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Abstract

Many bipartite networks describe systems where an edge represents a relation between a user and an item. Measuring
the similarity between either users or items is the basis of memory-based collaborative filtering, a widely used method
to build a recommender system with the purpose of proposing items to users. When the edges of the network are
unweighted, the popular common neighbors-based approaches, allowing only positive similarity values, neglect the
possibility and the effect of two users (or two items) being very dissimilar. Moreover, they underperform with respect
to model-based (machine learning) approaches, although providing a higher interpretability. Inspired by the func-
tioning of Decision Trees, we propose a method to compute similarity that allows also negative values, the Sapling
Similarity. The key idea is to look at how the information that a user is connected to an item influences our prior
estimation of the probability that another user is connected to the same item: if it is reduced, then the similarity be-
tween the two users will be negative, otherwise it will be positive. We show that, when used to build memory-based
collaborative filtering, Sapling Similarity provides better recommendations than existing similarity metrics. Then we
compare the Sapling Similarity Collaborative Filtering (SSCF, an hybrid of the item-based and the user-based) with
state-of-the-art models using standard datasets. Even if SSCF depends on only one straightforward hyperparameter,
it has comparable or higher recommending accuracy, and outperforms all other models on the Amazon-Book dataset,
while retaining the high explainability of memory-based approaches.
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1. Introduction

Many complex systems can be reduced to the interaction between two classes of different objects; this is the case of
several economic systems, where either countries or firms are connected to exported products or technological sectors
[1, 2, 3]; biological systems, where either patients or microbes are connected with diseases [4, 5]; social systems,
where for instance users are connected to Facebook pages [6, 7, 8], or actors are connected to movies they participate
in [9]. An effective way to represent these systems is through bipartite networks, in which links can connect only
nodes belonging to the two different sets. For instance, the bipartite network representing which country exports
which product is the basis of the economic complexity (EC) framework [10]. The main tool of EC is the so-called
relatedness [11, 12, 13], a measure of how much a country is close to start exporting a given product. This is a key
tool for institutions and policymakers, and a driver for investments [14, 15]. The traditional way of measuring the
relatedness between a country c and a product p consists in analyzing the export basket of countries, extracting the
similarity between p and other products, and computing the average similarity between p and the products exported
by c [16]. In the information system framework, this would be called an item-based Collaborative Filtering (CF)
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[17, 18].
CF is one of the most popular methods to build a recommender system whose purpose is to suggest to users those
items they will probably like. The idea is to base the recommendations on the previous interactions between users
and items, collected in a user-item biadjacency matrix (that in the recommender system framework is usually called
rating matrix). There are two main typologies of CF: memory-based and model-based [19]. The former obtains
similarity measures between users or items according to the user-item adjacency matrix in order to find the nearest
neighbors of a user or an item, then it bases the recommendations on these neighbors. The latter makes use of
machine learning and data mining methods in order to achieve high recommendation quality. The advantages of a
memory-based CF, with respect to a model-based one, include its simple and intuitive implementation, independence
from hyper-parameters, and high interpretability of results [20]. However, current state-of-the-art CF are model-
based and use techniques such as Graph Convolution Networks (GCN) [21] and Matrix Factorization (MF) [22] that
rely on optimized hyperparameters to maximize their performance. Despite this, due to their higher simplicity and
interpretability, in practical applications such as the Economic Complexity framework, memory-based approaches are
preferred to model-based ones and are largely used for both prediction and recommendation purposes [16, 23, 24].
Talking about memory-based CF, there are two main approaches to give recommendations:

• user-based: one measures the similarity between users based on how similar their links with items are and then
suggests to a user an item that is popular among similar users;

• item-based: one measures the similarity between items and then suggests to a user an item that is similar to
those to which it is already connected.

In both cases, when one measures the similarity between two nodes, there is a distinction between local and global
similarity [25, 26]. The difference is that to compute a local similarity one needs information only about the two
involved nodes, while to compute a global similarity also the whole graph structure is required; this makes the latter
computationally demanding and hard to apply to large networks. When we deal with bipartite networks with unary
(unweighted) links, which means that the corresponding biadjacency matrix element can be either equal to 1 if a link
is present or 0 if it is absent, local similarities are usually based on co-occurrences, that is a count of how many
times two nodes of the same layer are linked to the same node of the other layer. A key issue is that these metrics
are positive-definite, and as a consequence, they neglect the information about the possible dissimilarity between two
nodes. Xie et al [27] observed that neglecting negative values in similarity metrics can be an issue when one deals
with binary data (whose entries can be like (1), dislike (-1), or absence (0)); however, we argue that negative similarity
should be taken into account also when we deal with unary data.
Let us make an example taken from economics. Allowing only positive similarity values does not take into account the
fact that, for instance, Japan is specialized in high-tech products, while Zambia has a focus on simple products like raw
materials. Knowing that Japan exports a product p makes Zambia not exporting p highly probable; on the other side,
if Zambia exports p′, probably Japan is not interested in exporting it. So it makes sense to define a negative similarity
between Zambia and Japan. In other words, we can say that Zambia and Japan are anti-correlated, so knowing that
Zambia exports a product should have a negative effect on the recommendation of that product to Japan. It is therefore
natural to distinguish the case in which two export baskets are independent (zero similarity) from a situation in which
the fact that a country exports a product implies that another country does not (negative similarity).
In this paper, we propose a local similarity metric that allows also negative values, the Sapling Similarity. With a
structure inspired by the functioning of decision trees [28], Sapling Similarity is able to identify when two nodes are
anti-correlated or dissimilar, in the sense that knowing that the first is connected to a node of the other layer, reduces
the probability that also the second is connected to it. As we will better discuss later, the key to distinguishing anti-
correlation from uncorrelation is to look at the maximum degree that a node can have (the total number of nodes in the
other layer with respect to the one where the similarity is computed). We will see that Sapling Similarity outperforms
other similarities when used to build a memory-based CF for recommending items to users. Moreover, by combining
the results provided by a user-based and an item-based CF based on Sapling Similarity, we define the SSCF (Sapling
Similarity Collaborative Filtering). We also compare the performance of SSCF with the ones of current state-of-the-art
model-based CF on three standard datasets commonly used to evaluate recommender systems [29, 30, 31]: Gowalla,
Yelp2018, and Amazon-Book. Notably, on all dataset the performance of SSCF is comparable with model-based
approaches; moreover, on the Amazon-Book dataset, it outperforms all existing models. This is a noteworthy result,
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since our memory-based CF is compared with machine learning-based methods whose hyperparameters are optimized
on the test set. Moreover, SSCF is fully explainable, its only hyperparameter is not optimized on the test set and, not
requiring a training phase, necessitates a lower computational effort.
The rest of the paper is organized as follows: Section 2 presents the main similarity metrics used in the literature
to build memory-based CF and the current state-of-art model-based approaches. Section 3 introduces the Sapling
Similarity and the SSCF giving a detailed explanation of its construction. In section 4 we describe our experimental
setup, the datasets we use, the methods we compare with SSCF, and the performance indicators we adopt in this
comparison. In section 5 we present the results dividing them into two parts: the first, in which we show that Sapling
Similarity provides better recommendations than existing similarity metrics, and the second in which we compare
SSCF with the current state-of-the-art. Section 6 concludes and proposes further developments.

2. Related Works

CF is a very popular technique used by recommender systems introduced in the mid-1990s [32]. For instance,
Amazon [33], for which recommendations are fundamental [34], uses item-based CF [35] to recommend products to
users. Also, in the Economic Complexity framework item-based CF is often used to measure relatedness, the affinity
between a country and the export of a product [16, 12].
CF works on bipartite networks where the nodes of one of the two layers can be identified as the users and the ones
of the other layer as the items. Links between nodes represent rating users give to items; we can distinguish between
four different cases according to the values that ratings can assume [36]:

• Continuous ratings: they can assume any value in an interval. For instance, in the Jester joke recommendation
engine [37], ratings can take on any value between -10 and 10;

• Interval-based ratings: they can assume a value from a discrete set of ordered numbers. For instance, Amazon
and Netflix use a five-point rating scale, where ratings can be a value in the set {1,2,3,4,5};

• Binary ratings: the user can give only a like or dislike for the item. For example, in social networks, the link
between a user and a post can be -1 (the user dislikes the post), +1 (the user likes the post), or 0 (the user did
not rate the post);

• Unary ratings: the user can only rate positively an item, and there is no information about dislikes. So links can
be either 0 if absent or 1 if present. For instance, a country may export a product (link present) or it may not
export it (link absent).

In this paper, we focus on unary ratings.

2.1. Memory-based CF

The key point of a memory-based CF is the measure of the similarity between two users or items. When dealing
with unary data, the simplest way to measure it is to count the number of co-occurrences, that is how many common
neighbors the two users or items have [38]. However, since nodes with a high degree tend to have more co-occurrences,
so a higher similarity with other nodes, than nodes with a low degree [39]. For this reason, usually, the degrees of
the two nodes on which we measure the similarity are used to normalize the number of co-occurrences. Depending
on this normalization factor, different metrics can be defined. In this paper we will consider: Jaccard Similarity [40],
Cosine Similarity [41], Sorensen Index [42], Hub Depressed Index, and Hub Promoted Index [43].
One can also weigh differently each co-occurrence, for instance, if we want to measure the similarity between two
products and they are both exported by China, this is not a strong signal that they are similar, since China exports many
products that can be very different one from each other. If instead, we know that the two products are both exported by
Angola, they are probably similar because Angola exports only a few simple products. So a co-occurrence in Angola
should weigh more than a co-occurrence in China, and for this reason, we can weigh each co-occurrence by dividing
it by the degree of the node on which there is the co-occurrence or with the logarithm of the degree. In the former
case we have the Resource Allocation index [44], and in the latter one we have the Adamic/Adar index [45].
Using both the approaches we just described one can build other metrics, for instance Zhou et al. introduced the
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Probabilistic Spreading [46], and in the Economic Complexity framework Zaccaria et al. introduced the Taxonomy
Network [23] that is the Hub Depressed Index with co-occurrences weighed in the Resource Allocation way.
The above-mentioned similarity metrics represent a key tool when investigating recommender systems with unary
(weightless) ratings [36, 26]. It is important to note that such metrics are all positive-definite, which means that the
similarity between two nodes can not be negative. Let us consider an item-based CF, which measures the similarity
between items and recommends to a user an item that is similar to the ones already connected to that user. A positive-
definite similarity hides the possibility that the connection between a user u and an item i gives a negative contribution
to the recommendation of another item j. Let us suppose that i and j are anti-correlated, in the sense that usually
users that are connected to i are not connected to j. In this case, we would like to be able to assess how much the
information that u is connected to i lowers our confidence about the fact that u is also connected to j. The main limit
of the similarity metrics based on co-occurrences we described above is their inability to assess and use the possible
anti-correlation between two nodes.
When dealing with continuous or interval-based ratings, the anti-correlation between nodes can be expressed by
the Pearson Similarity [47]. For instance, if two users give opposite ratings to items (when the first user gives the
maximum rate to an item, the second user gives the minimum one), then they are anti-correlated and their Pearson
Similarity is -1. To the best of our knowledge, books and reviews on Collaborative Filterings [36, 26] do not report
Pearson Similarity as a metric for unary data, because in this case, ratings can only be present or absent, so users can
not give anti-correlated ratings to an item. However, in our study, we will also consider Pearson Similarity to provide
a more complete comparison, by looking at the correlation between given and ungiven ratings.
Our proposed metric, the Sapling Similarity, is designed to work with unary ratings assigning positive values to nodes
that are similar and negative values to the ones that are dissimilar and, with respect to the other metrics based on
co-occurrences, takes explicitly into account the size of the network.

2.2. Model-based CF
With the great success of machine learning techniques in different fields of research, more and more model-

based CF techniques are being developed [26]. In particular, Graph Convolution Networks (GCN) [48] show high
performance when used to build a CF. In 2019 NGCF (Neural Graph Collaborative Filtering) was introduced [29]
and it achieved the best performance on the three datasets Gowalla, Yelp2018, and Amazon-Books. In 2020 He et
al. with their proposed LightGCN [30] showed that by simplifying the architecture of NGCF one can achieve better
recommendation quality improving the results on all three datasets. From LightGCN other GCNs were built, aiming
to achieve optimal results with simple architectures: LT-OCF [49], SimpleX [50], and UltraGCN [51]. Finally, Choi
et al. in 2022, inspired by score-based generative models [52], introduced the blurring-sharpening process models
BSPM-EM and BSPM-LM [31] that currently achieve the state-of-the-art results with all the three datasets1. All the
above-mentioned model-based approaches depend on a number of hyperparameters that are optimized in order to
obtain maximal recommendation scores on each dataset.

3. Methodology

In this section we introduce the Sapling Similarity, illustrating its formulation and an intuitive explanation of its
functioning; and the SSCF, a collaborative filtering based on this similarity measure. We start by providing the basic
definitions needed and by fixing the notation.

3.1. Basic definitions
A bipartite network is defined as a graph G = (U,Γ, E) where U and Γ are two sets of nodes (called also layers),

and E is the set of all the connections (i, α) between the nodes i ∈ U and α ∈ Γ. Let |U | be the dimension (cardinality)
of the set U and |Γ| the dimension of the set Γ: the bipartite network can be represented by a |U | × |Γ| binary matrix M
called bi-adjacency matrix and defined as:

Miα =


1 if (i, α) ∈ E

0 if (i, α) < E
(1)

1https://paperswithcode.com/task/recommendation-systems
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The degree of a node i ∈ U or α ∈ Γ is the number of links connected to it:

ki =

|Γ|∑
λ=1

Miλ kα =

|U |∑
l=1

Mlα (2)

The number of co-occurrences between either nodes i, j ∈ U or α, β ∈ Γ is:

CO(users)
i j =

|Γ|∑
λ=1

MiλM jλ CO(items)
αβ =

|U |∑
l=1

MlαMlβ (3)

Note that the CO matrices define two monopartite networks whose nodes belong to only one set.
Usually, a bipartite network describes interactions between users and items (for instance, in the case of the country-
exported product network we can identify the former as the user and the latter as the item). In our notation, the set U
corresponds to users and the set Γ corresponds to items.
In the following, we will focus on the Sapling Similarity between two users, and we will define N = |Γ| (the total
number of items). The case of the similarity between items is equivalent, with the only changes that N = |U | (the total
number of users) and the co-occurrences and degrees are referred to the nodes in the layer of the items.

3.2. The Decision Sapling
The building block of the Sapling Similarity between two users i and j is what we call the Decision Sapling, which

is a decision tree with just one split. The Decision Sapling is a diagram that represents and quantifies how much the
information that user j is or is not connected to an item α influences our estimate of the probability that another user i
is connected to α. In figure 1, on the left, we show a numerical example where we build the Decision Sapling of user
i with respect to user j; on the right, we show the formulation of the generic case in terms of CO(users)

i j , ki, k j, and N.
A Decision Sapling is composed of three boxes and each box is divided into two areas. In the right (left) area of all

Figure 1: The Decision Sapling of user i with respect to user j is a tool to visualize and quantify how the probability that a generic item is connected
to i changes when one considers also the connections of j. On the left there is a numerical example and on the right the generic formulations. In
the bean box at the base, we have two areas: on the right there is the number and the fraction of items user i is connected to, while on the left the
items user i is not connected to. On the right leaf the same numbers are computed by restricting the number of items to the ones user j is connected.
Finally, on the left leaf only the items to which user j is not connected are considered. By comparing the fractions in the bean with the ones in the
leaves one can deduce whether the similarity between i and j is positive or negative.

boxes there are the total number and the fraction of items to which user i is (is not) connected. In the lower box (the
bean) these numbers are computed with respect to all N items: so on the right we have ki (the number of items user i
is connected to) and on the left we have N − ki. In the right box (right leaf) the numbers are computed by considering
only the subset of items to which user j is connected: so on the right area we have the co-occurrences CO(users)

i j (the
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number of items connected to both i and j) and on the left area we will have the number of items connected to j and
not to i. Note that the sum is equal to k j. In the left box (left leaf) we consider instead only the items not connected to
user j; so for instance in the left box we will have the number and fraction of items not connected to i nor to j. Note
that the fractions are always computed with respect to the total number of items in the box, so the denominator is N for
the bean, k j for the right box, and N − k j for the left box. Let us now discuss a numerical example, reported on the left
side of figure 1. We have a total of N = 100 items; users i and j are connected to only 5 of them, with 2 common items.
The a priori probability for an item to be connected with i is provided in the bean and it is equal to 5%. However, if
we then look at the right leaf it emerges that by selecting the subset of items connected to j the probability that also
i is connected to it varies from 5% to 40%. So knowing that an item is connected to j increases the probability that
the same item is also connected to i: in this case, the similarity between i and j has to be positive. Looking at the left
leaf we see that knowing that j is not connected to an item decreases the probability that i is connected to it, so also
from this point of view it is natural to give a positive similarity between i and j (the variation of the probabilities with
respect to the bean is more evident in the right leaf because of the lower number of items connected to j).
We can modify this example to understand why, even before looking at the results of the prediction exercise, Sapling
Similarity uses more features of the other similarity metrics, so providing a more comprehensive view. To the best of
our knowledge, existing similarity metrics use the numerical values of CO(users)

i j , ki, and k j, but not the total number of
items N. Let us consider N = 8 instead of 100 in the previous example, and we leave the other numbers unchanged.
In this case, the bean shows that i is connected to 5 out of 8 items, which means 62.5% of them, instead of the 5% of
the previous case. If we consider the right leaf, that is the subset of items connected to j, the numbers do not change
and so i is still connected to the 40%. In this case, knowing that j is connected to an item reduces the probability
that also i is connected to it. The similarity between i and j has to be negative. In conclusion, by only varying N the
similarity changes sign. Existing similarity metrics not only disregard the possibility of negative similarities, but also
do not consider the information coming from the total dimension of the sets, since N does not enter the equations.

3.3. The Sapling Similarity: key idea

In this section, we discuss how the Decision Sapling tool can be used to determine the sign and the magnitude
of the similarity between two items. In figure 2 we show three examples of Decision Saplings, namely of the same
user i with respect to three different users a, b, and c. In the case (a) the Sapling Similarity Bsapling

ia = −1 since the

Figure 2: Three examples of Decision Saplings when computing the similarity between user i and three users a, b, and c. (a) knowing the user a is
connected to an item α gives us the certainty that user i is not connected to it. In this case, we say that user i and a are different and their Sapling
Similarity is -1. (b) knowing the user b is connected to an item α does not modify our prior knowledge that also i is connected to it. In this case,
we say that the Sapling Similarity between user i and b is 0. (c) knowing the user c is connected to an item α gives us the certainty that also user i
is connected to it. In this case, we say that the Sapling Similarity between user i and c is +1.

knowledge that a is linked to an item implies that i is not linked to it: in particular, a and i have zero co-occurrences.
In case (b) Bsapling

ib = 0 since the fact that b is linked to α does not add information about the possibility that also i
is connected to α. In case (c) Bsapling

ic = 1 since if one knows that c is linked to α, then for sure also i is linked to
it. In particular, here all j’s items co-occur with i. Looking at the left leaf it is easy to reach the same conclusion:
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for instance, knowing that a is not connected to a node gives certainty that i is connected to it, so Bsapling
ia = −1. In

the cases in which the information provided by the items of j removes all the uncertainty present in the bean, the
Sapling Similarity is maximally positive or negative. If considering the subset of items connected to j does not add
any information about i, the similarity is zero. In order to provide an assessment of the similarity in the intermediate
cases we make use of the Gini Impurity (GI). For each box we define:

GI = 1 − p2
1 − p2

0 = 2p1 p0 (4)

where p0 is the fraction of zeros (the red values in figure 2) and p1 is the fraction of ones (the green values in figure
2). The Gini Impurity reaches its minimum value of 0 when p0 or p1 is 0 and it reaches its maximum of 0.5 when
p0 = p1 = 0.5. So the lower it is the GI the higher the polarization or certainty associated with the box. The relative
variation of the Gini Impurity after the split given by user j is:

∆GI =
GI(b) − f (l)GI(l) − f (r)GI(r)

GI(b) (5)

where GI(b) is the Gini Impurity of the bean, GI(l) the GI of the left leaf and GI(r) the GI of the right leaf, while f (l)

is the fraction of total elements in the left leaf N−k j

N , and f (r) the same fraction in the right leaf k j

N . Notice that we
normalize the Gini variation with GI(b) in order to have a ∆GI ranging between 0 and 1. ∆GI close to 0 means that
considering j does not vary the fractions in the leaves with respect to the bean, while ∆GI close to 1 means that the
fractions after the split are more polarized than the ones in the bean, and so reduce the starting uncertainty. ∆GI is the
absolute value of our similarity measure, the sign will be positive if the percentage of positive elements on the right
leaf is higher than the one on the bean and negative otherwise.
Looking at the three examples in figure 2, in the (a) and (c) cases the Gini Impurity of the leaves is 0, so according
to equation 5, ∆GI = GI(b)

GI(b) = 1. Since in case (a) the percentage of positive elements on the right leaf is 0, so lower
than the one on the bean, Bsapling

ia = −1, while since in case (c) the percentage of positive elements on the right leaf is
100%, so higher than the one on the bean (30%), Bsapling

ia = +1. In the case (b) the Gini Impurity in the left and right
leaves is the same as the one in the bean, since f (l) + f (r) = 1 and GI(b) = GI(r) = GI(l) we will have Bsapling

ib = 0.

3.4. The Sapling Similarity: formula

Here we finally derive the Sapling Similarity formula. In particular, we express equation 5 in terms of the values
that can be directly computed from the network, that is the total number of items N, the degrees of user i (ki) and j
(k j), and the number of co-occurrences between i and j (CO(users)

i j ). We recall that each box is divided into a right area
(which considers the items connected to i) and a left area (items not connected to i).

• Bean: The bean considers a total of N elements, ki of which are connected to i; so N−ki items are not connected
to i.

• Right leaf: The total number of elements considered in the right box is k j. Of those, CO(users)
i j are connected to

i, and the number of items connected to j but not to i is k j −CO(users)
i j .

• Left leaf: Here the total number is N − k j. The number of elements connected to i but not to j is ki −CO(users)
i j .

N − k j − ki + CO(users)
i j items are not connected to i nor to j.
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So the terms in equation 5 can be written as:

GI(b) = 2
ki

N
N − ki

N

f (r) =
k j

N

f (l) =
N − k j

N

GI(r) = 2
CO(users)

i j

k j

k j −CO(users)
i j

k j

GI(l) = 2
ki −CO(users)

i j

N − k j

N − k j − ki + CO(users)
i j

N − k j

and with a simple computation we can show that equation 5 is equivalent to:

∆GI = 1 − fi j (6)

where:

fi j =
COi j(1 −

COi j

k j
) + (ki −COi j)(1 −

ki−COi j

N−k j
)

ki(1 − ki
N )

. (7)

In equation 7 we omitted the superscript (users) over the CO matrix since the formula is valid also when one measures
the similarity between items. If i and j are users we will use CO(users)

i j and N will be the number of items, otherwise,

if i and j are items, we will use CO(items)
i j and N will be the number of users.

As already said, ∆GI is the absolute value of our similarity measure. The sign of the Sapling Similarity is positive if
the fraction of elements in the right area of the right leaf is bigger than the one on the bean, that is if COi j/k j ≥ ki/N.
If COi j/k j < ki/N, the sign of the Sapling Similarity is negative.

Observation. Notice that ∆GI is singular if ki = 0, ki = N, k j = 0 or k j = N. If a node l has degree kl = 0 then it is not
connected to anything, so it is useless for our collaborative filtering and it can be deleted from the network. If kl = N
then l is connected to all items; also this case the node does not bring useful information for our collaborative filtering.

In conclusion, the Sapling Similarity metric can be written as:

Bsapling
i j =


1 − fi j if COi jN

kik j
≥ 1

−1 + fi j otherwise
(8)

Lemma. fi j is symmetric.
Proof. we can write equation 7 as following:

fi j = N
kik j(2COi j − ki − k j) + N(kik j −CO2

i j)

kik j(N − ki)(N − k j)
(9)

it is trivial to prove that switching the indices i and j the result does not change (note that COi j is symmetric).
Observation. if fi j is symmetric then also Bsapling

i j is symmetric.

3.5. Sapling Similarity Collaborative Filtering
After the assessment of the Sapling Similarity matrices B(user) and B(item), we can use them to build a user-based

and an item-based CF. The confidence values for the recommendation of item α to user i are given by the following
equations [53]:

S (user)
iα =

∑
l B(user)

il Mlα∑
l |B

(user)
il |

(user based) (10)
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S (item)
iα =

∑
λ B(item)

αλ Miλ∑
λ |B

(item)
αλ |

(item based) (11)

We define the SSCF as a weighted average of the item-based and the user-based estimations:

SSCF = (1 − γ)S (user) + γS (item) (12)

γ is the only parameter in our model and it regulates the relative weight we give to the user-based and the item-based
recommendations in this hybrid prescription.

4. Experimental setup

In this section, we describe the experimental setup we adopt to evaluate the performance of our proposed SSCF
model and compare it with the ones proposed in the literature.

4.1. Datasets

In this study, we make use of 6 datasets:

• Country-export dataset: the countries are interpreted as users and the exported products as items. The element
of the M matrix is 1 if the Revealed Comparative Advantage (RCA) [54] is greater than 1 (the country competi-
tively exports the product) and 0 otherwise. The data about the export volumes of countries are provided by the
UN-COMTRADE dataset (comtrade.un.org).

• Amazon-Product dataset: the users are Amazon accounts and the items the products they bought and rated from
1 to 5 [55, 56]. The element of the M matrix is 1 if the user gave a rate of at least 3 to the item;

• Milan GPS data: users are inhabitants and the items are hexagonal areas [57] containing Points of Interest (POI)
in Milan extracted from OpenStreetMap (https://www.openstreetmap.org/). Data are provided by Cuebiq Inc.
(https://www.cuebiq.com/about/data-for-good/). The element of the M matrix is 1 if the inhabitant visited at
least one POI in the hexagonal area;

• Gowalla dataset: the users are individuals who use the Gowalla social network and perform check-ins, while
the items are the locations or places where the check-ins are performed. [30];

• Yelp2018 dataset: the users are individuals who created an account on the Yelp platform, the items are busi-
nesses that have been reviewed by users [30];

• Amazon-Book dataset: the users are individuals who provide reviews for books on the Amazon platform, while
the items are the books that are being reviewed [30];

Some properties of the datasets are shown in table 1. The heterogeneity of these datasets allow for a fair and complete
comparison among the different CFs. Further information regarding the first three datasets can be found in the supple-
mentary material. The Gowalla, Yelp2018, and Amazon-Book datasets are commonly employed for benchmarking
collaborative filtering techniques and are well-documented in the literature [30, 49, 51, 50, 31]. We refer interested
readers to these sources for a more detailed description.

4.2. Train-Test split

Each dataset is divided in a train and a test set. The former is used to build the CF and the latter is used to evaluate
the accuracy of the recommendations.
The train set in the country-export dataset is built from data on the export volume of countries between 1996 and 2013.
The test set is composed of products that countries did not export in 2013 and previous years but exported in 2018.
The train in the Amazon-product dataset is the whole matrix M, but from each user, the last rated product in chrono-
logical order has been removed and it has been used for the test.
The data in the Milan GPS dataset cover a period of 9 months. We used the first 6 months for the train and the last 3
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dataset # users # items # interactions Density
Country-Export 169 5,040 120,438 14.14%
Amazon-product 6,121 2,744 172,206 1.025%
Milan GPS data 2,783 1,419 41,852 1.060%
Gowalla 29,858 40,981 1,027,370 0.084%
Yelp2018 31,668 38,048 1,561,406 0.130%
Amazon-Book 52,643 91,599 2,984,108 0.062%

Table 1: Main properties of our four datasets.

months for the test (we deleted links already present in the train set).
Finally, for the last three datasets, the train-test split is the same used by other papers in the literature [30, 49, 50, 51,
31] in order to guarantee a fair comparison with other Collaborative Filtering models.
The model-based methods we will consider in section 5.3 rely on hyperparameters whose value influences the recom-
mendations. To set these values, the papers in the literature look at those maximizing the performance in the test set.
However, in a real-world scenario test data are unknown, so they can not be used to optimize the hyperparameters. For
this reason, in order to optimize γ (the only parameter in our SSCF model) from the train data, we defined a validation
set by removing from each user the 10% of items, rounded up. We measured B(user) and B(item) using the remaining
train data and we looked at the performance on the validation set.
Once we found the optimal value we used it to build the SSCF model using all train data. So the results we will show
for SSCF do not depend on any hyperparameter that has been optimized on the test set; this is an important difference
with respect to the current state-of-the-art models.

4.3. Other memory-based Collaborative Filtering
As already stated, the first step to building a memory-based Collaborative Filtering is measuring the similarity

matrix of the users B(user) (user-based CF) or of the items B(item) (item-based CF).
The difference among the models lies in the definition of the similarity; our SSCF makes use of the Sapling Similarity.
The other metrics we consider are:

Common Neighbors [38]:
BCN

i j = COi j (13)

Jaccard [40]:

BJA
i j =

COi j

ki + k j −COi j
(14)

Adamic/Adar [45]:

BAD
i j =

∑
λ

MiλM jλ

log(kλ)
(15)

Resource Allocation Index [44]:

BRA
i j =

∑
λ

MiλM jλ

kλ
(16)

Cosine Similarity [41]:

BCS
i j =

COi j√
kik j

(17)

Sorensen index [42]:

BS O
i j =

1
ki + k j

COi j (18)

Hub depressed index [43, 16]:

BHDI
i j =

1
max(ki, k j)

COi j (19)
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Hub promoted index [43]:

BHPI
i j =

1
min(ki, k j)

COi j (20)

Taxonomy Network [23]:

BT N
i j =

1
max(ki, k j)

∑
λ

MiλM jλ

kλ
(21)

Probabilistic Spreading [46]:

BProbS
i j =

1
k j

∑
λ

MiλM jλ

kλ
(22)

Pearson Correlation Coefficient [47]:

BPCC
i j =

∑
λ(Miλ − ki/N)(M jλ − k j/N)√∑

λ(Miλ − ki/N)2
√∑

λ(M jλ − k j/N)2
(23)

4.4. Model-based Collaborative Filtering

In section 5.1 we will compare SSCF with other memory-based CF on the three datasets country-export, Amazon-
product, and Milan GPS data. In this comparison, we will also include Non-Negative Matrix Factorization (NMF)
[58] and LightGCN [30]. The former has the goal to decompose the original M matrix (|U | × |Γ|) in the product of
two matrices L (|U | × K) and R (K × |Γ|). Each row of L is the embedding of a user ei and each column of R is the
embedding of an item eα. The recommendation score S iα is the scalar product of ei and eα. In applying NMF to our
three datasets we optimized the embedding size K directly on the test data finding the values K = 7 for country-export,
K = 201 for Amazon-Product, and K = 13 on Milan GPS data.
LightGCN is a GCN model so, like NMF, its goal is to build embedding representations for users and items and
measure the recommendation scores through a scalar product of the embeddings. Following the procedure adopted
by the authors of LightGCN, the hyperparameters that we optimized are the L2 regularization term and the number of
layers. The adopted values for the L2 regularization term and the number of layers are respectively: 0.001 and 3 for
country-export, 0.001 and 4 for Amazon-product, and 0.01 and 3 for the Milan GPS data.
Details about the optimization of the hyperparameters are provided in the supplementary material.

4.5. Performance indicators

Following the literature [30, 49, 31], the performance measures we use to evaluate the goodness of the models are:

• precision@20: the fraction of elements in the top 20 recommendations that are relevant;

• recall@20: the fraction of relevant elements that are in the top 20 recommendations;

• ndcg@20: The Normalized Discounted Cumulative Gain [59] computed considering only the top 20 scores in
the ranking.

Each metric is computed separately for each user and then the average is reported.
Some of the papers with which we compare SSCF in section 5.3 do not use precision@20; for this reason in the
comparison on the Gowalla, Yelp2018, and Amazon-Book datasets we will adopt only recall@20 and ndcg@20.

5. Experimental results

5.1. Reproduction and comparison of similarity measures

Table 2 shows the accuracy in terms of precision@20, recall@20, and ndcg@20 of various memory-based CFs,
based on Sapling Similarity (SSCF) and on the other similarities we presented in section 4.3.
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dataset model precision@20 recall@20 ndcg@20

Country-Export

Common neighbors (γ = 0.8) 0.1689 0.0362 0.1803
Jaccard (γ = 0.8) 0.1840 0.0447 0.1988
Adamic/adar (γ = 0.8) 0.1663 0.0355 0.1768
Resource allocation (γ = 0.8) 0.1843 0.0417 0.1936
Cosine similarity (γ = 0.8) 0.1710 0.0419 0.1792
Sorensen (γ = 0.8) 0.1743 0.0435 0.1876
Hub depressed index (γ = 0.9) 0.1609 0.0387 0.1759
Hub promoted index (γ = 0.6) 0.1568 0.0354 0.1720
Taxonomy network (γ = 0.9) 0.1790 0.0413 0.1889
Probabilistic spreading (γ = 0.7) 0.1722 0.0408 0.1843
Pearson Similarity (γ = 0.6) 0.1869 0.0430 0.2041
Sapling Similarity (SSCF) (γ = 0.7) 0.2118 0.0479 0.2259
Preferential attachment 0.1157 0.0303 0.1358
NMF 0.1683 0.0354 0.1805
LightGCN 0.1766 0.0400 0.1929

Amazon-Product

Common neighbors (γ = 0.9) 0.0051 0.1019 0.0445
Jaccard (γ = 0.9) 0.0058 0.1162 0.0518
Adamic/adar (γ = 0.9) 0.0054 0.1088 0.0478
Resource allocation (γ = 0.8) 0.0058 0.1153 0.0507
Cosine similarity (γ = 0.9) 0.0055 0.1093 0.0476
Sorensen (γ = 0.9) 0.0056 0.1129 0.0493
Hub depressed index (γ = 0.9) 0.0057 0.1139 0.0504
Hub promoted index (γ = 0.8) 0.0046 0.0915 0.0382
Taxonomy network (γ = 0.8) 0.0061 0.1211 0.0542
Probabilistic spreading (γ = 0.6) 0.0058 0.1155 0.0511
Pearson Similarity (γ = 0.9) 0.0059 0.1180 0.0528
Sapling Similarity (SSCF) (γ = 0.8) 0.0065 0.1299 0.0593
Preferential attachment 0.0021 0.0410 0.0157
NMF 0.0044 0.0876 0.0392
LightGCN 0.0057 0.1132 0.0472

Milan GPS data

Common neighbors (γ = 0.3) 0.0217 0.0951 0.0624
Jaccard (γ = 0.4) 0.0223 0.0987 0.0650
Adamic/adar (γ = 0.3) 0.0221 0.0972 0.0634
Resource allocation (γ = 0.2) 0.0220 0.0953 0.0627
Cosine similarity (γ = 0.3) 0.0222 0.0967 0.0636
Sorensen (γ = 0.4) 0.0223 0.0985 0.0651
Hub depressed index (γ = 0.3) 0.0221 0.0964 0.0641
Hub promoted index (γ = 0.2) 0.0217 0.0939 0.0617
Taxonomy network (γ = 0.3) 0.0220 0.0944 0.0639
Probabilistic spreading (γ = 0.2) 0.0211 0.0960 0.0640
Pearson Similarity (γ = 0.3) 0.0217 0.0961 0.0653
Sapling Similarity (SSCF) (γ = 0.4) 0.0227 0.0995 0.0682
Preferential attachment 0.0145 0.0582 0.0403
NMF 0.0174 0.0773 0.0509
LightGCN 0.0226 0.0978 0.0670

Table 2: Comparison among different similarity metrics. The results are achieved by using Collaborative Filtering on the country-export, Amazon-
product, and Milan GPS datasets. We indicate the memory-based CFs with the name of the respective similarity metrics we used (our SSCF method
is the Sapling Similarity) and the optimized γ value. We also show the performance of preferential attachment, NMF, and LightGCN. For each
dataset the highest values of each indicator (in bold) are reached by Sapling Similarity.
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We consider three relatively small datasets: country-export, Amazon-product, and Milan GPS data. The results
we present refer to the weighted average between the item-based and the user-based approaches defined in equation
12 (the performance of user-based and item-based models are shown in the supplementary material together with
plots about the γ optimization for all the similarity metrics). We also show the performance of preferential attachment
(a simple model where the probability of having a link between a user and an item is the product of their degree),
Non-negative matrix factorization (NMF), and LightGCN.
Our results indicate that in these datasets, Sapling Similarity (SSCF) outperforms not only other similarity metrics
but also NMF and LightGCN. This means that with this memory-based approach, we can achieve better results than
more complex model-based architectures, and this is a significant result also because of the higher simplicity and
interpretability of memory-based CF with respect to model-based ones.
Before showing that SSCF is competitive also with the state-of-the-art model-based approaches, and considering also
benchmark datasets for CFs, we provide a practical example taken from the country-export data. This example shows
intuitively how Sapling Similarity is able to capture relevant information with respect to other similarity measures.

5.2. Zambia, Saudi Arabia, and Japan: a case study

Here we provide an example of some characteristics of the data which are better captured by the Sapling Similar-
ity by using country-export data. In figure 3 we show the Decision Sapling used to compute the similarity between
Zambia and Saudi Arabia on the top right and Zambia and Japan on the top left. If we pick a random product and we
ask if Zambia exports it, the probability is 6.4%. If we ask if Zambia exports a random product chosen from those
exported by Japan, the probability drops to 3.7%. Knowing that Japan exports something reduces our confidence in
the fact that also Zambia can export it since the two countries are anti-correlated. To express this concept we need
to define a negative similarity between Zambia and Japan so that in equation 10, Japan gives a negative contribution
to the recommendation of a product to Zambia. The economic reason is that Japan is specialized in technological
complex products, while Zambia is more focused on raw materials and does not have the capability to export the same
products as Japan. If we apply the same argument to the case of Saudi Arabia and Zambia, whose Decision Sapling
is represented in the top right, knowing that the former exports something does not add information about a possible
export of the latter. In this sense, Zambia and Saudi Arabia are uncorrelated and their similarity should be close to
zero, so that in equation 10, Saudi Arabia does not give any information on a possible export of Zambia. For the sake
of completeness, the most similar countries to Zambia result to be African countries like Tanzania, Zimbabwe, and
Uganda.
With an approach based only on co-occurrences the difference between Japan, Saudi Arabia, and Zambia is practically
negligible. In the bottom part of figure 3 we show how the similarity between Japan and Zambia is either higher or
comparable to the one between Saudi Arabia and Zambia when we use classic similarity metrics. The only metrics
that are able to understand the real difference between Zambia and Japan are Sapling and Pearson Similarity because
of the allowance of negative values.

5.3. Comparison of CFs on benchmark datasets

In this section, we present the results of a comparison between the state-of-the-art, model-based CFs and our SSCF.
We use the three datasets Gowalla, Yelp2018, and Amazon-Book, which are widely used to compare CF methods.
In Table 3, we show the values for recall@20 and ndcg@20. The optimization of the γ parameter is shown in the
supplementary material; we find the values 0.5 for Gowalla, 0.8 for Yelp2018, and 0.8 for Amazon-Book. In all
datasets, SSCF provides better recommendations than NGCF. In the case of Yelp2018, its performance even surpasses
LightGCN. However, the most notable result is in the Amazon-Book dataset (the largest one): here SSCF outperforms
all existing models and represents the new state-of-the-art.
We would like to emphasize that the performance of SSCF does not depend on any hyperparameter that has been
optimized on test data, the only parameter γ is estimated from train data. In contrast, all the model-based approaches
shown here depend on hyperparameters that have been directly optimized on the test set. In a real-world scenario
where the ground truth is unknown, the scores of these model-based methods may be lower. To give an example, on
the Amazon-Book dataset, we observe that the item-based Sapling Similarity model reaches an ndcg@20 value that
is a little higher than the one of the SSCF, even if they are very close. Moreover, if we would have optimized the γ
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Figure 3: At the top, the Decision Saplings are used to compute the similarity between Zambia and Japan (on the left) and between Zambia and
Saudi Arabia (on the right). Knowing that a product is exported by Japan reduces the probability that Zambia exports it, leading to a negative
Sapling Similarity; on the contrary, Saudi Arabia does not add any information and so the Similarity is zero. On the bottom right we compare the
similarity metrics between Zambia and Japan and between Zambia and Saudi Arabia. On the bottom on the left, the blue bars correspond to the
similarity between Zambia and Japan, and the orange ones to the similarity between Zambia and Saudi Arabia. Both values are normalized with
respect to the blue bars. Only Sapling and Pearson Similarity correctly quantify the anti-correlation between Zambia and Japan exports.

parameter on the test set we would have found 0.9 instead of 0.8. In this case, SSCF would have reached a recall@20
of 0.0779 and an ndcg@20 of 0.0654. This example shows that if we use test data to optimize hyperparameters, the
results we show may be overestimated compared to a real scenario.

6. Conclusions and future works

This paper introduces the SSCF, a memory-based collaborative filtering based on a novel metric of similarity
between nodes (users or items) in weightless bipartite networks, the Sapling Similarity. This metric is built using
concepts from information theory, with a probabilistic approach. The main novelty introduced by the Sapling Simi-
larity is the permission of negative values, that are not conceived in the case of classical similarity metrics based on
co-occurrences. Moreover, our probabilistic approach naturally requires (and introduces in the mathematical formu-
lation) the total size N of the layer (users or items) under investigation. The idea is to look at how the probability that
a user is connected to an item (or vice versa) changes if we know that this item is connected to another user. If the
probability decreases, then the two users are anti-correlated and we assign a negative similarity; if the probability does
not change the similarity of the two users is zero; finally, if the probability increases they are positively correlated and
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Gowalla Yelp2018 Amazon-Book
model recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20
NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315
UltraGCN 0.1862 0.1580 0.0683 0.0561 0.0681 0.0556

simpleX 0.1872 0.1557 0.0701 0.0575 0.0583 0.0468
LT-OCF 0.1875 0.1574 0.0671 0.0549 0.0442 0.0341

BSPM-LM 0.1901 0.1548 0.0713 0.0584 0.0733 0.0609
BSPM-EM 0.1920 0.1597 0.0720 0.0593 0.0733 0.0610
Sapling UB 0.1640 0.1346 0.0556 0.0459 0.0504 0.0406
Sapling IB 0.1260 0.0900 0.0555 0.0446 0.0766 0.0648

SSCF 0.1775 0.1390 0.0664 0.0542 0.0773 0.0647

Table 3: Accuracy in terms of recall@20 and ndcg@20 on Gowalla, Yelp2018, and Amazon-Book dataset achieved by SSCF and current state-of-
the-art models. For each dataset, we bolded the highest values of each indicator. SSCF achieved excellent results considering that it is a highly
interpretable method. Moreover, in the case of the Amazon-Book dataset, it is even the new state-of-the-art model. We also show in the table the
performance of the user-based and the item-based Sapling Similarity.

their similarity is positive. This criterion is expressed in mathematical terms by using the variation of Gini Impurity,
following the ideas at the base of Decision Trees and Random Forest [60, 61].
Similarity metrics are widely used to build recommender systems with the aim of suggesting new items to users, in
particular in the field of collaborative filtering. Here we show that memory-based collaborative filtering based on
Sapling Similarity outperforms the ones based on other similarity metrics.
With the always-increasing interest in machine learning, many model-based collaborative filterings have been intro-
duced in the last decade. In this study, we define the SSCF method as a weighted average of a user-based and an
item-based approach based on Sapling Similarity. Using three widely used datasets to evaluate collaborative filterings
we show that SSCF is competitive with the current state-of-the-art model-based approaches. Moreover in the Amazon-
book dataset, our SSCF achieves higher scores than all existing models. This represents a remarkable result given the
high interpretability and simplicity of SSCF, whose performance rely on a single easily interpretable hyperparameter,
in contrast to model-based approaches such as graph convolution networks, whose results are less interpretable and
depend on multiple hyperparameters, often optimized directly by maximizing the model’s performance on test data.
It is important to note that Sapling Similarity can be used for more than just constructing collaborative filtering. Mea-
suring the similarity between nodes in a bipartite network is equivalent to doing a projection on one of the two layers.
Bipartite network projections have many applications, for instance, they can be used to do community detection and
clustering in order to reveal the hidden relations among the nodes in the network [62, 63]. For instance, in [64] Bass
et al use similarity metrics to investigate biological networks.
Similarity measures and item-based collaborative filtering are widely used in Economic Complexity to measure the
relatedness between countries and products [11], however recent studies [12, 1] showed that tree-based machine
learning algorithms like Random Forest [61] and XGBoost [65, 66] provide better results. The disadvantages of using
machine learning with respect to item-based collaborative filtering are the loss of interpretability of the results and
the high computational time required to train an algorithm (a training sample is a country with 5040 binary features,
one for each product). A possible development in this direction is to use the Sapling Similarity to perform a feature
selection in order to reduce the features of the training samples. This would reduce the computational time required
to train the algorithms and would also increase the interpretability of the models. Note that positive-definite similarity
metrics can not be used for this task, since for a machine learning algorithm the negative relations between products
are key [1].
The code for our proposed SSCF is available at https://github.com/giamba95/SaplingSimilarity.
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Supplementary Information

S1. Country-export, Amazon-product, and Milan GPS datasets

Country-export data are derived from the UN-COMTRADE (comtrade.un.org) dataset consisting of export data
about 169 countries and 5040 products. A common procedure in the economic complexity literature [2, 13] is to
compute the Revealed Comparative Advantage (RCA) introduced by Balassa [54] defined as:

RCAiα =
Eiα∑
λ Eiλ

∑
l
∑
λ Elλ∑

l Elα
(24)

where Eiα is the volume of product α expressed in american dollars that country i exports.
Since RCA is an estimate of how much a country is competitive in the export of a product, with a threshold on the
RCA values we can build a binary matrix M representing the bi-adjacency matrix of the bipartite network where a
link (i, α) means that country i is competitive in the export of product α.

Miα =


1 if RCAiα ≥ 1

0 if RCAiα < 1
(25)

The Amazon-product dataset (http://jmcauley.ucsd.edu/data/amazon) contains the rating data of users for multiple
Amazon products. The ratings range from 1 to 5, and they are collected in a matrix R. To build the matrix M we select
the links with scores equal to or above 3.

Miα =


1 if Riα ≥ 3

0 if Riα < 3
(26)

We removed from the dataset the users and the products with degree less than 10.
Finally, the Milan GPS data connects inhabitants with Points Of Interest (POI) in Milan extracted from OpenStreetMap
(https://www.openstreetmap.org/). The location data are provided by Cuebiq Inc. (https://www.cuebiq.com/about/data-
for-good/). We defined hexagonal areas [57] in the city so that there is a link between an inhabitant and an area if the
inhabitant visited a POI located in the area.

S2. User-based and item-based results on country-export, Amazon-product, and Milan GPS data

In table 4 we show the accuracy in terms of precision@20, recall@20, and ndcg@20 of item-based and user-based
collaborative filtering based on different similarities. For each indicator, the collaborative filtering based on Sapling
Similarity reaches the highest scores. Looking at the table one can norice that, in the item-based case, the Sapling
Similarity improvement with respect to the other models is more evident. In the country-export dataset, in the user-
based case, Sapling Similarity improves the recall@20 of the second best model by 3.7%, while in the item-based
case, the improvement is 9.5%. In the Amazon-product dataset, the improvement is 1.7% in the user-based case and
10.4% in the item-based one. In the Milan GPS data, the improvement is 0.2% in the user-based case and 11.6% in
the item-based one.
Finally, we also notice that in the country-export and Milan GPS data the user-based approach works better than the
item-based one, but in the Amazon-product dataset this depends on the similarity: for instance, Sapling Similarity
works better in the item-based case, while COsine Similarity works better in the user-based one.

S3. Optimization of γ in country-export, Amazon-product, and Milan GPS data

In figure 4 and 5 we show the optimization of the γ parameter which determines the relative weight we assign to
the user-based and the item-based collaborative filtering when computing the weighted average. We looked for the
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User-Based Item-Based
model precision@20 recall@20 ndcg@20 precision@20 recall@20 ndcg@20

Country-Export

Common neighbors 0.1429 0.0319 0.1635 0.0799 0.0157 0.0743
Jaccard 0.1621 0.0417 0.1788 0.1426 0.0291 0.1380
Adamic/adar 0.1414 0.0312 0.1629 0.0852 0.0173 0.0791
Resource allocation 0.1370 0.0302 0.1562 0.0947 0.0202 0.0892
Cosine similarity 0.1562 0.0400 0.1739 0.0811 0.0156 0.0746
Sorensen 0.1601 0.0416 0.1762 0.1166 0.0227 0.1111
Hub depressed index 0.1580 0.0406 0.1745 0.1358 0.0274 0.1313
Hub promoted index 0.1432 0.0331 0.1611 0.0473 0.0100 0.0458
Taxonomy network 0.1562 0.0409 0.1725 0.1592 0.0348 0.1601
Probabilistic spreading 0.1479 0.0399 0.1622 0.0947 0.0202 0.0892
Pearson Similarity 0.1846 0.0435 0.2018 0.1654 0.0324 0.1803
Sapling Similarity 0.1941 0.0451 0.2107 0.1888 0.0381 0.2064

Amazon-Product

Common neighbors 0.0040 0.0794 0.0328 0.0031 0.0629 0.0246
Jaccard 0.0045 0.0894 0.0374 0.0051 0.1026 0.0444
Adamic/adar 0.0041 0.0825 0.0338 0.0036 0.0716 0.0295
Resource allocation 0.0043 0.0866 0.0355 0.0039 0.0789 0.0326
Cosine similarity 0.0043 0.0856 0.0357 0.0035 0.0699 0.0290
Sorensen 0.0044 0.0887 0.0370 0.0047 0.0931 0.0395
Hub depressed index 0.0045 0.0902 0.0378 0.0053 0.1057 0.0457
Hub promoted index 0.0039 0.0787 0.0331 0.0023 0.0461 0.0177
Taxonomy network 0.0050 0.1008 0.0428 0.0055 0.1095 0.0484
Probabilistic spreading 0.0051 0.1016 0.0434 0.0039 0.0789 0.0326
Pearson Similarity 0.0052 0.1049 0.0444 0.0051 0.1029 0.0459
Sapling Similarity 0.0053 0.1067 0.0450 0.0060 0.1209 0.0552

Milan GPS data

Common neighbors 0.0208 0.0899 0.0590 0.0084 0.0383 0.0237
Jaccard 0.0213 0.0919 0.0609 0.0118 0.0534 0.0350
Adamic/adar 0.0214 0.0927 0.0603 0.0082 0.0382 0.0237
Resource allocation 0.0212 0.0924 0.0604 0.0081 0.0380 0.0235
Cosine similarity 0.0211 0.0913 0.0604 0.0090 0.0414 0.0261
Sorensen 0.0211 0.0913 0.0605 0.0106 0.0482 0.0310
Hub depressed index 0.0211 0.0912 0.0608 0.0128 0.0566 0.0364
Hub promoted index 0.0208 0.0892 0.0593 0.0064 0.0306 0.0190
Taxonomy network 0.0215 0.0930 0.0618 0.0125 0.0553 0.0355
Probabilistic spreading 0.0214 0.0923 0.0618 0.0081 0.0380 0.0235
Pearson Similarity 0.0220 0.0937 0.0623 0.0108 0.0497 0.0324
Sapling Similarity 0.0221 0.0939 0.0631 0.0136 0.0617 0.0431

Table 4: Results achieved with item-based and user-based Collaborative Filtering on the country-export, Amazon-product, and Milan GPS dataset.
For each dataset the highest values of each indicator (in bold) are reached by Sapling Similarity.

optimal value in the set {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. γ = 0 is equivalent to the user-based approach and
γ = 1 is equivalent to the item-based approach, however, the ndcg@20 values are different from the ones in table 4
because to find the optimal value of γ we use the validation set that, for each user, is composed by the 10% rounded
up of links in the train set.
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Figure 4: Optimization of the γ parameter used to combine user-based and item-based approaches in country-export (first column), Amazon-product
(second column), and Milan GPS data (third column).
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Figure 5: Optimization of the γ parameter used to combine user-based and item-based approaches in country-export (first column), Amazon-product
(second column), and Milan GPS data (third column).
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S4. Identification of significant links in similarity networks

Many of the similarity values between users or items are not statistically significant and must be considered noisy
[39]; When building a collaborative filtering they should be removed to avoid reducing the quality of recommenda-
tions.
For example, in the bipartite country-product network, most products share at least one co-occurrence with at least
another product, and the same is true for countries. A single co-occurrence is sufficient for similarity metrics such as
Jaccard and Cosine Similarity to have a non-zero (and positive) similarity. The purpose of this section is to investigate
how identifying significant elements in the similarity matrix (as done, for example, by Pugliese et al. [24], who used
the Configuration Model as a null model [62]) affects the recommendations provided by similarity metrics.
Let us consider the item-based case, our approach to filter the similarity matrix consists of selecting for each item
(row of the matrix) the k items (columns of the matrix) with the highest absolute value of similarity and setting the
similarities with other items equal to zero. In the user-based case we follow the same procedure.
When computing the recommendation score of an item α to a user i with a item-based Collaborative Filtering, we
are involving in the computation only the k items that are really similar or, in the case of the Sapling Similarity and
Pearson Similarity, also dissimilar to α. By varying k, we look at how good are the recommendations provided in the
three dataset: country-export, amazon-product and Milan GPS data.
In figure 6 we show how the value of k affects the recommendation quality (in terms of ndgc@20) of different sim-
ilarity metrics both in the user-based and the item-based cases. As the reader can see Sapling Similarity generally
performs better than the other metrics, moreover it is less penalized by using a high value of k meaning that it is less
influenced by the presence of noisy relations between users or items.

Figure 6: The effect of setting elements in each row of the similarity matrix to zero, except for the k ones with the highest absolute values. We
show the value of ndcg@20 for Jaccard, Cosine Similarity, Pearson and Sapling Similarity. The latter reaches the highest performance with all the
datasets, moreover, we can see that it is less penalized by high values of k which means it is not affected by noisy relations among users or items.

S5. Sapling Similarity Network of countries

In addition to the good performance of the Sapling Similarity when used to recommend new products to countries
in collaborative filtering, here we want to provide a visible proof of its good functioning using it to extract a network
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of countries, or in other words to project the country-product bipartite network into the layer of the countries. In the
Sapling Similarity Network each node is a country; for each country we create a link if the linked country is among the
4 highest values in terms of Sapling Similarity. We show the result in figure 7. One can easily identify geographical

Figure 7: The Sapling Similarity Network (country layer). For each country only the top 4 links, in terms of the Sapling Similarity, are shown. The
resulting structure reflects both geographical and industrial affinity among countries.

clusters corresponding to the Europe and Africa regions; the clear distinction between Asiatic countries focused on
mineral fuels, like Russia and Arabia, and the Asian tigers, like Singapore, South Korea, Malaysia, Thailand etc. is
far from trivial. It is also interesting to notice how Venezuela is separated from the other countries of South America
and it is close to Asiatic countries related to mineral fuels.

S6. LightGCN: Hyper-parameter Settings

In this section we discuss the hyper-parameter settings for LightGCN applied to the three datasets country-export,
amazon-product and Milan GPS data. Same as LightGCN authors [30] the embedding size is fixed to 64 and the
optimizer is ADAM [67] with the default learning rate 0.001 and default mini-batch size of 1024. We investigated
the effect of different values of the L2 regularization coefficient and the number of layers on the recommendations in
the test set. In figure 8 we show the optimization of these two hyper-parameters. We first tuned the L2 regularization
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Figure 8: The optimization of L2 regularization term and the number of layers in the three dataset country-export, amazon-product, Milan GPS
data.

coefficient and then the number of layers of LightGCN with the optimal value of the L2 regularization coefficient.
The optimal values with which the results in the main paper are obtained are the following:

• country-export: L2 regularization = 1e-3, number of layers = 3, epoch = 130;

• amazon-product: L2 regularization = 1e-3, number of layers = 4, epoch = 810;

• milan GPS data: L2 regularization = 1e-2, number of layers = 3, epoch = 910;
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S7. Non-Negative Matrix factorization: embedding size

In this section, we discuss the choice of the embedding size k used to apply non-negative matrix factorization. We
investigated how the value of k affects the recommendation quality using the test set and we chose the optimal one. In
particular, for the country-export dataset, we found k = 7, for the Amazon-product dataset we found k = 201 and for
the Milan GPS dataset, we found k = 13. In figure 9 we show how the value of k affects the ndcg@20 score.
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Figure 9: The effect of the embedding size to the quality of the recommendations provided by non-negative matrix factorization.

S8. Optimization of γ in Gowalla. Yelp2018, and Amazon-book data

In figure 10 we show the optimization on the validation set of the γ parameter when building the SSCF model
with Gowalla, Yelp2018, and Amazon-book data.
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Figure 10: Optimization of the γ parameter used to combine user-based and item-based approaches in Gowalla (left), Yelp2018 (center), and
Amazon-book (right).

S9. Rating predictions on Movielens data

In this section we compare similarities in predicting ratings users will give to movies. We use the movielens
dataset (https://grouplens.org/datasets/movielens) that contains ratings users gave to movies in a time range of 1039
days. The ratings range from 1 to 5, and they are collected in a matrix R. As done with the Amazon-product dataset,
to build the matrix M we select the ratings equal to or above 3. To measure the similarity matrix B we use a M matrix
built with data in the first 730 days. In this exercise we do not want to predict the simple presence of a link in the
future, but we want to predict the rating a user i will give to a movie α. To compute our prediction we use these
formulas:

S iα =

∑
j∈Wα

B(user)
i j R jα∑

j∈Wα
|B(user)

i j |
user based (27)
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S iα =

∑
β∈Qi

B(item)
αβ Riβ∑

β∈Qi
|B(item)
αβ |

item based (28)

Where Wα is the set of users who rated the movie α in the first 730 days and Qi is the set of movies the user i rated
in the first 730 days (here we consider also ratings that are lower than 3). So, for instance, in the item-based case, our
predicted rating for a user to a movie is the average rating the user gave to similar movies.
We then compare our predicted scores (ypred) with the real scores (ytrue) users gave to movies during the last 309 days
using the following evaluation metrics:

• MAE: the mean absolute error is MAE =
∑

i |ytrue
i −ypred

i |

Nr
with Nr total number of ratings;

• RMSE: the root-mean-square error is RMS E =

√∑
i(ytrue

i −ypred
i )2

Nr
;

• ndcg: the normalized discounted cumulative gain is a measure of ranking quality that quantifies the goodness
of the ranking of the recommendations. Details about this metric can be found in [59]. Here we compute the
ndcg separately for each user and then we compute the average.

In table 5 we show the results we get using different similarities. Also in this exercise, Sapling Similarity achieves the
best scores.

User-Based Item-Based
MAE RMSE ndcg MAE RMSE ndcg

Common neighbors 0.730 1.010 0.907 0.822 1.139 0.901
Jaccard 0.730 1.010 0.909 0.781 1.090 0.906
Adamic/adar 0.729 1.010 0.908 0.824 1.141 0.901
Resource allocation 0.728 1.009 0.909 0.830 1.150 0.900
Cosine similarity 0.729 1.009 0.908 0.793 1.101 0.901
Sorensen 0.729 1.010 0.908 0.784 1.092 0.906
Hub depressed index 0.729 1.010 0.908 0.776 1.083 0.904
Hub promoted index 0.730 1.010 0.908 0.808 1.123 0.856
Taxonomy network 0.728 1.009 0.908 0.773 1.081 0.906
Probabilistic spreading 0.729 1.010 0.908 0.768 1.070 0.899
Pearson Similarity 0.732 1.013 0.909 0.764 1.068 0.907
Sapling Similarity 0.724 1.003 0.910 0.746 1.054 0.909

Table 5: Performance of the recommendation of user-based (on the left) and item-based (on the right) collaborative filtering that recommends new
movies to users. the optimal model is the one with the lowest MAE and RMSE and highest ndcg. In both cases, Sapling Similarity outperforms the
other similarities.

S10. About the computational complexity of similarities

All the similarity metrics we use in this study make use of the number of co-occurrences COusers
i j (or COitems

i j )
that can be computed with a matrix multiplication MMT (or MT M). The standard computational time for a matrix
multiplication (n × m)(m × p) is O(nmp) [68], so in our case, being the dimension of M |U | × |Γ| the computational
time required for the computation of the number of co-occurrences is O(|U |2|Γ|) in the user-based case and O(|U ||Γ|2)
in the item-based case.
Regarding all the similarity metrics, the computational complexity can be reduced to the co-occurrence computation.
We generated different random biadjacency matrices M with a fixed density of links of 50%, varying the value of |U |
and |Γ|. In figure 11 we show the computational time of Sapling Similarity in the user-based case. As the reader can
see the computational time is O(|U |2|Γ|).

We observe that there are several methods to compute the number of co-occurrences on a bipartite network, with
different computational times. However, fixed the algorithm with which we compute the co-occurrences, all the
similarity metrics we use in our study have the same computational complexity.
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Figure 11: Computational time of Sapling Similarity in the user-based case on different bipartite networks. The density of links is fixed at 50% and
the values of |U | and |Γ| for each point are written in the legend. On the horizontal axis there is |U |2 × |Γ|. As the reader can see from the linearity,
the computational time of Sapling Similarity is O(|U |2 |Γ|).

27


