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Abstract

How to render very complex datasets, and yet maintain interactive response times, is a hot topic
in volume rendering. In this paper we focus on projective visualization of dataseés represented
via tetrahedral tessellations. Direct projective visualization is performed by sorting tetrahedra
with respect to view direction and then by projecting them onto the screen. Different sorting
algorithms and “per tetrahedra” projection techniques are reviewed and evaluated. A new method
for tetrahedra projection approximation is presented. In addition, we compare the results obtained
by the optimization of the rendering process with those obtained by adopting a data simplification

approach.



1 Introduction

The real usability of a system for the visualization of volume data is strictly connected to the level of
interactivity the system performs. This is both to simplify the user—system interaction and to improve
our understanding of the results through motion or animation. The efficiency of the visualization
algorithm is therefore crucial.

Many solutions exist to render volume datasets and these are generally characterized by the high
complexity of the rendering process [3]. Volume datasets can be directly visualized by applying either
projective or ray casting methods. In the case of curvilinear or unstructured datasets, a projective
approach using hardware rendering features {polygon scan conversion, shading and compositing) is
much more efficient. A comparison of projection vs. ray casting gave much shorter times for the first
approach (from 5 to 100 times faster, on the same dataset, depending on the optimization techniques
applied {2]). Also, the images produced with a projective approach are very close in quality to those
generated by a ray casting algorithm.

This paper thus analyzes and evaluates several optimization techniques to speed up projective visual- |
ization. We consider algorithms which work on datasets represented using tetrahedral decompositions.
Tetrahedral decomposition is a suitable unifving representation, at least for curvilinear or unstructured

volume datasets, because:

» visualization software, based on simplicial elements, is very general: it can also be used to render
curvilinear or regular datasets (the decomposition of hexahedral cells into tetrahedra is easy).
Such a decomposition increases the number of elementary cells, but the visualization process is

simpler on tetrahedral cells than on the more complex hexahedral ones;

e handling degenerated cases (i.e. coincident points in 3D space) is simplified; tetrahedra degen-
erates to non-solid cells {areal or linear) and therefore such elements can be simply ignored; on
the other hand, the degeneration of hexahedral cells may produce solid cells that have to be

accurately managed;

e both data and visualization processes can be simplified by using, for example, a multiresolution

representation [1].

Direct projection of tetrahedral cells, using the hardware capabilities of current state of the art
graphics workstations, is an efficient process (nearly in the order of O(10K +100K) tetrahedral cells per

second). Nevertheless, the performance required for the interactive use of these techniques is still far



bevond current speeds, especially in the case of low or medium capacity workstations. In this paper we
thus evaluate the possible optimizations of the Projected Tetrahedra algorithm [6], i.e. approximations
of the rendering process and alternative sorting algorithms, together with the refinement of one of these
approaches. In addition, we show that a data simplification approach can alsc be applied to produce
significant speedups while maintaining similar approximations in the images produced. Therefore, we
prove William’s intuition [8] that true real-time interactive projection can be only obtained through
data reduction.

The paper is organized as follows. Projective techniques for the direct visualization of volume
datasets are briefly introduced in the next section. Section 3 describes the possible optimization of the
Projective Tetrahedra algorithm. In Section 4 we show how a data simplification approach can give
better results than the optimization of the “rendering process” presented in the previous section. Our

conclusions are drawn in the last section.

2 Projective Direct Volume Rendering

Direct visualization of volume datasets represented by a tetrahedral decomposition was originally pro-
posed by Max et al. [4], and Shirley and Tuchman [6]. Both these sclutions apply a density cloud
model [11] and solve the visualization task with a two—step approach: tetrahedra are first depth-sorted,
and then each cell is projected onto the screen, and its color and opacity contributions are composed
with the previous ones to form the resulting image. The two proposals differ on the method used to
compute the contribution: of each cell.

The algorithm by Max et al. implements a software scan conversion process in which the contribution
of each cell to the generic pixel is computed by analytically integrating color and opacity along the
line of sight.

Shirley and Tuchman'’s technique, called Projected Tetrahedra (PT), approximates the contribu-
tion of each cell with a set of partially transparent triangles. This polygon—oriented approach is faster
than the previous pixel-oriented one because conventional graphic hardware can be exploited. Shirley
and Tuchman’s proposal is addressed to the projective rendering of regular hexahedral grids. The first
step in the visualization process is thus to decompose hexahedral cells into tetrakedra. An explicit
depth sort of the cells is not required because it can be simply derived by the implicit ordering of the
cells in the regular grid.

Solutions for the depth sort of tetrahedral grids have been proposed by Willlams (topological sort on



curvilinear grids [8]), and by Max et al. (numeric distance sort on Delaunay triangulations [4]}.

In this paper we limit ourselves to the projective visualization of datasets represented by Delaunay
triangulations’. We assume that in the case of a hexahedral cells dataset, it would be decomposed into
tetrahedral cells in a preprocessing step. The Projected Tetrahedra algorithm can be briefly described

as follows.

PT algorithm:

1. apply a transfer function to each vertex in the dataset to map its scalar value intc a color and a

density value;

2, sort in depth the cells, back to front, according to the current view (parallel or perspective);
3. for each cell:

(a) classify the cell according to its projected silhouette (Figure 2);
(b) decompose the projected silhouette of the cell into triangles (Figure 2);

(¢} find color and opacity values for the non zero thickness (NZT) vertex using integration in

depth on the cell in world coordinates;

{d) for each split triangle: scan convert, interpolate color and opacity, compose with the current

image (using graphic hardware features).

3 Optimization of Projected Tetrahedra

The PT algorithm is composed of two independent and sequential phases. We review and evaluate
the two possible solutions to the depth sort of Delaunay tessellations, and then the optimization of the

“per tetrahedra” projection and composition phase.

3.1 Depth sort optimization

The so called depth (or visibility) sort must guarantee that the cells are ordered in a such way that,

given a viewpoint, if cell o obstructs cell b then b precedes a in the ordering.

1The Delaunay triangulations of a set of points P in E3 consists of exactly those tetrahedra with vertices in P which

aatisfy the property that their circumsphere contains no other points of P into its interior {5}.



The two depth sort algorithms proposed in literature for triangulated datasets are the Meshed Poly-
hedra Visibility Ordering (MPVQ) algorithm by Williams {9], and the sorting algerithm proposed
by Max et al. [4], called in the sequel nuineric distance sorting.

MPVO is much more general than the second solution because it sorts the cells of any acyclic
convex set (another solution for the visibility sort of unstructured meshes has been recently proposed
by Stein et al. [7]; it is more general than MPVOQ, because allowes multigrid data sorting, but is also
more complex in time). The MPVQO algorithm requires linear time and uses linear storage. It is a

topological solution, based on a preprocessing step (view independent) and two view—dependent steps:

1. an adjacency graph is built, with a node for each cell and a link for each couple of adjacent ceils

(preprocessing step);

2. a direction is assigned to each link, dependent on the current view; the behind relation is evaluated

to set the correct direction of the link;

3. a topological sort of the graph, starting from the cells which do not obstruct any other ceil,

returns a correct inverse visible order.

The behind relation is evaluated, for each couple of adjacent cells, taking into account the shared
face and the position of the viewpeint. The shared face defines a plane and two halfspaces. The link
is therefore directed toward the cell whose half-space contains the viewpoint. To implement this, the
plane equation for the shared face has to be evaluated at the viewpoint. The plane coeflicients are
computed and stored in the preprocessing phase (together with the adjacency graph).

The MPVO algorithm has a linear cost, but requires substantial geometric tests: when the view-
point changes, all of the adjacency link orientations have to be fixed (i.e., an evaluation of a linear
equation for each link).

The cost of MPVO has been empirically evaluated on the BluntFin 2 and the BuckyBall ? datasets,
represented using a multiresolution scheme {1]. "The results are reported in Table 1, where: T,4; is the
time for the construction of the DAG {view independent, thus preprocessing}, Torien: is the time for

the orientation of the adjacency links, and Tjop_sors is the time for the topological sort. Times are in

2Produced and distributed by NASA—Ames Research Center; it is defined on a curvilinear grid composed of 40 x 32 x

32 = 40, 960 sampiles.
ICourtesy of AVS International Center; it represents the electron density around a molecule of Cgp and is defined on

a 32 x 32 x 32 regular grid,



Dataset Resolut. Topaol. Sort Num. Sort

vertices tetra Tedi  Torient Tiop_sort Taist  Tgsort Taod sort
BuckyBall
error 0% 32,768 176,687 || 41.14 2.08 1.13 0.18 0.78 0.96
error 2% 10,808 63,646 13.67 0.68 0.35 0.07 0.24 (.31
error 5% 6,010 35,909 7.62 0.38 0.19 0.04 0.12 .16
error 10% 3,088 18,567 3.78 0.18 0.09 0.02 0.06 0.08
BluntFin
error 2% 2,279 13,094 2.59 0.12 0.08 0.02 0.04 (.06
error 4% 1,012 5,615 1.08 0.05 0.03 0.01 0.02 0.03

Table 1: Resolution of the test datasets and times, in seconds.

cpu seconds on an SGI Indigo R4000 X524 workstation.

Max et al. reported [4] that, given a Delaunay triangulation and a viewpoint, a visibility ordering
is always defined. In addition, reporting results from Edelsbrunner and Joe, they proved that a depth
sort can be simply computed without having to store and manage topological data.

This alternative solution, here called numeric distance sort, computes for each tetrahedron ¢, :

1. the center ¢; and the radius r; of the sphere circumscribed to #; (such data are view independent,

and are thus computed in a preprocessing phase);
2. the square of the distance d; from the viewpoint to each center ¢;;

3. the square length of the segment starting from the viewpoint and tangent to the sphere circum-

scribed to t;, Le. L% =d;? —n%

It has been proved [4] that the visibility sort corresponds to the sort of segments [; with respect to
their length: a cell £; is behind £ IFF [} < 5. To compute visibility using this approach we need:

preprocessing — to compute and store centers and radii of n¢ circumspheres;

for each view — to compute 2 * nt distances and to sort nt real numbers.

where nf is the number of tetrahedra in the triangulation.

In the rightmost columns in Table 1 we report the times required to sort the datasets with the
numeric distance sort. The total time, T,, 4 sort, is split into the two subphase times: Ty is the

cost of computing distances, and Tiy..- is the cost of sorting these distances using an optimized version
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Figure 1: Four erroneous link orientations generate a region which cannot be sorted.

of the Quicksort algorithm.

A comparison of the two sorting approaches can be driven by the evaluation of the implementation
complexity, numerical instability, and efficiency. “

The implementation of the second solution is straightforward; it does not involve visiting a complex
DAG, anrd only requires the evaluation of simple mathematical functions and the use of a numeric sorter.

Numerical instability, extremely probable when high resolution datasets are managed, is greatly

reduced using the second solution. Obviously, imprecise distances can be computed but this does not
halt the sorting process. This problem might at most lead to the incorrect depth ordering of some
tetrahedra.
On the other hand, if the first approach is adopted precision is highly critical because errors in the
orientation of the links may result in detecting false cycles. More dramatically, in some cases an
incorrect ordering of one or more links can prevent an entire region in the grid from being sorted, as
is shown in the 2D example in Figure 1.

To evaluate the efficiency of the two sorting solutions, we must take into account that the graph
orientation is not required to sort the data by the numeric distance sorter, but this orientation is
needed in the subsequent classification phase. Therefore, this processing is mandatory whichever
sorting strategy is chosen, and its cost is thus not included in the Tiop_sors times reported in Table 1.

The analysis of the results shows $hat both for efficiency reasons and higher numerical stability the

numeric distance sort is the correct choice.
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Figure 2: Classification and decomposition inte triangles of a tetrahedral cell depending on the current

profile in viewing space (o: NZT vertex).

3.2 Projection (classification + rendering) optimization

Once the cells have been depth-sorted, standard PT operates on each cell as follows. Each cell is
projected in screen space and its projected silhouette is classified according to Figure 2. Only four
projections are possible: two of them which are combinatorially different plus two degenerated cases.
The frequency of the degenerated classes 3 and 4 was estimated in less than 5% of the total [10], and
therefore a faster management of classes I and 2 is taken into consideration in most approximations.
Clagsification of cells directly derives from the orientation of the adjacency links.

For each class, a non zero thickness (NZT) vertex is determined. The NZT vertex {a single point
in screen space} corresponds to two points on the frontier of the ceil. The standard PT algorithm
computes the density and the color of the NZT vertex by evaluating the thickness of the cell in corre-
spondence to the line of sight passing through it. A particle volume density model [11] is adopted.
The projected silhouette is then split into triangles (Figure 2). Each triangle is rendered and blended
in hardware as a Gouraud—-shaded facet, with a non zero opacity assigned to the NZT vertex alone.
Stein et al. [7] proved that the PT method may produce artifacts, and proposed a solution based on

the use of hardware assisted texture mapping. For the sake of simplicity, here we will consider the



standard PT method output as the correct image, without considering possible artifacts.

There are two possible strategies which can reduce the cost of the projection phase: reducing the
number of scan—converted facets and/or avoiding the color and opacity computations for the NZ7T

vertices. With these strategies in mind, the optimization techuniques evaiuated here are:

* Voxel {8]: in this very rough approximation, color and opacity {irrespective of the cell thickness)
are precomputed for each cell as an average of the values of its vertices; at projection time, all

visible faces are rendered using flat shading;

¢ Uniform Thickness Slab (UTS1) [8]: color and opacity are interpolated on the projected
silhouette, but the cells are considered as having uniform thickness. The computation of the
NZT vertex is therefore avoided, and the corresponding cell thickness is not taken into account.
A slight variation of this approximation, UT82, in the case of class 1a visualizes the back face

alone instead of the three front faces, thus reducing the number of split facets;

¢ Centroid: this new approximation avoids computing NZT coordinates and thickness by us-
ing the centroid of the cell as a splitting vertex, irrespective of the current view. Centroids
data {coordinates, color and opacity) are computed in a preprocessing step, thus reducing the

computations needed at run time.

To compute centroids data, for each cell the center ¢ of the inscribed sphere and its radius r are

computed by solving a linear system of four equations in four unknowns:

_ 4T + biyc + ¢z d-,; - (1)

v G',ig + big + Ciz

where the coeflicients a;, b;, ¢;, d; are the coefficients of the plane on which face ¢ of the tetrahedral
cell ies. The scalar value of the centroid is then computed by a simple linear interpolation.

Centroid approximation manages the splitting phase as follows:
e class 4: the same as the P'T' algorithm;

e class 3: the same as the PT algorithm, but the cell thickness is set to ¢y * r, where ¢; is an

empirical constant;

e class 2: the splitting vertex and value are in this case the centroid’s coordinates and value; the

cell thickness is set to ¢ * r;
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Figure 3: Different projections of class 2 cells.

e class 1: the coordinates of the splitting vertex are the coordinates of the NZT vertex (they are
combinatorially known, ro geometric computations are required). The value of the splitting ver-
tex is set to the mean value between the centroid and the NZT vertex values. The cell thickness

is set to o % 7,

The Centroid approximation therefore avoids the computation of:
¢ one edge intersection and two colordzopacity interpolation for the cells in class 2;
¢ one plane ray intersection and one colordopacity interpolation for the cells in class 1;
e one bilinear interpolation and one color&opacity interpolation for the cells in class 3.

Our experiments report that the best approximations were obtained using values of ¢; = 2.5 + 3.0.
Obviously, the approximation given by the centroid method is dependent, for each cell, on the distance
between the position of the centroid and the current view—dependent position of the NZT vertex {Fig-
ure 3). In order to reduce this approximation error, the opacity of the vertices on the boundary of the
projected silkouette was set to 0.3 times the value of the splitting vertex opacity.

When applied $o faces which are parallel to the line of sight the method of the centroid may therefore
result in a poor approximation (e.g., the rightmost cell in Figure 3}. This may be common in the case
of datasets obtained by decomposing a regular or curvilinear dataset into tetrahedra, but is much less
frequent when the tetrahedral dataset is obtained from unstructured data or from the simplification

of a curvilinear or regular dataset [1].
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Dataset Times Speedup || Image Error
no. tetra || Preproc. Tuis {mean value)
BuckyBall
error 0% 176,687 41,14 15,24 1. 0.
error 2% 63,649 13.67 5.02 3.03 1.91
error 5% 35,909 7.62 2.78 5.48 4.62
error 10% 18,567 3.78 1.42 10.73 10.02
BluntFin
error 2% 13,094 2.59 0.91 1. 0.
error 4% 5,615 1.08 0.35 2.33 3.35
error 6% 2,746 0.52 0.21 4.33 5.39

Table 4: Visualization times obtained usinga multiresolution representation of the test datasets (times

in seconds).

the total visualization time (DAG orientation, numeric distance sort, visualization via P'T).

The images produced using the standard PT are reported in Figures 11 and 12, while the image
differences computed on an output of the PT algorithm on BluntFin at precision 2% are in Figures 13
and 14.

By comparing the results in Tables 2, 3 and 4 it can be noted that images with approximations
similar to those obtained using UTS2 are now produced using datasets with a substantial simplification
(e.g. on BuckyBall, a similar approximation is obtained using the multiresolution level with a 10%
error}, and therefore with much shorter processing times: about 8 sec. for UTS2 images and 1.5 sec

for an image using the multiresolution representation.

5 Comnclusions

In this paper we have focused on the projective visualization of datasets represented via tetrahedral
tessellations. Speedup techniques have been reviewed and a new approximation method has been
proposed. Approximation methods have been compared in terms of both processing times and the
quality of the images produced.

I addition, the results obtained by the optimization of the rendering process have been compared
with those obtained by adopting a data simplification approach. Approximated representations of the

test datasets have been built using an adaptive incremental triangulation approach driven by the local

13



coherence of the scalar field and are represented in a multiresolution scheme. We have showed through
numerical and visual comparisons that data simplification produces images with a comparable level of
approximation in shorter times. This proves that data simplification is the key approach to reducing
visualization times, especially in those interactive phases where the user tolerates & high approximation

degree and where timely response to user input is crucial.
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