working solution,
the stock solution was diluted to 2 μg/μL at 20% of methanol in water
(solution A in Table S2 of the Supporting Information). This procedure
avoids temperature degradation of the sample, and all tests use a fresh
solution of equal concentration. The steps followed to find this working
solution for the ESI spray and the best pH buffer for the amperometric
analysis are detailed in Section 2 and subsections 2.1 and 2.2 of the
Supporting Information.

SAXS Characterization of Laccase in Solution. Once the best
solvent composition to be sprayed was chosen, a SAXS characterization
of the enzyme dispersion in the solution was performed. The sample
was loaded in a thermalized vacuum-tight quartz capillary cell, and the
measurements were performed at 25 °C at three different sample-
detector distances, in order to record the sample scattering within the
scattering vector range of 0.005 < q < 1 Å−1 (q = 4πsin(θ)/λ, where 2θ is
the scattering angle). 2D scattering patterns were collected and
subtracted for the “dark” counts. The images were then masked,
azimuthally averaged, and normalized for the transmitted beam
intensity, exposure time, and subtended solid angle per pixel, using
the FoxtTrot software, version 3.4.9 (developed by Soleil Synchrotron
and Xenocs SAS). The results of subsequent 1800 s exposures were
averaged since superimposable. The one-dimensional intensity vs q
profiles were then subtracted for the contributions of the solvent and of
the capillary and put in absolute scale units (cm−1) by dividing for the
capillary thickness. Model-independent data interpretation and the
calculation of scattering profiles from atomic models were performed
using the tools of the ATSAS package,52 and additional fits with
analytical model intensities were obtained with the SasView software.53

Effect of the ESI Process. The effect of the ESI process on the
enzyme activity has been investigated by syringaldazine assay on laccase
dissolved after deposition.

A 2 μg/μL laccase solution with 20% of methanol was electrosprayed
for 30 min at 1 μL/min and deposited on an aluminum foil after
removing the focusing cone to avoid a partial loss of the sprayed
material on the walls of the cone. The laccase was then dissolved again
using 1350 μL of buffer solution and its activity compared with the one
of test tA (Table S2 of the Supporting Information) to determine the
amount of activity loss due to the electrospray process. The
measurement has been repeated three times. See Section 2.3 of the
Supporting Information.

Choice of Deposition Time and Focusing Cone. The
deposition time is strictly related to the amount of enzyme to be
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deposited on the electrode. For the purpose, the ability to control the
deposition area by focusing the spray via an additional electrode (Figure
1) and to assess the amount of enzymes deposited by means of a QCM
has been investigated.
Five conical electrodes of different heights and widths have been

prepared and tested. The diameter of the spot of the deposited material
in each geometry has been measured and reported asΦdeposit (Table S1
in the Supporting Information). The C1 cone with h = 6 mm, Φ1 = 12
mm,Φ2 = 6 mm, andΦdeposit = 4.5 mm has been chosen and used for all
the subsequent depositions. Then, the QCM has been used to measure
the amount of the deposited laccase for each deposition time,
correlating this quantity to the amperometric response of the electrode
(see Section 2.4 of the Supporting Information).
Electrochemical Characterization of the Electrosprayed

Laccase on Screen-Printed Carbon Electrodes. Electrochemical
experiments were carried out at room temperature by amperometric
analysis with an applied potential of −0.03 V vs Ag reference electrode
in a total volume of 100 μL, recording the current signals every 0.5 s.
The study of the laccase activity was performed using a 50 μM final
concentration of catechol and 0.1 M citric acid/sodium citrate buffer at
pH 4.5. The laccase mechanism for catechol detection is based on the
electrocatalysis of catechol oxidation to its corresponding 1,2
benzoquinone, which is coupled with the electrocatalytic reduction of
dioxygen to water on the working electrode surface. The biosensor
response was expressed as the difference between the analyte and the
background current signals. The depositions on C-SPEwere carried out
for a period of 30 min at a flow rate 1 μL/min, using the focusing cone
C1 and the solution A for the spray (Tables S1 and S2 in the Supporting
Information).
Catechol Detection in Real Water Samples. Three water

samples were tested: lake and well water from countryside north of
Rome (Lazio, Italy) and undrinkable tap water from CNR Research
Area of Roma 1. These samples were diluted 1:2 with 0.2 M buffer
solution of citric acid/sodium citrate at pH 4.5 and loaded onto the
sensor for the analysis, without any pretreatment.

■ RESULTS AND DISCUSSION
SAXS Characterization of Laccase in ESI Solution. The

SAXS profile of a freshly prepared dispersion of laccase 2 μg/μL
in a water−methanol mixture with 20% methanol volume
content (solution A) is shown in Figure 2a (black dots), together
with an additional profile collected on the aged suspension after
1 week (gray dots). The indirect Fourier transform method
applied to the data provided a pair distance distribution function
(Figure 2b), indicating that the dispersed enzyme particles have
overall a maximum size of 150 ± 10 Å and an average radius of
gyration Rg of 49 ± 3 Å. After 1 week, the SAXS intensity in the
very first points underwent a slight upturn, whereas the profile in

the higher q range slightly decreased, suggesting that the enzyme
particles underwent some aggregation with the formation of
larger clusters up to a maximum distance of 200 Å.
We first compared the collected data with the theoretical

SAXS profile calculated from the crystallographic structure of
the laccase from Trametes versicolor available in the Protein
Data Bank (PDB) entry 1GYC54 (orange solid lines in Figure 2).
This structure, which includes a total of six glycosylation sites
with three monosaccharide and three disaccharide units
covalently attached to Asn residues, would predict a much
smaller particle size with an Rg value of 22 Å and a maximum size
of 70 Å. This finding is not surprising, knowing that the active
laccase enzyme is found as a rather heterogeneous mixture of
variably glycosylated forms, an aspect that had hampered in the
past the production of crystals for structural studies.54 A model
with a higher degree of glycosylation was constructed from this
crystal structure using the appropriate tool of the ATSAS
package (glycosylation) and imposing eight known glycosyla-
tion sites according to the UniProt annotations,55 and using the
heaviest glycan chains available in the database, with a mass of
approximately 2000 Da per chain. The resulting model (purple
solid lines in Figure 2) would have an Rg value of 31 Å and a
maximum size of 110 Å, suggesting that the presence of relatively
long glycan chains attached at the enzyme glycosylation sites
could partially explain the larger dimensions obtained from the
SAXS data. The possible formation of protein−protein
oligomers could also be considered to account for the observed
average size. We notice that the experimental maximum distance
(150 Å) is roughly twice the calculated size from the PDB
structure (70 Å). However, there is an additional aspect deduced
from the scattering profile, which could not be described using a
static structural model, even with an increased size because of
glycosylation or dimerization. In the intermediate q range
(0.05−0.5 Å−1), the data showed a characteristic slope close to
q−2, which is characteristic of flexible polymeric chains, whereas
a compact globular protein would tend to the slope expected for
particles with a well-defined surface, according to the Porod law
(q−4) (black dotted lines in Figure 2a). This difference is
highlighted when plotting the data as I(q)·q2 vs q (“Kratky plot,”
Figure 2c), a representation in which the globular behavior is
associated with a bell-shaped profile, whereas a flexible chain-
like behavior is associated with a plateau or linear increase. The
SAXS data, therefore, suggest that a notable contribution to the
scattering is given by flexible chains, and indeed, the scattered

Figure 2. SAXS characterization of laccase in ESI solution: (a) experimental scattering profiles (dots) and model intensities. (b) Pair distance
distribution functions calculated from the scattering patterns shown in (a) by the application of the indirect Fourier transform. In the insets, the
structure of the atomic models (PDB entry 1GYC, orange frame, and a further glycosylated structural model, purple frame) considered for calculating
theoretical scattering profiles of laccase are shown in ribbon representation (protein chain) and as a sphere (glycan chains). (c) “Kratky plot”
representation of the scattering data and model intensities.
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intensity calculated from the analytical model for a random coil
with an Rg value of 47 Å can reasonably reproduce the data (blue
lines in Figure 2). This contribution could be probably related to
a soluble fraction of polysaccharide molecules that are present in
the enzyme product, either free or attached as glycan chains to
the enzyme, which could play an interesting role in the
formation of the stable layer in which the active enzyme is
immobilized on the sensor surface after ESI deposition, as
characterized in the following sections.
Effect of the ESI Process. The study of the effect of the ESI

process on laccase activity, described in detail in Section 2.3 of
the Supporting Information, shows a preserved activity of 70%
after deposition. This result demonstrates that, overall, the ESD
process performed with the described procedure is a promising
technique.
On the basis of the present and literature data, some

hypotheses can be put forward to explain the decrease in
activity. Modifications in the pH,56 solvent,57,58 and temper-
ature59 can affect the configuration of the proteins, with a
consequent alteration of the polar and nonpolar interactions that
stabilize the protein and can result in denaturation in the
solution phase. Even if correlations between charge-state
distributions and solution-phase structures have been found, it
cannot be proved rigorously that a gas-phase structure
corresponds to a solution-phase structure. Moreover, during

electrospray, the high potential of the needle can change the
solution-phase environment, somehow affecting both the
solution- and gas-phase structures. Then, in the gas phase, the
Coulomb forces between the adducted charges may become
much more important and modify the gas-phase structure.60

Malinowski and co-workers,61 using a soft plasma jet
deposition technique, found a decrease in the laccase activity
of 43.9 and 57% passing from 3 to 4 and 5 kV, respectively, and
attributed this to a change in the secondary structure induced by
the applied high voltage. In our case, when a voltage of 4.9 kV is
applied, the activity decreases by about 30%.
Because of high voltage, hydroxyl radicals (OH•) and H2O2

62

could be present in the nebulized solution, which trigger ion-/
radical-molecule reactions.63−68 It is known69,70 that such
radicals can react with amino acids such as cysteine, aromatic
rings of phenylaniline, tyrosine, and tryptophan, causing a
reduction in the alkaline phosphatase activity by the degradation
of the aromatic rings.71

Crystallographic studies of laccase show that the active center
contains histidine residues linked to the Cu atoms. The
consequent degradation of histidine imidazole rings, because
of the active species, may imply a lowering of the enzyme
activity. It may be possible that, in our conditions, ionization of
the air near the tip of the needle generates different species that
can interact with the enzymes. Takaj et al. in 201272 showed O3

Figure 3. Images of pristine (a) and modified (b) C-SPE working electrode. (a-1, a-2, a-3) and (b-1, b-2, b-3) are the magnification of the top, central,
and lateral parts of pristine and modified C-SPE working electrodes, respectively. (c) Amperometric measurements of the laccase−catechol system for
laccase deposited on C-SPE at different deposition times using solution A (Table S2), C1 cone, and the geometry reported in Figure 1. n = 4 for each
deposition time with buffer pH 4.5 and a catechol concentration of 50 μM.
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as the molecule responsible for the increase in the α-helix
substructure in lysozyme after plasma treatment.
To speculate on the possible mechanisms of biocoating

formation, we could assume the starting hypotheses of

Malinowski et al.61 that only external amino acids in the laccase
enzyme structure take part in cross-linking and bonding
reactions. This could allow the retention of the active center
structure of the molecule in its unchanged form. Nevertheless,

Figure 4. (a) eLac-C-SPE chronoamperogram at an applied potential of −0.03 V, showing the addition of increasing amounts of catechol and (b)
corresponding calibration plot. Number of repetitions is n = 4. Measurement volume: 100 μL, 0.1 M acid citric/sodium citrate buffer at pH 4.5.

Figure 5. (a) Working stability of eLac-C-SPE fresh-made (black) and redeposited after one-year (orange) electrodes. (b) Storage stability of eLac-C-
SPE. (c)Working stability of eLac-C-SPE fresh-made (black) and drop-casting (red) electrodes. (d)Working stability of the same eLac-C-SPE (black)
and drop-casting (red) tested in subsequent days. For all the measurements, the applied potential is−0.03 V. Measurement volume is 100 μL of 0.1 M
citric acid/sodium citrate buffer at pH 4.5 and 50 μMof catechol. Optical microscope image (Malvern Panalytical Morphologi 4-ID, magnification 2×)
of (e) drop-casting deposit and (f) ESD deposit on the working electrode.
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we cannot ignore the contribution to the cross-linking between
the laccase layers because of the polysaccharide chains found
through the SAXS analysis. Following the assumption of
Malinowski et al.,61 in addition, at the initial stage of deposition,
cross-linking between laccase molecules occurs through a radical
reaction, leading to amide bond formation. Continuing
deposition, the most external amino acid residues of the enzyme
could be responsible for the creation of amide bonds between
amine and carboxyl groups of the amino acids of different
monomers and layers, resulting in cross-linking between the
layers leading to a final amorphous film. The good robustness in
working stability could be ascribed to the removal, wash after
wash, of the outermost layers of the deposit, which leaves active
layers of laccase at each reuse.
Study of Deposition Time. The images in Figure 3 show

how using the focusing cone C1 and the parameters described in
Figure 1, the diameter of the spot precisely fits the diameter of
the working electrode and, at a first sight, it seems quite uniform.
The results of the study reported in Figure S5 of the

Supporting Information highlight that a constant deposition rate
is maintained over time. The time of deposition directly
determines not only the amount of the deposited laccase on the
sensor, but also the interaction time of the deposited laccase
molecules with active species present in the incoming spray.
However, the amperometric measurements (Figure 3c) of the
laccase activity on the electrode at increasing deposition times
show that the mean current reaches a plateau value of 0.30 ±
0.02 μA in about 15 min and then it varies no more. This result
may be due to (i) the molecular damage and deactivation of
previously deposited laccase through bombardment by active
species such as ions, radicals, and molecular fragments73 and/or
(ii) the degree of laccase cross-linking in the deeper layers that
hamper both the approach to the active site by catechol and the
reaching of the working electrode surface by benzoquinone.
From the results in Figure 3c, we can assert that once the
maximum performance of the eLac-C-SPE is reached, the
laccase subsequently deposited does not significantly influence
the performance of the device in terms of the amperometric
response.
Analytical Features. The detection capability of the eLac-

C-SPEs has been tested toward catechol. The amperometric
measurements have been performed at an applied potential of
−0.03 V by dropping 100 μL of 0.1 M citric acid/sodium citrate
buffer pH 4.5 on an SPE and incrementally adding increasing
concentrations of catechol in the range from 2 to 100 μM,
recording the current signals every 0.1 s. The chronoampero-
gram at increasing catechol concentrations is reported in Figure
4a. The current signal increases linearly with the catechol
concentration, as described in Figure 4b, in which each
measurement has been repeated four times on different
electrodes produced in various batches. The average current
value and the standard deviation of these measurements are
reported vs catechol concentration in Figure 4b.
The calibration curve is given by y = 4.30 (±1.40) + 5.56

(±0.06)x, with an R2 = 0.998, where y is the measured current in
nA, and x is the concentration in μM. The calibration curve
returns a limit of detection, equal to 1.70 ± 0.05 μM, defined as
3.3s/S, where s is the standard deviation of the amperometric
signals for three different measurements at the 5 μM
concentration on the same electrode, and S is the slope of the
calibration curve.74

Working and Storage Stability Studies. The operational
stability of the eLac-C-SPEs has been investigated by repeating

amperometric measurements on the same electrode in the
presence of 50 μM catechol and alternating washes with 0.1 M
citric acid/sodium citrate buffer at pH 4.5 between tests to check
for enzyme leaching. The results shown in Figure 5a
demonstrate a near 100% retainment of the activity up to 63
consecutive measurements within the statistical error, with a
progressive decrease in the current signal to about 53% in 100
measurements. This gradual decrease in the current signal may
be ascribed to the enzyme leaching out of the electrode. The
present sensor exceeded the working stability achieved with the
previous carbon black-modified sensors,45 which showed a
resistance up to 25 washes. This result can be ascribed to a more
uniform graphite surface on which the laccase is deposited
compared to electrodes modified with carbon black nano-
particles by drop-casting, the latter resulting in the coffee-ring
shape51 of the carbon black deposited on the graphite.
Moreover, the laccase probably binds differently on the two
substrates. Furthermore, after many washes, the removal of the
carbon black, if not strongly bonded on the graphite, leads to a
removal of the laccase layer deposited on it with a consequent
reduction in performance. The absence of carbon black
nanoparticles as well as any metallic nanostructure75 makes
this new biosensor much more suitable for green disposal.
Another outstanding result concerns the tests of working
stability performed on reconditioned one-year-old electrodes to
demonstrate the recycling nature of the new fabricated
biosensor. For this test, a batch of three electrodes has been
modified with electrosprayed laccase and put in storage for 1
year at ambient pressure and temperature remaining exposed to
ambient light. After 1 year, the three electrodes have been
subjected to another process of laccase deposition through ESI
and then tested for working stability. The results shown by the
orange dots in Figure 5a demonstrate maintenance of the
activity toward the catechol detection at the same level as the
fresh-made electrode up to a maximum of 20 measurements on
the same electrode. After that, a gradual decrease up to 53% in
activity is reached in 50 measurements. These results are
extremely important in the perspective of the production of
reusable and “environment-friendly” sensors, which ensure the
reduction in pollution because of disposable sensors and
guarantee the prolonged reuse over time of the same batch of
sensors if they have not been used. Indeed, one may envisage
that a producer of these types of biosensors could withdraw the
product after 1 year from the production and subject it to
another ESD process, putting it back on the market with
comparable performance as it was just produced, with the aim of
reducing pollution from disposable devices.
To evaluate the storage stability, eLac-C-SPEs deposited from

different batches were preserved at room temperature and
ambient pressure and light, and tested after a variable time from
a few days to 2months, with a solution of 50 μMcatechol in a 0.1
M citric acid/sodium citrate buffer at pH 4.5 (Figure 5b). Each
measurement was repeated three times. The results show
excellent storage and photostability up to 2 months, achieved
without any particular care in the storage of the electrodes.
To highlight the performance of the eLac-C-SPEs sensors, we

compare the working stability with electrodes modified by drop-
casting with the same quantities of the laccase enzyme (see
Figure 5e, f). The measurements are performed on a batch of
three electrodes modified using the drop-casting technique.
As shown in Figure 5c, even if the amperometric initial value

of the SPEs modified using the drop-casting technique is higher
compared to the one obtained by ESD, the stability along
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repeated washes is dramatically worse. The drop-casting SPEs
lose the 78% of activity after almost 20 consecutive washes.
To compare these two different immobilization techniques,

further measurements were carried out on consecutive days. In
Figure 5d is shown the result obtained by carrying out one
measurement per day on the same type of electrode modified
through either ESD or drop-casting. The plotted value is the
average of three measurements on three different electrodes for
the two types of immobilization techniques performed once a
day against 50 μMcatechol in a volume of 100 μL of buffer at pH
4.5. It is clear that the drop-casting electrodes halve the activity
already on the third day, while the ESD ones keep their activity
unchanged until the seventh day. This may be ascribed to a
weaker anchoring of the enzyme during adsorption by drop-
casting than in the immobilization by ESD. The leaching of the
enzyme is immediate and evident already on the second day on
the drop-casting SPEs, while the ESD sensors are stable and can
be reused the following days as if they were just manufactured. In
other words, Figure 5d shows that the ESD sensor, after being
used, can be left in the air for 24 h and gives the same signal of
current, if reused the next day.
Interferences Study and the Matrix Effect. Laccase

biosensors can suffer from interferents and/or electroactive
species present in natural environmental samples of catechol
contamination. Among the possible interferents present in real
matrices as tap and surface waters as well as in well water, heavy
metals were considered. In particular, the following limits of
interfering species were tested: cadmium 5 μg/L, chrome 0.05
mg/L, arsenic 0.01 mg/L, and zinc 3 μg/L. These concen-
trations did not provide any significant response with respect to
a corresponding catechol signal of 50 μM, both if added before
and together with the catechol (Figure 6a). In the
chronoamperogram, the measurement of 50 μM catechol
performed between two consecutive measurements of interfer-
ence, respectively, added before or together with the catechol
shows that the sensor has nomemory effect and is not affected in
any measure by the presence of the metal ion (Figure 6a). With
the aim to challenge the implemented biosensor in real samples,
eLac-C-SPEs were tested by the analysis of 50 μM catechol in
undrinkable tap water, lake, and well water (diluted 1:2 with 0.2
M sodium citrate buffer pH 4.5) using the standard addition
method and the calibration curve from catechol standard
solutions. As reported in Figure 6b, the obtained results confirm
the absence of any matrix effect for tap water with slope ratios
between the standard solution and real samples of 0.93. Even if
lake water shows a slope equal to that of the standard solution,

the higher current values can be probably attributed to other
laccase substrates that are present in the sample and require
further investigation. In the case of well water, the slope clearly
differs from that of the standard solution, highlighting an
interference behavior physically different from that of the lake
water.
To test the possibility of using the same biosensor again in

different matrices, the memory effect was analyzed using the
sensor for the sequential analysis of the following samples: the
lake water sample diluted 1:2 with 0.2 M sodium citrate buffer
pH 4.5 and indicated as L + B in Figure 6c, then buffer solution
(indicated as B), catechol, and finally L + B again. Figure 6c
shows that the same value of current for L + B is reached after the
removal of the buffer and catechol solution. This proves that the
sensor can be reused several times by changing the matrix and
always obtaining the same value of current, that is, it is not
affected by the memory effect. As it is shown in the inset of
Figure 6c, the lake water sample diluted or not with buffer gives
the same current value, making the eLac-C-SPEs effectively
usable in the real lake sample after calibration. Moreover, the
sequential amperometric measurements of 25 μM catechol in
100 μL of B only or L + B on the same eLac-C-SPEs return the
same values given in Figure 6b within the experimental
uncertainty. This definitely proves that no memory effect exists.

■ CONCLUSIONS
This study presents a low-cost, environment-friendly, efficient,
and successful method for the construction of an electro-
chemical amperometric biosensor through the direct soft
landing deposition of bioactive enzymes on the surface of C-
SPE by ESD. The technique has been tested to fabricate a sensor
based on the laccase enzyme fromTrametes Versicolor. Laccase-
based biosensors find applications in numerous fields like agri-
food, pharmaceutical industry, environmental science for
pollution monitoring, and environmental remediation. Thus,
the development of a smart technique for the immobilization of
this enzyme and for manufacturing reliable, reproducible, and
portable sensors is paramount.
The ESD immobilization technique presented in this work is a

one-step, environment-friendly method, allowing for the
deposition of the biorecognition layer without using any
additional chemicals (apart from a small amount of methyl
alcohol easily replaceable with ethanol). The optimization of the
deposition time, the solution to be sprayed, and the focusing
geometry confirmed the importance of these parameters in
determining the linearity, sensitivity, and signal stability of the

Figure 6. (a) Interferent study. The dashed line indicates the time at which the interferer was added. The times indicated as 2, 3, and 4 correspond to
the addition of catechol 50 μM, catechol 50 μM, and catechol 50 μM+ interference. For each of the consecutivemeasurements for the same interferent,
the volume was 100 μL of 0.1 M sodium citrate buffer pH 4.5, (b) eLac-C-SPEs matrix effect. Applied potential−0.03 V, n = 3. Measurement volume:
100 μL. (c) Chronoamperogram of the eLac-C-SPE recorder for sequential additions of the lake water sample diluted (L + B) and not (L), buffer
solution (B) and catechol 25 μM.
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biosensors. The results indicate an optimal deposition time of 15
min and the best-performing solution as the one with 20%
methanol content. They also prove that the spot size of the
deposit can be controlled using a focusing electrode to achieve
the best fit of the deposited film to the working electrode area.
The most relevant result is the great performance in terms of

reuse and storage. In particular, the possibility of reusing the
just-made sensor 63 times consecutively and a one-year-old
sensor subjected to redeposition for 20 consecutive times
underlines the good anchoring of the enzyme, thanks to the ESD
immobilization technique. This result is confirmed by the
comparison with the drop-casting technique that fails to
compete in terms of working stability.
The absence of additional chemicals during the immobiliza-

tion phase and the peculiar performances in terms of reuse, time
stability, and reconditioning of the sensor make both the process
and the final product “environmental-f riendly and sustainable.”
This ESD procedure can be extended to other types of

enzymes or bioactive macromolecules with physicochemical
characteristics suitable for a system based on electrochemical
transduction. Therefore, it can find interesting and successful
applications in biotechnology and bioengineering.
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