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Supplementary Figure 1. Large particle dynamics as obtained in simulations Collective intermediate
scattering functions f(q,∆t) at qσl ∼ 3.5 for (a) δ = 0.35, and different φ (as indicated) and (b) for φ = 0.62 and
different δ (as indicated) (c) MSD for φ = 0.62 and different δ (as indicated).
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Supplementary Figure 2. Small particle dynamics in an immobile matrix (a) Collective (full curve), self

(dashed curve) and scaled f̂(q,∆t) (see text, circles) intermediate scattering functions for φ = 0.62, δ = 0.25 and

qσl ' 4.3 in log-log plot; (b) collective (full curve), self (dashed curve) and scaled f̂(q,∆t) (symbols) for φ = 0.62 and
δ = 0.25, qσl ' 4.3 (black), δ = 0.30, qσl ' 3.7 (red) in semi-log plot; (c) Same data as in Fig.2h of the manuscript,
but in log-log scale instead of semi-log scale: collective correlators for φ = 0.62 for various wavevectors.

Supplementary Notes

Supplementary Note 1: Large particle dynamics

The small particle dynamics display a dramatic change of behaviour at the critical size ratio, which can be asso-
ciated with changes in the mechanism of arrest and the transition from caging at large δ to localisation at small δ,
related to the decoupling of the dynamics of the two species. On the other hand the arrest mechanism of the large
particles, caging by other large particles, is not significantly affected by the presence of the small fraction, xs = 0.01,
of small particles, irrespective of size ratio. As an example, Supplementary Fig.1(a) shows that large particles at
δc = 0.35, where the small particles show anomalous dynamics, approach a standard glass transition upon increasing
φ, characterised by a typical two-step decay. Furthermore, Supplementary Fig.1(b) and (c) show that, upon changing
δ, the localisation length, i.e. the cage size, does not change significantly, as evident from the plateau height of both
the MSDs (∼ 0.1σ2

l ) and the density correlators. The cage though becomes more mobile with decreasing δ, as shown
by the faster dynamics at long times, indicating an interesting coupling between the increased mobility of the small
and large particles with decreasing δ. This coupling might be related to the fact that at small δ the small particles
do not hinder the large particle movements due to their small size and large mobility.

Supplementary Note 2: Frozen vs. mobile matrix of large particles

Here we want to compare simulations of a fully mobile binary mixture of hard spheres and one where the large
particles are immobile. For the latter situation, quantitatively accurate results can only be obtained when one considers
a large system size and also performs an average over several matrix realizations, as done in previous works [2, 3, 4].
However, our aim is only to provide a qualitative comparison with the mobile case, for which our approach, based
on a single realization for a system size of O(103) particles, is sufficient, as indicated by the fact that the MSD for
the immobile matrix case reported in Fig.5(a) displays a qualitative behavior which is compatible with that of the
Lorentz gas[4].
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Fig. 5(c) of the main article shows that the small particle self correlators for the immobile matrix case display (at
intermediate time) a power-law behavior. It is to be noted that these correlators, even below the critical size ratio
∼ 0.3, display a long-time finite value, i.e. a residual non-ergodicity. Indeed, different from studies on the Lorentz gas
[5], we include among the intruders small particles trapped in finite size voids, i.e. not pertaining to the percolating
cluster of voids, to make the analogy with the fully mobile case. The collective correlators, for the situation where
the self ones show a power-law dependence on time, do not present the same behavior (Supplementary Fig.2(a)).

Nevertheless, defining a scaled correlator f̂(q,∆t) = (f(q,∆t) − f(q,∞))/(1 − f(q,∞)), which allows us to remove
the contribution of the frozen-in component to the correlation function [6], we see that a power-law behavior seems
to emerge also for the collective correlators, even though our current numerical resolution is not good enough to
determine this clearly. However, the important point is that in semi-log plot (Supplementary Fig.2(b)) all correlators
(self, collective and scaled) for frozen matrix conditions do not show a logarithmic decay in any time window or
wavevector. Finally, in Supplementary Fig.2(c) the correlators for the mobile matrix at the critical size ratio are
reported in log-log plot showing that at qσl = 3.5, where the anomalous logarithmic behavior is observed, a power-law
decay cannot describe the data. It is interesting to note that at a larger value of qσl = 7.5 the data might approach
this behavior at long times, even though within a two-step decay. The power-law exponent of about 0.5 is also close
to the Lorentz gas (0.527) and to MCT predictions. This suggests that at the smaller length scales probed at larger
q values, the particles mainly see the local environment and localisation, while only at smaller q values the network
structure of voids is explored and leads to anomalous behavior. Note though that the self correlators significantly
deviate from power-law behavior. In summary, these results complement those provided in the manuscript and show
that small particles moving in a frozen matrix behave very differently from those moving in a glassy but mobile matrix
of large particles.
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