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a b s t r a c t

In this work the time variability of MODIS satellite evapotranspiration data was in-
vestigated by using the informational Fisher–Shannon analysis and the multifractal
detrended fluctuation analysis to reveal the presence of Xylella Fastidiosa in olive
trees, a very dangerous phytobacterium capable to induce a severe disease in olive
trees, known as olive quick decline syndrome. Several hundred pixels of infected and
healthy sites located in southeastern Italy were analysed. Our results suggest that the
informational (Fisher Information Measure and Shannon entropy) and multifractal (hq-
range, multifractal width W and maximum α0) parameters allow a good discrimination
between infected and healthy sites, envisaging the use of the combination of this two
methods as an operational tool for early diagnosis of plant deterioration due to the
bacterium.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The biodiversity reorganization and shift of species distribution, due to the fast time evolution of climate change [1],
long with the increase of global connections around the world, has represented one of the major drivers of biological
nvasions causing a great environmental problem [2]. In fact, the environmental changes as consequence of the climate
hange and the disruption of the local communities after biological invasions have altered the plant–vector–pathogen
nteractions [3] favouring the onset of extremely dangerous phytopathogens. Xylella Fastidiosa is certainly one of these.
t is transmitted by several vectors, like the Homalodisca vitripennis, a sap-sucking leafhopper that comprises 18 species,
ative to southeastern United States and northeastern Mexico [4]. Xylella Fastidiosa is the cause of important economic

loss due to several plant infections, like the Pierce’s disease of grapevines [5], the olive quick decline [6], the bacterial
leaf scorch [7], the phony peach disease [8]. In Europe Xylella Fastidiosa was first detected in Italy in 2013 [9], and then
in several other European countries; however this bacterium was also detected in the Middle East [10] and Asia [11],
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eing considered now a serious threat to large variety of plants of economic relevance and to forests becoming a real
hytosanitary emergency [12].
Before 2013, only Krugner et al. [13] studied Xylella Fastidiosa subsp. multiplex detected in olive trees with leaf scorch

nd branch dieback; but in their experiments, consisting in recovering isolates from symptomatic trees and inoculating
nd vector-transmitting them to olive plants of different cultivars, infections did not cause the same symptoms observed
n the field. Only after Xylella Fastidiosa was detected in olive orchards in southern Italy more deep investigation was
erformed on olive crop in Argentina and Brazil, where, symptomatic plants were also discovered to host Xylella Fastidiosa
ubsp. pauca [14,15], which is the same subspecies infecting the Italian olive trees [16]. Strona et al. [17] found that the
actors contributing to the anchoring of Xylella Fastidiosa in the Apulia (southern Italy) were the wide distribution of olive
roves in this territory and the large amount of Philaenus spumarius L. that is vector of this bacterium. A few studies
ave been focused on the precautionary prediction of risk areas for early detection in order to minimize damage [18]
nd determine the potential distribution of Xylella Fastidiosa to establish basic data for monitoring and controlling its
nfection [19].

Up to now, no treatment has been found to let the infected trees to recover, and only plucking the infected trees
as been proposed as an effective means to obstacle the diffusion of the epidemy. Of course, an early identification of
symptomatic or infected plants with visible symptoms of desiccation would represent a much more efficient disease
anagement strategy, lowering the risk of spreading of infection. At present the most commonly used approach is the
isual inspection that has some advantages, like rapidity, easiness and cost-effectiveness; but, the variability in accuracy
ue to the subjective assessment of the level of the symptoms could make the assessment of the disease not a standard
rocess. Furthermore, the collected samples have to be analysed in the laboratory, and this make visual inspection
ime-consuming, expensive and destructive [20].

Over the years, Remote Sensing (RS) technologies have been gaining special attention in the monitoring of vegetation
hanges and dynamics and more recently in the detection of plant diseases and pests. Remote sensing methods can capture
he degradation signs induced by many pathogen infections. In fact, multi-temporal and multi-spectral satellite data can
dentify the signals induced by the reduced chlorophyll pigment content and in turn photosynthetic activity, monitoring
he nutritional, physiological and water status of plants; factors that can give crucial information on the health status of
he plant, and, in turn, on the possible ongoing infection.

Castrignanó et al. [21] explored the use of Unmanned Aerial Vehicle (UAV) in combination with a multispectral
adiometer for early detection of Xylella Fastidiosa infection. By mean of four drone flying over three olive groves in Apulia
southern Italy) from 2017 to 2019, they classified the severity of the infection in olive trees at an early stage, combining
eostatistics and discriminant analysis, obtaining promising results that encourage the application of UAV technology for
he early detection of Xylella Fastidiosa infection. Zarco-Tejada et al. [22] showed that Xylella Fastidiosa infection can be
evealed in olive trees before symptoms appear, by analysing the changes in plant functional traits retrieved from airborne
maging spectroscopy and thermography. Camino et al. [23] coupled a spatial spread model with the probability of Xylella
astidiosa infection predicted by a RS-driven support vector machine model, predicting accurately plant disease spatial
istribution.
Since 2013, Xylella Fastidiosa has strongly impacted olive orchards in Apulia (souther Italy) inducing strong disease

known as olive quick decline syndrome) characterized by rapid branch desiccation and tree death. The bacterium
ultiplies in the conducting vessels of the xylem of the host plants, so that it obstructs the vessels that carry water
nd nutrients from the roots to the stem and up to the leaves, creating a sort of gel which prevents the regular flow of
he fluid; as a consequence infected plants dry up completely [24].

Due to the mechanism of infection by Xylella Fastidiosa, the analysis of time series of evapotranspiration data to monitor
the water status of plants seem suited to indicate the presence of this plant disease.

In particular, we investigated the time dynamics of several hundred pixels covering infected and healthy areas of
southern Italy of MODIS-based evapotranspiration (ET) data, by means of two methods: the Fisher–Shannon analysis
[25–28] and the multifractal detrended fluctuation analysis (MFDFA) [29,30], which are able to evidence the informational
and the multiscaling properties of a time series, respectively, and to disclose complex patterns in signals as those
characterizing the data investigated in this study. Both methods have been widely used in several research fields, from
brain research [31] to biology [28,30,32] to econophysics [27,33] to geophysics [34,35]. Both methods have already been
used to investigate complex dynamics in observational time series. da Silva et al. [36] applied the informational approach
of the Fisher–Shannon method to study the time series of Standardized Precipitation Index (SPI) derived from monthly
rainfall data at 133 gauging stations in Northeast (NE) Brazil distinguishing between different climatic regimes. Guignard
et al. [37] found that the order/disorder features of high-frequency wind speed measured in urban layouts depends
on height. Tripaldi et al. [38,39] distinguished different volcanic states by investigating the informational properties of
geochemical and geodetic variables at Campi Flegrei (Italy). The multifractality has been utilized to discriminate different
time dynamics between fire-affected and fire-unaffected sites by using MODIS Aqua and Terra satellite time series of
normalized difference vegetation index and enhanced vegetation index [40], or to capture heart-failure signatures in
heartbeat interval series [41].
2
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. Data

The analysed ET time series were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). Each
ime series is 575 samples long and span from January 2010 to June 2022. These products, known as MOD16A2.006
additional info at http://www.ntsg.umt.edu/project/modis/mod16.php) are free available online (https://lpdaac.usgs.gov)
nd in the Google Earth Engine (GEE) cloud database. For the purpose of our investigation the data were accessed
rom GEE, because cloud-based computing systems provides both updated MOD16A2.006 products ready-to-use and
mpressive computing power without the need to download and locally store these large amounts of products, thus
trongly facilitating the use of big and open satellite data. The MOD16 dataset is made up of different variables (global
vapotranspiration (ET), actual evapotranspiration (AET), latent heat flux (LE), potential ET (PET), potential LE (PLE))
egularly computed at 8-day, monthly and annual time scale intervals. MOD16 is a VI model based on the Penman–
onteith equation driven by MODIS data, and global meteorological reanalysis from the Modern-Era Retrospective
nalysis for Research and Applications (MERRA) [42]. ET can be estimated summing up soil evaporation (Es), canopy
vaporation (Ec), and canopy transpiration (Tc):

ET = Es + Ec + Tc (1)

The radiation arriving to the soil can be partitioned between canopy and soil surface using the fraction of photosynthet-
cally active radiation (fPAR) assuming that fPAR and canopy cover (fc) are equal. MOD16 also considers the pixel wet surface
raction (fw), calculated as a function of relative humidity (RH; when RH is higher than 70%, fw = RH4), representing the
raction of vegetation and soil covered by water [43]. Estimations of Es, Ec and Tc are given by the following equations:

Es = fw
∆AS +

(1−fc )ρaCP (eS−ea)
rsa

∆ + γ
rSS
rSa

+ RH
(eS−ea)

βsm (1 − fW )
∆AS +

(1−fc )ρaCP (eS−ea)
rsa

∆ + γ
rSS
rSa

(2)

Ec = fw
∆AS +

fcρaCP (eS−ea)
rwc
a

∆ + γ
rwc
S
rSa

(3)

Tc = (1 − fw)
∆AC +

fcρaCP (eS−ea)
rta

∆ + γ (1 +
rtS
rSa
)

(4)

where ∆ is the gradient of the saturation vapour pressure–temperature, Cp is the specific heat capacity, ea and es are
ctual and saturated vapour pressure, respectively, ρa is the air density, As and Ac are the available energy to the soil and
anopy, respectively, γ is the psychrometric constant, βsm is a parameter related to the soil moisture constraint, r ss and r sa
re the surface and aerodynamic resistance for the soil surface, rwc

s and rwc
a are the surface and aerodynamic resistance for

he wet canopy evaporation and r ts and r ta are the surface and aerodynamic resistance for the canopy transpiration [43].

. Selection of study areas

In October 2013, Xylella Fastidiosa was detected for the first time in the European Union on olive trees near Gallipoli in
he Lecce province (Apulia, southern Italy). Since then, controls were in place to prevent the bacterium from spreading;
evertheless, Xylella Fastidiosa epidemy is continuing to grow in Apulia, and does not show any sign of slowing down. In
ay 2015, the pest was considered to be established and eradication no longer feasible. Since then, Xylella Fastidiosa issues
ave been regularly discussed with the relevant authorities in EU member countries in order to prevent its spreading to
he neighbouring provinces of Taranto and Brindisi and to other Italian regions as well as to other EU countries. In this
ork, we focused on five olive orchard areas located in southern Italy (Fig. 1): Foggia, Matera, X2015, X2016 and X2017;
he last three are located in Southern Apulia are infected by Xylella Fastidiosa in different periods from 2015 to 2017,
hile the first two are healthy. Our objective is to reveal the difference between the two types of areas (infected and not

nfected) by using the time series of MODIS ET at 500 m resolution with a sampling time of 8 days. The selected areas
re featured by quite similar topographic (between flat and hilly) and climatic (mainly Mediterranean) conditions, which
re quite relevant characteristics for the evapotranspiration dynamics that is the parameter analysed for the purpose or
ur investigation.

. Methods

.1. The Fisher–Shannon analysis

The Fisher–Shannon method is employed to investigate the informational properties of a time series that are the Fisher
nformation Measure (FIM) and Shannon entropy (SE); both quantify the properties of smoothness of the distribution
f the series’ values at local and global level, respectively. The FIM and SE are used to characterize the complexity of
3
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Fig. 1. Study areas.

non-stationary time series described in terms of order and organization the first [25], and uncertainty or disorder the
second [26]. The FIM and SE are defined by the following formulae:

FIM =

∫
+∞

−∞

(
∂

∂x
f (x)

)2 dx
f (x)

(5)

SE =

∫
+∞

−∞

fX (x)log(fX (x))dx (6)

where f(x) is the distribution of the series’ values x. The Shannon entropy power NX is generally used instead of SE:

NX =
1

2πe
e2SE (7)

to deal always with positive quantities. FIM and NX are not independent of each other due to the isoperimetric inequality
FIM · NX ≥ D [44], where D is the dimension of the space, which is 1 for time series. In the so-called Fisher–Shannon
Information plane (FSIP) that has FIM and NX as coordinates, time series are represented by points that can occupy only
the half-plane FIM · NX ≥ 1, where the minimum FIM · NX = 1 is for Gaussian processes. The FSIP, which combines the
global properties of the SEP and the local properties of FIM, is generally used to better discern time dynamics of time
series [44].

4.2. The multifractal detrended fluctuation analysis

The multifractal detrended fluctuation analysis (MFDFA) [29] is an efficient method that is used to investigate particular
properties of time series like heterogeneity, intermittency, different role played by small and large fluctuations, which
define the multifractality of a series. If the series x(i), for i = 1, 2, . . . ,N has mean xave, the profile y(i) is obtained by a
simple integration:

y(i) =

i∑
k=1

[x(k) − xave] (8)

The profile y(i) is divided into Nm = [N/m] contiguous boxes of identical size m that is called scale. In case N is not a
multiple of m, since a short part of the series could remain at the end, the same procedure is applied from the end of the
profile y(i). In each of the 2Nm boxes the profile is fitted with a p-degree polynomial by a least square method, obtaining
the following variance:

F 2(m, ν) =
1
m

m∑
i=1

{[(ν − 1)m + i] − yν(i)}2, ν = 1, . . . ,Nm (9)

and

F 2(m, ν) =
1
m

m∑
{[N − (ν − Nm)m + i] − yν(i)}2, ν = Nm, . . . , 2Nm (10)
i=1

4
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here yν(i) is the p-degree polynomial fitting the profile in the box ν; the polynomial, thus, removes all the trends until
he order p in the profile, and until the order p-1 in the original time series. Then, the qth order fluctuation function Fq(m)
s calculated as

Fq(m) = {
1

2Nm

2Nm∑
ν=1

[F 2(m, ν)]
q
2 }

1
q (11)

here q ̸= 0. For q = 0, F0(m) is calculated as follows:

e
1

4Nm
∑2Nm

ν=1 ln[F2(m,ν)]
≈ mho (12)

rom which the exponent h0 is obtained. For q > 0 the large fluctuations are enhanced, while for q < 0 the small ones
re highlighted. The fluctuation function Fq(m) increases with the box size or scale m; but if such increase is a power-law,
hen the series is characterized by long-range power-law correlations

Fq(m) ≈ mhq (13)

here hq is called generalized Hurst exponent. If the exponent hq is nearly constant with q, the series is called monofractal,
ndicating that the scaling behaviour of the small and large fluctuations is approximately identical. If the small and
arge fluctuations have different scaling behaviours, hq decreases with q, indicating that more exponents are necessary
o describe the fractality of the series that in this case is multifractal with a more complex structure. The range of the
xponents hq (hq-range) is employed to quantify the multifractality of a series. The larger the hq-range, the larger the
ultifractal degree of the series. The degree of multifractality can be investigated by means of the multifractal spectrum.
rom the following relationships (also known as the Legendre transform):

τ (q) = qhq − 1 (14)

nd

α =
dτ
dq

(15)

he multifractal spectrum f (α) is calculated as:

f (α) = qα − τ (q) (16)

here α is the so-called Hölder exponent. The multifractal spectrum furnishes an indication of the relative dominance of
he various scaling exponents in the series and is typically a single-humped shaped. It can be fitted by a second-degree
olynomial:

f (α) =

2∑
i=0

ci(α − α0)i (17)

here α0 is the maximum. The width W of the multifractal spectrum is defined as:

W = αmax − αmin (18)

here αmax and αmin are the two zeros of the fitted second-degree polynomial. W is often employed to quantify the
ultifractality in a series. The larger the value of W , the higher the multifractal degree of the series. The maximum α0 of

he multifractal spectrum conveys information about the regular behaviour of the process, and it is high for less regular
rocesses with a finer structure, small for more regular ones.

.3. The binomial multifractal model

Since the analysed pixel time series are rather short and present gap percentages up to 25% of the length of the series,
e firstly checked the reliability of the MFDFA in detecting multifractal behaviour in short time series with gaps generated
y the binomial multifractal model defined as follows. Given 0.5 < a < 1, N = 2k, v = 1, . . . ,N , the bi-nomial multifractal

model is defined by:

xv = an(v−1)(1 − a)k−n(v−1) (19)

where n(v) is the number of digits equal to 1 in the binary representation of the index v. The hq of the binomial multifractal
series can be theoretically calculated by the following formula [29]:

hq =
1
q

−
ln(aq + (1 − a)q)

qln(2)
(20)

We generated a binomial multifractal series (with and without gaps) with a=0.75 and k=9. The length of the series is
N = 29

= 512 that is comparable with the length of the analysed pixel time series. We applied the MFDFA with moment
5
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Fig. 2. Fluctuation function for q = −5 (a) and q = 5 (b) of the binomial series for different values of the degree of the detrending polynomial.

Fig. 3. Boxplot of R2 of the binomial series for different values of the degree of the detrending polynomial.

rder q ranging from −5 to 5, with a step of 0.5, the scale m from 10 to 1
4 of the size of the series, and the detrending

polynomial degree p from 1 to 5. Fig. 2 shows the comparison between the fluctuation function F−5 and F5 varying the
degree of the detrending polynomial. As it can be seen, different degrees of the detrending polynomial lead to different
fluctuation functions for the same order q. Thus, the optimum degree of the detrending polynomial was chosen as that
maximizing the coefficient of determination R2 of the linear fit of the fluctuation function versus the scale m in log–log
scales. Fig. 3 shows the boxplot of R2 of the fluctuation functions for q ranging between −5 and 5 for different values of
the degree p. An extensive study on the relationship between the multifractal parameters and the order of the detrending
polynomial was performed by [45]. The choice of the optimum degree should be a trade-off between the average value
of the coefficient of determination R2 and its range. In our case, p = 3 can be considered the optimum degree of the
detrending polynomial because the coefficient of determination R2 ranges between 0.98 and 0.99 and has the largest
average value. Thus, we calculated the generalized Hurst exponent hq and the multifractal spectrum for p = 3. Fig. 4
shows hq ∼ q and f (α) ∼ α for the theoretical case and the binomial series (for p = 3). Apart from the shift between
he two spectra of the theoretical and the binomial series, the MFDFA seems able to detect multifractality in time series
s short as the pixel time series analysed in this study. We investigated the performance of the MFDFA in detecting
ultifractal behaviour in binomial series affected by different percentages of missing data. We analysed five cases of gap
ercentages: 5%, 10%, 15%, 20% and 25% of the length of the series. For each case we generated 100 binomial series with
issing data randomly placed within the series. For each series with gap we applied the MFDFA with q ranging from
5 to 5 and step of 0.5, scale m from 10 to 1

4 of the size of the series, and the detrending polynomial degree p = 3.
efore applying the MFDFA, the gap was removed stitching the two neighbours together. Fig. 5 shows the ⟨R2

⟩ ∼ q of the
6



L. Telesca, N. Abate, F. Faridani et al. Physica A 629 (2023) 129163
Fig. 4. hq ∼ q (a) and f (α) ∼ α (b) for the theoretical (blue line) and binomial (red circles) series.

Fig. 5. Mean R2 of the binomial series for different gap percentages.

linear fit of the fluctuation functions of the series for different gap percentages. Although the linear fit is better for series
with lower gap percentage, nevertheless even for 25% of missing data the coefficient of determination remains reasonably
high, indicating the good performance of MFDFA in detecting multifractality in short time series with gaps. Fig. 6 shows
for different gap percentages the boxplot of multifractal width W , the range of hq and the maximum of the multifractal
spectrum α0. The average values of each multifractal parameter calculated for the series with gaps is very close to that
calculated for the series without gap, although the smaller the gap percentage the smaller the variability.

5. Results and discussion

For each area the number of analysed pixels is shown in Table 1. The percentage of missing data is less than 25% of
the length of the series.

5.1. Spectral analysis

We firstly calculated the power spectrum of each pixel time series of the five investigated areas by means of the
Periodogram analysis. Figs. 7 to 11 show the power spectrum, the heat map and the mean periodogram of the time series
7
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Fig. 6. Boxplot of multifractal width W (a), range of hq (b) and maximum α0 (c) for different gap percentages. The green horizontal line represents
the value of the multifractal parameter calculated for the original binomial series without gaps.

Table 1
Number of analysed pixels for each investigated area.
Foggia Matera X2015 X2016 X2017

277 394 239 364 393

of the MODIS ET pixels for each area. The most powerful periodicities for almost all the pixels are the annual and sub-
annual (6, 4 and 3 months) cycles; these represents the phenological cycles of vegetation that are very likely correlated
with the meteo-climatic oscillations. Thus, in order to investigate the inner time dynamics of vegetation not influenced by
these oscillations, we filtered them out. Fig. 12 shows, as an example, a pixel time series of Foggia area and its normalized
residual after the spectral filtering.

5.2. Informational analysis

We applied the Fisher–Shannon analysis and calculated the FIM and the NX for all the pixel time series of each
investigated area. Fig. 13 shows the boxplots of the two informational quantities and the Fisher–Shannon Information
Plane (FSIP) of ⟨FIM⟩ ∼ ⟨NX ⟩. Comparing the distribution of the FIM and SEP between infected and uninfected sites, we
see that the distribution of these two parameters for the uninfected sites is characterized by a larger asymmetry than
that of the infected sites, with the FIM (SEP) median larger (smaller) than that of the infected pixels. The FSIP shows a
very clear discrimination between infected and uninfected sites. The infected sites are characterized by a larger SEP and a
lower FIM, indicating a dominance of disorder or disorganization in the time dynamics of the satellite evapotranspiration
data in comparison with the uninfected sites.
8
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Fig. 7. (a) Power spectrum, (b) heat map and (c) mean periodogram of the time series of the MODIS ET pixels covering Foggia. (c) Mean periodogram.
9
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Fig. 8. (a) Power spectrum, (b) heat map and (c) mean periodogram of the time series of the MODIS ET pixels covering Matera.
10
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Fig. 9. (a) Power spectrum, (b) heat map and (c) mean periodogram of the time series of the MODIS ET pixels covering X2015.
11
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Fig. 10. (a) Power spectrum, (b) heat map and (c) mean periodogram of the time series of the MODIS ET pixels covering X2016.
12
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Fig. 11. (a) Power spectrum, (b) heat map and (c) mean periodogram of the time series of the MODIS ET pixels covering X2017.
13
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Fig. 12. Original and normalized residual time series of a MODIS ET pixel of Foggia dataset.

Table 2
Number of analysed pixels for each investigated area.

Foggia Matera X2015 X2016 X2017

< FIM > 1.1822 1.1875 1.0865 1.0804 1.0756
< SEP > 0.9946 0.9953 1.0243 1.0283 1.0306
< W > 0.7168 0.7921 0.5166 0.5335 0.5150
< hq − range > 0.2988 0.3595 0.1612 0.1705 0.1582
< α0 > 1.1718 1.2056 1.0223 1.0403 1.0570

5.3. Multifractal analysis

The length of the residual pixel time series is 575 and the maximum gap percentage is 25%. This gap percentage would
ot represent an issue, on the base of the results obtained for the binomial multifractal series shown in Section 2. We
pplied the MFDFA to each residual pixel time series, varying the moment order q from −5 to 5, the scale m from 10
o 1/4 of the length of the series. The gaps were eliminated by simply stitching together the two neighbours [46]. In
rder to select the optimum degree of the detrending polynomial, we calculated the fluctuation functions Fq for each q
or detrending polynomial degree p = 1, . . . , 5. For each Fq we computed the coefficient of determination R2 of the linear
it of log10Fq ∼ log10(m). Fig. 14a shows, as an example, the distribution of R2 for p = 1 of Foggia data; R2 changes with
the pixel and q. Fixing a threshold T for R2, for instance T = 0.9, the distribution of R2 becomes like in Fig. 13b. In order
to be conservative, we analysed the multifractality of those pixels, whose R2

≥ T for any q, while those with R2 < T for
at least one value of q were discarded. From here on, we fixed T = 0.9, and selected only those pixels with R2

≥ 0.9.
Fig. 15 shows the variation of ⟨R2

⟩pixel (average of R2 over all the selected pixels) versus q, for p = 1, . . . , 5; we can see
hat ⟨R2

⟩pixel is relatively larger for p = 4 for the areas not affected by Xylella Fastidiosa (Foggia and Matera), while it is the
argest for p = 3 for the affected areas (X2015, X2016 and X2017). Thus, we analysed the multifractality with p = 3 and
= 4 for the Xylella-affected and Xylella-not affected areas, respectively. Moreover, with these values of p the number of
elected pixels is 268/277 for Foggia, 387/388 for Matera, 238/238 for X2015, 362/362 for X2016 and 389/389 for X2017.
ig. 16 shows the boxplot of the multifractal parameters: hq-range, W and α0. Table 2 reports the means of the analysed
arameters for each area.

.4. Discussion

In this work we investigated the time variability of MODIS satellite ET of olive orchards in southern Italy to reveal
he presence of one of the most dangerous phytobacteria, Xylella Fastidiosa that is greatly capable to provoke the death
f a large amount of attacked trees by desiccation. For this reason, the time variation of MODIS ET satellite data was
nalysed to explore the time dynamics of the water status of plants; in fact, ET indirectly measures the loss of water
ontent of vegetation and, thus, it is expected to be able to capture evidence of the presence of plant diseases induced
y Xylella Fastidiosa. For all the investigated sites, both infected and healthy, the ET trend is featured by an oscillatory
ehaviour and represents the seasonal cycles of meteo-climatic origin. In particular, our analyses revealed two seasonal
ycles: (1) an annual cycle that is quite similar for all the investigated sites; and (2) a six month seasonal cycle that is
14
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Fig. 13. Boxplot of FIM (a) and SEP (b). FSIP (c).
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Fig. 14. R2 of Foggia pixels for each q and p=1 without a threshold (a) and with the minimum threshold of 0.9 (b).

less pronounced for the healthy olive orchards and clearly enhanced for the those affected by bacterium. The more power
observed at period of six months in the infected trees might be put in relationship with the semestral duration of the
vector infectivity generally lasting from May to October, thus suggesting that the six month seasonal cycle is likely an
evidence linked to the diseases induced by Xylella Fastidiosa.

In our study, the ET time series of infected sites are characterized by a larger SEP and lower FIM indicating that
their time dynamics appear more disordered (less organized) than that of sites not infected by Xylella Fastidiosa. FIM
and SEP relate to the local and global properties of the distribution of a time series, respectively. Thus, the larger SEP
shown by the ET of infected sites could indicate a dominance of the global variations of their distribution larger than that
shown by the ET of not infected sites, whose distribution, in contrast, is governed by the local variations. The different
informational response of the ET of infected and not infected sites could be linked to the different nutritional processes
that are largely damaged or even annihilated in infected olive trees. The nutritional system of olive trees is governed
by mechanisms that control water and nutrient fluxes through vessels of the xylem from the roots to the stem and up
to the leaves. In healthy trees this system is complex and undergoes several different processes that involve interactions
with the environment. A healthy tree is capable to respond more effectively to the local environmental factors; this larger
resilience is reflected in a larger heterogeneity, well depicted by a larger FIM and lower SEP. Such larger heterogeneity
and complexity are also indicated by the higher h -range, multifractal width W and α ; these three parameters quantify
q 0
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Fig. 15. Mean R2
pixel ∼ q for Foggia (a), Matera (b), X2015 (c), X2016 (d) and X2017 (e).

the multifractality of a series. The hq-range and the width W play similar role, since they quantify the variety of the
scaling exponents of the series; thus relatively large hq-range and width W suggest that the series showcases a relatively
irregular behaviour characterized by a multitude of scaling exponents that make it to be different from a series with a
nearly regular behaviour with homogeneous variations characterized, instead, by smaller hq-range and width W . The α0

parameter gives information on the structure of the ET series, being larger for less regular processes with a finer structure;
if the process becomes more regular it loses its fine structure, and α becomes smaller. The larger homogeneity of the ET
0

17
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Fig. 16. Boxplot of hq-range (a), width (b) and (c) α0 of the investigated areas.

f the infected trees indicates such more regular behaviour that, moreover, reveals a less resilience to local environmental
erturbations, due to the status of desiccation induced by Xylella Fastidiosa, which reflects the inefficiency of the nutritional
ontrol mechanisms associated with the disease. The multifractality quantifies also the degree of nonlinearity [41] in
he mechanisms governing the ET series. For infected trees the ET series have the same scaling behaviour regardless
f the external driving forces; while, healthy trees are characterized by nonlinear processes that generate ET series with
ifferent scaling properties that would depend on the external driving conditions and make them to have a better resilient
ehaviour. The findings of this study strengthen the results found in [47], where the investigation by MDFDFA and FS
ethods was performed at a global scale considering just two populations of pixels (infected and uninfected) and the
lassification performance evaluated by using the ROC analysis. In the present study, the analysis took into account also
he area, since the pixels are analysed for two uninfected areas and three infected areas. Although the general meteo-
limatic and topographical conditions of all the investigated areas are similar, being characterized by Mediterranean
limate and flat to hilly terrain, at a regional/local scale climatic and morphological differences could arise among the
reas. Furthermore, in Italy the measures to detect and contrast Xylella are established at a regional level, which means
hat they could be different from one region to another. Thus, in this study we found that at a local scale (at the level
f area) the MFDFA and FS perform satisfactorily as well as at a global scale in discriminating between infected and
ninfected pixels.

. Conclusions

The aim of the present work was to detect signs of Xylella Fastidiosa in olive groves in Southern Italy. For this purpose,
e analysed the time series of pixels of MODIS satellite evapotranspiration covering five areas, among which two (Foggia
nd Matera) are healthy and three (X2015, X2016 and X2017) are infected. The evapotranspiration is used to monitor
he water status of olive orchards; thus, it resulted well suited to reveal possible sign of the disease caused by Xylella
astidiosa whose main effect is the rapid branch desiccation. In order to remove the seasonal variability, we firstly filtered
18
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ut from the time series the annual and sub-annual cycles, and the detrended series were, then, analysed by the Fisher–
hannon analysis and the multifractal detrended fluctuation analysis. Our findings point out to a clear discrimination of
he informational and the multifractal parameters between healthy and infected trees. These results could contribute to
he definition of an operational tool for early diagnosis of Xylella Fastidiosa infection, based on multiscale, multisensor,
ultitemporal monitoring of biophysical parameters related to the state of vegetation.
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